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Magnetoencephalography (MEG) is a functional neuroimaging tool that can record activity
from the entire cortex on the order of milliseconds. MEG has been used to investigate
numerous psychiatric disorders, such as schizophrenia, bipolar disorder, major
depression, dementia, and autism spectrum disorder. Although several review papers
on the subject have been published, perspectives and opinions regarding the use of MEG
in psychiatric research have primarily been discussed from a psychiatric research point of
view. Owing to a newly developed MEG sensor, the use of MEG devices will soon enter a
critical period, and now is a good time to discuss the future of MEG use in psychiatric
research. In this paper, we will discuss MEG devices from a methodological point of view.
We will first introduce the utilization of MEG in psychiatric research and the development of
its technology. Then, we will describe the principle theory of MEG and common
algorithms, which are useful for applying MEG tools to psychiatric research. Next, we
will consider three topics—child psychiatry, resting-state networks, and cortico-
subcortical networks—and address the future use of MEG in psychiatry from a broader
perspective. Finally, we will introduce the newly developed device, the optically-pumped
magnetometer, and discuss its future use in MEG systems in psychiatric research from a
methodological point of view. We believe that state-of-the-art electrophysiological tools,
such as this new MEG system, will further contribute to our understanding of the core
pathology in various psychiatric disorders and translational research.

Keywords: magnetencephalography, psychiatry, resting state networks, cortico-subcortical networks, optically-
pumped magnetometers
INTRODUCTION

Numerous research studies in the field of psychiatry have made use of magnetoencephalography
(MEG) systems. Schizophrenia (SZ), major depression, autism spectrum disorders (ASD), child
psychiatry, attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD),
dementia, and other conditions have been investigated using MEG either alone or in combination
g August 2020 | Volume 11 | Article 8631
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with multiple neuroimaging modalities. Such studies have
commonly used auditory stimulation owing to the strong
relationship between auditory system abnormalities and
psychiatric disorders [e.g., auditory hallucinations in SZ (1)]. In
particular, the auditory steady-state response (ASSR) andmismatch
negativity (MMN) response are representative markers used to
indicate auditory processing abnormalities in neurophysiological
studies in psychiatry (2–7). Recently, research into resting-state
networks (RSNs) has receivedmuch attention in both neuroscience
andpsychiatric researchbecauseRSNsplay akey role in thebaseline
or default mode of normal and disordered brains. In psychiatric
studies, evaluation of whole-brain dynamics would be of more
interest than a functional localization-based approach (8, 9). Thus,
time-frequency analysis, which is used to evaluate whole-brain
activity, is frequently used in thisfield. Themain advantage ofMEG
is its high temporal resolution and adequate spatial resolution.

Historically, detecting electromagnetic brain activity has been
a topic of interest since the mid-20th century. Hans Berger, who
invented electroencephalography (EEG), was a pioneer in
methods of recording electrical brain activity. Subsequently, 30
years later, Baule and McFee successfully detected the heartbeat
via magnetic field detection (10). Then, the superconducting
quantum interference device (SQUID)-type magnetometer
integrated with shield technology successfully achieved the
detection of very small magnetic fields from the human brain
(11). In the 1970s, the gradient-type magnetometer was
developed (12) and multi-channel recording came into use in
clinical settings in the 1980s. In the 1990s, whole-head-type
MEG was developed by several vendors. At the beginning of the
21st century, no notable hardware development was taking place;
however, the last decade has seen the development of new
technologies. Thus, it is now pertinent to consider how new
MEG technologies will contribute to psychiatry research. We
first briefly summarize the basic principle of MEG and its use in
psychiatric research. Next, we will describe the use of MEG in
child psychiatry, the study of RSNs, and the study of cortico-
subcortical networks. We also present schematic images
comparing the current (Figure 1) and new MEG systems
(Figure 2). Then, we will discuss the potential for these new
MEG technologies to be used in future psychiatric research.
MEG AND OTHER NEUROIMAGING
MODALITIES

In humans, several functional brain measurement techniques are
nowavailable. For example, functionalmagnetic resonance imaging
(fMRI), near-infrared spectroscopy (NIRS), EEG, and MEG. Here,
we will briefly describe the pros and cons of each technique when
applied to psychiatric research. An advantage ofMEG is notably its
non-invasiveness, which is critical for psychiatric patients, while the
strong magnetic field generated during fMRI recordings is
questionably invasive especially for children and infants. Using
blood oxygenation level-dependent signal changes, fMRI provides
high spatial resolution if participants remain still but with a lower
temporal resolution that limits its functional estimations.
Frontiers in Psychiatry | www.frontiersin.org 2
Moreover, artificial sound noise generated by the MRI device
causes problem for auditory experiments, which are a major focus
in psychiatric research. EEG exhibits high temporal resolution,
equivalent to MEG, yet its spatial resolution is disputed due to
distorted detection through several tissues with different
conductivities. In psychiatric experiments, rapid and comfortable
recordings that are related to preliminary processes and limitation
of motions are ideal for patients. Preparation of EEG (i.e., fixing
many electrodes) is time consuming. Alternatively, NIRS does not
require a complex preparationprocess and is relatively robust to the
problem of body movements, but it has less spatial and time
resolution compared with EEG/MEG. Although the spatial
resolution of MEG is disputed because of its ill-posed inverse
solution, MEG can provide high temporal resolution under
certain spatial resolution, enabling almost the whole cortex to be
covered by anymeasurement in a single system. Indeed, being non-
invasive, fast, and comfortable, MEG measurements offer several
advantages for brain response recordings frompsychiatric patients.
MEG ANALYSIS AND FUNDAMENTAL
FRAMEWORKS

MEG Analysis for Psychiatric Research
MEG sensors detect magnetic field changes in neuronal electric
currents that are sensitive to the currents perpendicular to the sulci
or fissures over the cortex. MEG source reconstruction accuracy
depends on factors such as the forward and inverse problems, the
signal-to-noise ratio (S/N) including the number of trials for
averaging, and MEG-magnetic resonance imaging (MRI) co-
registration issues. The first factor, the inverse problem, has been
extensively addressed; however, other factors are crucial in practice.
The patented methods of noise cancellation are applied as
necessary, which include gradient formation (16) and the offline
Maxfilter (17), which can help to achieve a higher S/N ratio. As a
preliminary step, a band pass filter is applied to the frequency range
of interest. Furthermore, independent component analysis (ICA) is
a powerful tool for extracting target components or eliminating
artifacts (18). We must then consider the MEG source
reconstruction process. Given the widespread use of MRI, the co-
registration process is now crucial for MEG, EEG, and even for
transcranial magnetic stimulation (19). Stylus magnetic-field
digitizers are commonly used. However, these are less accurate
and more time-consuming than photogrammetry-based systems,
3D laser/structured-light scanners, or 3D printers, which are
reliable alternatives for measuring head shape (13, 20–22). Once
MEG-MRI alignment is fixed, forward computation needs to be
considered. Currently, a realistic model utilizing the boundary
element method (23) or the finite element method (24) is a
popular and accurate approach. Following the lead field
computation, the inverse solution should be applied to obtain a
source activation map. Typically, we distinguish two groups of
algorithms; one is the equivalent current dipole (ECD) (25), and the
other is distributed source analysis. Currently, theminimumnorm-
based approachor an adaptive beam-former is commonalgorithms
for the latter case (26, 27). Minimum norm estimates (MNE) is a
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technique that uses pre-fixed source points over the brain to
minimize the total current of all nodes. Furthermore, a noise
normalization technique is frequently applied using the pre-
trigger period or entire raw data (28). Then, time frequency
analysis should be applied using signals extracted from target
regions. In psychiatric research, oscillatory analysis enables us to
detect abnormal fast and varied neural activities, hence, time-
frequency analysis and connective analysis including coherence,
phase synchrony, and envelope correlation via wavelet transform,
are commonly performed (29, 30). Recently, cross-frequency
coupling, such as phase-amplitude coupling between low and
Frontiers in Psychiatry | www.frontiersin.org 3
high frequency oscillatory components, has also been discussed
(31–34).

Fundamental Frameworks
Figure 1 depicts a schematic image of psychiatric research using
SQUID-MEG. Sensors are fixed in the dewar (Figure 1A).
Components elicited in response to auditory stimuli, the MMN
and ASSR, are frequently used to detect auditory sensory deficits in
psychiatric disorders (Figure 1B). Combination studies with sensor-
level and dipole analysis have been popular (Figure 1C) (35–38).
Hirano and colleagues demonstrated oscillatory deficits in response
A B

D

C

FIGURE 1 | Schematic images from psychiatric research implementing the SQUID-MEG system. (A) SQUID-MEG system: the brain is covered by fixed positional
sensors in the dewar helmet. (B) A representative, frequently-employed auditory stimulation paradigm for MEG diagnosis, including the MMN (left) and ASSR (right)
responses. (C) Orthodox MEG analysis: a sensor-level analysis making a comparison between patients with SZ (red) and HC (blue) (left) and dipole analysis (right).
(D) The current method used in MEG psychiatric research, from right side: accurate MEG-MRI co-registration using a 3D laser scanner (13), specified ROI and
source reconstruction results using MNE, and time-frequency analysis using source waveforms; induced power (upper) and the phase-locking factor (lower). SQUID,
superconducting quantum interference device; SZ, schizophrenia; HC, healthy control; MMN, mismatch negativity; ASSR, auditory steady-state response; ROI,
region of interest; MNE, minimum norm estimates.
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to speech sounds in SZ (39) and bipolar disorder (40), ASSR gamma
oscillatory abnormalities in SZ (41) and mood disorders (42), and
MMNdeficits in major depressive disorder (43). Given the relatively
high spatial resolution, distributed source analysis has become the
main method for analyzing MEG data (Figure 1D) [e.g., MNE (44–
46), the beamforming (47)]. At present, one state-of-the-art
technique is applying wavelet transform and connected analysis to
the extracted source waveforms via a combination of distributed
source analysis and ICA (48, 49).
SPECIFIC MEG APPLICATIONS FOR
PSYCHIATRIC DISORDERS

Here we describe three specific MEG applications in psychiatric
disorders since we consider that these will be the key roles of the
coming psychiatric study using MEG.

Child Psychiatry
Owing to its completely non-invasive approach, MEG is one of
the most suitable technologies in child psychiatry. Indeed, ASD
and ADHD in child psychiatry have been well investigated using
MEG (50–54). Although infant MEG systems are commercially
available (55), only a few institutions possess these systems. The
Frontiers in Psychiatry | www.frontiersin.org 4
main obstacle to MEG use in babies and children is head and body
movements. The simplestway todealwith this issue is todiscard the
data from when patients make large movements. Another way to
overcome these issues is the use of continuous head localization;
however, the use of strong magnetic field generation during the
measurement in children is controversial.MRI scanning inyounger
children is problematic, but the use of standard brains from a series
of age-matched infantMRIs can help to reduce the problem.Dipole
methods with a spherical model are still the dominant approach in
children; hence, the accuracy level in children is not comparable to
that in adult cases.

Resting-State Networks
Brain activity occurs not only during cognitive processes, but also
during sleep or rest (56, 57), which is when RSN activity can be
recorded. RSNs involve key network domains that are known to
underlie the pathophysiology of many psychiatric disorders (58,
59), such as the default mode network, central executive network,
and saliency network. Several RSN studies utilizing MEG for
psychiatric researches have been reported (60–67). A common
way ofmakinguse of the strengths ofMEG is to investigateRSNson
the basis of a source reconstruction technique in various frequency
bands. Analyzing frequency-specific RSNs involving deeper brain
such as limbic regions can reveal pathophysiology of psychiatric
disorders as network failure.
A B

C

FIGURE 2 | Potential application of the OPM-MEG system in future work. (A) Newly developed system and principle of atom magnetometer (upper panel). Two
laser beams are arranged orthogonally; one is the pump beam that polarizes the vaporized atomic electron spin, and the other is the probe beam that measures the
state of spin evolving in the magnetic field B. Rb denotes rubidium atom. The lower sub-figure presents a pediatric OPM-MEG system adapted from Hill et al. (14).
(B) RSN analysis will involve deep brain structures. Representative RSNs (left) and an image showing graph theory analysis (right) (15). (C) The cortico-subcortical
network could be targeted in future work. Thalamocortical communication (upper left) and the basal ganglia loop, 1. cortex!2. striatum (a. caudate nucleus orb.
putamen)!3. pallidum!4. thalamus!1.cortex (lower right). OPM, optically pumped magnetometers; TRN, thalamic reticular nucleus.
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Thalamocortical Communication and the
Basal Ganglia Loop in Psychiatric
Disorders
Recently, aberrant oscillatory activity has been reported in various
psychiatric disorders. Functional interactions within the cortico-
subcortical network are considered to contribute to abnormal
oscillation via alterations in neurotransmitters and receptors in
psychiatric disorders. We argue that there are relationships among
the cortico-subcortical network (including the limbic system,
thalamus, and basal ganglia) and related networks, which form
functional loops that are of interest in psychiatric research.
Although the ability of MEG to detect the activity of deep brain
structures is still disputed, there are a few credible reports under
current SQUID-MEGsystem(68, 69). Schulmanet al. hypothesized
that the generation of abnormal recurrent neuronal activation in
neuropsychiatric disorders occurred through aberrant
thalamocortical rhythm epiphenomena (70). Patients with OCD
usually recognize that obsessions and compulsions are not logical,
but they are not under their control; thus, it is important to
investigate whether cognitive changes in OCD may be caused by
abnormal neural circuits. The basal ganglia loops not only underlie
sensorimotor control but also cognitive functions associated with
limbic control and motivated behavior (71); hence, recent work on
OCD has been focused on the contribution of the basal ganglia
loops. fMRI studies have suggested that OCD involves abnormal
functioning in specific frontal-subcortical brain circuits (72).
Enhanced activity within the basal ganglia loop is clearly seen in
OCD even at resting state (73). However, the temporal dynamic of
these loops has not been sufficiently addressed in humans. The new
MEG could help to elucidate the contribution of altered basal
ganglia loops to OCD.
LIMITATIONS OF THE CURRENT
SQUID-MEG SYSTEM

MEG is a very attractive tool for psychiatric research, including in
the diagnosis of psychoses. However, the penetration rate of MEG
is generally very low compared with fMRI, EEG, and transcranial
magnetic stimulation (58). In general, an MEG laboratory is
expensive to set up and maintain. Further, despite MEG being
simple to measure, it requires a complex data analysis. The source
reconstruction analysis via a mathematically ill-posed problem
requires a complex knowledge of physics, mathematics, and
computational issues. Current practical limitations of SQUID-
MEG include its poor sensitivity to deep brain activities and its
sensitivity to head motion artifacts. These problems are not
solvable in principle because they depend on the hardware
design and configuration. The main hardware limitations of the
SQUID-MEG system relate to the fixed location and orientation of
the detection coils (sensors). The fixed coil position within the
dewar limits the distance between the brain and the sensors to
approximately 2−3 cm and the gradiometers (axial or planar) are
designed to increase the sensitivity of the cortical responses.
Indeed, using the current SQUID-MEG system, it is difficult to
detect activity in the thalamus and basal ganglia accurately because
Frontiers in Psychiatry | www.frontiersin.org 5
of their depth and anatomical structure. Additionally, the fixed coil
location requires the subject to lie still during measurement. As
such, the system is sensitive to head movement. These limitations
of the current SQUID-MEG system reduce its utility in child
psychiatry and analysis of cortico-subcortical networks. Thus,
there is increasing interest in the development of new MEG
systems, as described below.
NEWLY DEVELOPED MEG SENSORS

Until the 20st century, low temperature SQUID-MEGs were the
only choice of device for MEG sensors; however, current
technologies have meant that new MEG devices are now
available. In particular, the development of optically-pumped
magnetometers (OPM; also termed ‘on-scalp MEG’) has
accelerated in recent years. The development of the atomic
magnetometer began earlier, but because of their poor
sensitivity, their use was not emphasized. Drastic changes have
occurred since the development of a new spin-exchange
relaxation-free condition, which has led to sensitivities up to
the femtotesla range (74). Figure 2 shows potential uses of OPM-
MEG in future research. Figure 2A (upper) depicts a schematic
image of the fundamental principle of an atomic magnetometer
embedded in an OPM device. Studies using this new technology
have reported results that are relevant to psychiatric research,
such as phase-locked evoked responses generated by auditory
stimuli (75) and the detection of induced changes in the
frequency domain (76). One of the most important issues
when considering the newly developed OPM is the wearable-
type system, which increases the flexibility of sensor location and
orientation. The on-scalp MEG system can reduce the distance
between the sensors and the brain, allowing detectors to be
placed several millimeters above the scalp surface. The flexible
position and orientation indicate that this system could be used
to measure activity of not only the cerebral cortex but also
subcortical brain areas. The S/N ratio will be drastically
improved which is not comparable to SQUID-MEG. A study
from 2017 reported that the S/N ratio was four times higher than
the SQUID-type MEG in general, and eight times higher on
surface areas (77). By using flexible-type sensors, it is possible to
freely orientate the sensors according to the target brain
structure. When using wearable-type sensors, MEG-MRI co-
registration is crucial because of non-fixed flexible sensor
locations and orientations, but some proposals have been made
for the use of OPM with 3D printers or 3D-structured light
scanners (21, 22, 77). The higher S/N ratio and the orientation-
free design of the system allows the detection of deeper brain
signals. The accuracy of source localization-based time-
frequency analysis also ameliorated along with the hardware
development. Another advantage of wearable-type sensors
relates to the reduced influence of head movements during
measurement. Notably, the maintenance cost of MEG will be
drastically reduced because the new sensor works at room
temperature. We strongly believe that this non-pyrogenic MEG
device will increase the penetration rate of MEG.
August 2020 | Volume 11 | Article 863
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UTILIZATION OF OPM-MEG FOR
PSYCHIATRIC RESEARCH

The OPM-MEG could be a better, more accurate alternative
method for recording neuromagnetic signals from infants and
children since the wearable sensors reduce the problem of head
movement compensation (Figure 2A, lower). A higher S/N ratio
would also allow single-trial analyses to be performed, which is
beneficial to detecting the dynamic changes in the brain. For
example, MMN experiments generally consist of standard and
deviant stimuli, and the number of deviant stimuli is lower than
the number of standard stimuli. As such, there is an
incongruence in the number of averaged trials between the two
conditions. Thus, the interest around single-trial analysis of
OPM-MEG data in MMN research is increasing. Oscillatory
whole-brain analyses in milliseconds resolution is a good tool for
RSN analysis (Figure 2B). Covering the whole cortex is crucial in
psychiatric research because the RSNs and recurrent loops are
likely to be important in psychiatric diseases, as described in the
previous subsections. The possibility of using OPM to detect the
activity of deep brain structures has not yet been examined
systematically. Nevertheless, OPM was suggested to detect
deeper source signals because of its higher S/N ratio and
orientation-free system. Indeed, a recent OPM-MEG study
reported that the detection accuracy for deeper source signals
is almost twofold that of SQUID-MEG and even allowed for
detection in the spinal cord (77). However, further advances are
required for assessment of cortico-subcortical networks. In
recent years, there have been systematic advances in the
SQUID-MEG system. With respect to hardware, developments
in gradiometers, magnetometers, and reference channels have
improved the detection of both shallow and deep sources, which
may be useful for cortico-subcortical network analysis. From a
theoretical viewpoint, an optimized weighted lead field matrix
for deeper source detection, and integration of signal separation
methods such as ICA, would also aid in cortico-subcortical
network analysis. However, the practical development of such
sophisticated subcortical-level network analyses for the new
MEG system will take a little more time. Thus, it may be better
to initially focus on the shallow source activity because these
subcortical networks involve cortical signals. Then, we can shift
to the measurement of deeper brain signals and development of
more sophisticated tools and devices. Finally, advanced task
configuration and experimental design should be considered
for reliable measurement of activity in deeper brain networks.
Although OPM-MEG can detect activity in deeper brain regions,
its credit level is not identical to fMRI. Nonetheless, OPM-
MEG provides valuable temporal information. At any rate, the
possibility of deep-brain recordings would represent a considerable
advancement compared with the current scenario. Detection of
deeper brain structures using OPM-MEG enables measurement of
thalamocortical communication and the basal ganglia loop, which
are of great interest in psychiatric research (Figure 2C). Given the
importance of temporal information and the limitations of fMRI,
RSN analyses will be extended to the wider brain area, with the
possibility of exciting temporal information.
Frontiers in Psychiatry | www.frontiersin.org 6
CONCLUSION

We addressed the limitations of the current SQUID-MEG
system, the expectations of the newly developed MEG system,
and how this system should be utilized in psychiatric research.
Using MEG, investigation of brain dynamics with high temporal
resolution will be invaluable for psychiatric research. Ideally,
future investigations will incorporate data on the order of
milliseconds that can be used to better understand the role of
complex brain networks in psychiatry, such as those involving
the cerebrum, cerebellum, limbic system, thalamus, basal ganglia,
and their related networks. The development of sensors should
provide new insights in child psychiatry and entire brain
networks involving deeper structures. Although multimodal
analyses are more powerful in principle, the newly developed
OPM-MEG neurophysiological device will be very useful and
accurate for psychiatric research, even as a standalone single
system, because OPM-MEG has both higher temporal and
spatial resolution. Note that development of such state-of-the-
art functional neuroimaging systems will provide further
advances in the fields of neuroscience and psychiatric research.
Identifying novel biomarkers for detection of psychiatric
disorders is a key goal of psychiatric research (2, 3, 9). We
believe that continued MEG advancement will open new doors
for establishing neurophysiological biomarkers for psychiatric
disorders in the near future.
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