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In 2012, Molecular Ecology published a special issue on environmen-
tal DNA, which provided an overview of the field of eDNA research 
and presented a selection of papers on eDNA studies (Taberlet 
et al., 2012). This special issue also introduced the concept of 
Biomonitoring 2.0, advocating for the use of DNA-based identifica-
tion of taxa in biodiversity surveys and ecosystem assessment (Baird 
& Hajibabaei, 2012). Since then, hundreds of papers have been pub-
lished covering various aspects of eDNA-based biomonitoring from 
single-species detection to community studies and environmental 
impact assessments. Numerous reviews have summarized these 
studies for both freshwater and marine environments (Bohmann 
et al., 2014; Thomsen & Willerslev, 2015).

The progress made in the eDNA field during these last ten years 
has been spectacular (Taberlet et al., 2018). Although the basic con-
cepts and workflow of DNA barcoding and metabarcoding have not 
changed, the technological advances in high-throughput sequenc-
ing have greatly facilitated the access to eDNA data. It has become 
possible to monitor biodiversity with unprecedented precision and 
depth. Massive environmental genomic datasets have been rapidly 
generated at relatively low cost. The analysis of these datasets using 
machine learning and other taxonomy-free approaches opened wide 
the doors for using new groups of bioindicators to infer ecological 
status (Cordier et al., 2018, 2019; Pawlowski et al. 2018). At the 
same time, constant efforts to fill gaps in barcoding reference data-
bases considerably increased the effectiveness of taxonomic identi-
fication of eDNA data (Weigand et al., 2019).

Astonishingly, these rapid advances in eDNA-based technol-
ogies are rather timidly implemented in routine biomonitoring 
(Hering et al., 2018; Shackleton et al., 2021). Although the concept 
of Biomonitoring 2.0 is widely endorsed, its acceptance in practice 
is hampered for various reasons. There is no consensus whether 
eDNA-based biomonitoring should only apply to conventional 
bioindicators (Renovate) or should also include new bioindicators 
(Rebuild) or new taxonomy-free approaches (Revolutionize) (see 
Figure 1). Moreover, three main steps on the roadmap from eDNA 
to biomonitoring are not developed equally. The main attention is 
given to the development and optimization of eDNA data generation 
and analysis. The standardization of eDNA methods and their trans-
lation into legislatory framework remain at a very early stage. One 
of the main issues impeding the application of eDNA-based tools 
concerns the lack of congruence between the results of traditional 
and molecular analyses (Aylagas et al., 2020). It is expected that the 
new method is “safe to use” only if it provides the same or almost 
same results as the conventional one. However, obtaining such per-
fect congruence is often impossible because the character of data is 
very different (e.g., abundance of individuals vs abundance of eDNA 
reads). Moreover, the eDNA “ecology” can hardly be translated di-
rectly into species ecology. There are also numerous biological and 
technical biases that can affect the generation and processing of 
eDNA data, impacting their interpretation.

This special issue addresses some of these challenges by present-
ing the latest advances in eDNA field and discussing their strengths 
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and limitations when applied to routine biomonitoring. The issue com-
prises 29 papers grouped into four sections and covering different 
aspects of eDNA applications. It is accompanied by an opinion paper, 
which clarifies the eDNA terminology in relation to its use in biomon-
itoring (Pawlowski et al., 2020). The first section comprises a series 
of studies using new analytical tools (e.g. machine learning), new 
types of bioindicators and genomic data (e.g. shotgun sequencing) for 
the assessment of ecological status. It is followed by a section dedi-
cated to fish eDNA, whose application in biomonitoring is the most 
advanced. The third section comprises papers dealing with various 
methodological aspects and the comparison between conventional 
and molecular methods. The final section presents few examples of 
eDNA applications for biodiversity surveys and population genetics.

1  |  NOVEL APPROACHES TO MONITOR 
ECOSYSTEMS

The development of environmental genomics enables monitoring of 
microbial and meiofaunal communities that were previously inacces-
sible when using conventional methods. However, our knowledge 
of the ecology of these communities is very limited and therefore 
new analytic approaches are necessary to integrate them into rou-
tine bioassessment. This section begins with a review of implemen-
tation strategies for the application of environmental genomics in 
ecological diagnostics (Cordier et al., 2021). The authors introduce 
four broad categories of possible strategies, including (1) DNA-based 
taxonomic identification of known bioindicators, (2) taxonomy-free 
discovery of new bioindicators, (3) structural community metrics, 
and (4) functional community metrics. Each of these strategies is 
adapted to a particular type of data (metabarcoding, metagenomics, 
metatranscriptomics) and rely on different computational analyses 
in order to provide an assessment of the ecological status.

Among the different analytical tools, machine learning seems to 
be the most promising way to predict the ecological status (Cordier 
et al., 2018, 2019). In this issue, its performance is tested in the case of 
the benthic diatoms index widely used in the assessment of ecological 
quality of rivers and streams (Apothéloz-Perret-Gentil et al., 2021). This 
study shows that supervised machine learning performs better than the 
taxonomic assignment, but its predictions are similar to those obtained 
using a taxonomy-free molecular assignment approach. Moreover, the 
efficiency of a taxonomic assignment method strongly depends on the 
completeness of the reference database, highlighting the need to fill in 
the existing gaps, particularly in the case of bioindicator taxa.

The ability of de novo prokaryotic bioindicators to predict multi-
ple anthropogenic impacts on estuarine and coastal benthic commu-
nities is demonstrated by Lanzén et al. (2021). The authors compare 
their results to the traditional macrofauna-based indices and dis-
cuss various advantages of using microbial bioindicators as they are 
more sensitive to different abiotic pressures. Similar conclusions 
were reached in the case of environmental impact assessment of 
marine aquaculture (Frühe et al., 2021) and the oil and gas industry 
(Mauffrey et al., 2021). Both studies demonstrate the effectiveness 
of machine learning and de novo microbial bioindicators and promote 
their use for benthic monitoring in marine environments.

The last two papers in this series explore new directions for 
the further development of ecogenomic diagnostics. Broman et al. 
(2021) use environmental RNA (eRNA) shotgun sequencing to anal-
yse the impact of organic enrichment on benthic micro-eukaryotic 
communities. Compared to eDNA metabarcoding that is used in the 
majority of studies, eRNA shotgun data has the advantage to over-
come the potential biases of PCR amplification and to better capture 
the organismic response to environmental pressures by targeting 
predominantly active cells. Ibrahim et al. (2021) use historical eDNA 
metabarcoding data to analyze the impact of eutrophication on lake 
phytoplankton in the 20th century. This study demonstrates the 

F I G U R E  1  Framework for an eDNA-based biomonitoring. The boxes on the left represent the main current research avenues, that 
are mostly focused on particular components of biological communities. The right side represents the milestones to meet for the 
implementation of eDNA for routine biomonitoring

Conventional bioindicators

Renovate

New bioindicators  
Rebuild

TGAGCC

Optimization Standardization
    

Implementation
    

eDNA-based biomonitoring
Methods:
- sampling
- processing
- analysis

Calibration:
- benchmarking
- ring tests
- backward compatible

Legislation:
- science consensus
- full documentation
- data management

Taxonomy-free metrics

Revolutionize

AGTGCACGTTCA
TACTGC

ACGTGCA TATGCGA

ATACGC
    cost-effective     guidelines     upscaling



    |  2933PAWLOWSKI et al.

potential of paleo-metabarcoding to characterize past biodiversity 
and establish reference conditions for future monitoring.

2  |  REFINING FISH eDNA SURVE YS

The second series of papers concerns the use of eDNA to monitor 
fish diversity. We focus on fish because they are among the most im-
portant groups of bioindicators and also because their study from an 
eDNA perspective is the most advanced (Pont et al., 2021). The bar-
coding reference database of common fish species in some regions 
is close to completeness (Knebelsberger et al., 2015), fish-specific 
markers are well defined (M. Miya et al., 2015; Valentini et al., 2016; 
Zhang et al., 2020) and protocols for fish eDNA sampling and pro-
cessing are well established (Masaki Miya et al., 2020; Valentini et al., 
2016). Currently, considerable efforts are directed to solve the most 
challenging issue, which is related to quantitative fish eDNA data 
and its application for inferring fish indices in routine biomonitoring.

Two papers address this issue by proposing different approaches 
to estimate fish abundance from eDNA data. Fukaya et al. (2021) use 
numerical hydrodynamic models to simulate the spatial and temporal 
distribution of fish eDNA in aquatic environments. By integrating the 
models to the measures of eDNA concentration, the authors obtained 
estimates of fish population abundance comparable to those obtained 
by the quantitative echo sounder method. Yates et al. (2021) improve 
the correlation between eDNA concentration and fish abundance by 
integrating allometric scaling coefficients. Such coefficients can help 
adjust the values of eDNA production taking in consideration density, 
biomass and metabolic rates characteristic to a given taxon.

A better understanding of the “ecology” of fish eDNA, and par-
ticularly how its temporal and spatial distribution is shaped by abiotic 
and biotic factors, is the subject of the following papers. Littlefair et al. 
(2021) tested how seasonal variations in thermal stratification influ-
ence the distribution of fish eDNA in lakes. The authors show that 
eDNA distribution follows lake stratification and the thermal niche 
of the species, which in turn may affect its detection in certain sea-
sons. The distribution of fish and amphibian eDNA in a lentic system 
was investigated experimentally by Brys et al. (2021). This study in-
dicates high eDNA decay rates and limited dispersal, reinforcing the 
accuracy of eDNA-based monitoring for retrieving the spatiotemporal 
occupancy patterns. The advantages of using eDNA for survey of fish 
populations were also demonstrated by other papers in this section. 
McColl-Gausden et al. (2021) showed that eDNA metabarcoding is 
generally more sensitive than electrofishing for conducting fish sur-
veys in freshwater streams, while Aglieri et al. (2021) demonstrate 
strong complementarity of eDNA-based analysis with visual and 
capture-based methods in the survey of coastal fish communities.

3  |  METHODOLOGY AND COMPARISON 
WITH CONVENTIONAL METHODS

General acceptance of molecular methods in biomonitoring requires 
their benchmarking against conventional morphotaxonomy-based 

approaches. This is commonly achieved by processing the same 
samples in parallel using different methods and by assessing how 
the molecular data fit to the results of traditional approaches, con-
sidered as a ground truth. The papers of this section compare the 
results of eDNA metabarcoding vs bulk DNA metabarcoding vs dif-
ferent morphology-based approaches. They also present and discuss 
the biases of molecular methods and propose solutions to improve 
the outcomes of molecular data generation and processing.

The section begins with the three comparative studies of marine 
biomonitoring. Suter et al. (2021) evaluate the performance of water 
eDNA and bulk DNA metabarcoding in assessing the biodiversity of 
zooplankton in open ocean, currently monitored by using continu-
ous plankton recorders. The study shows that both methods recover 
more species than morphological analyses, however, their efficiency 
depends on the sampling method and selected marker. They con-
clude that eDNA metabarcoding is very promising, but it still requires 
some refinement and standardization before it can be routinely used 
for zooplankton biomonitoring. Similar conclusions are drawn from 
the comparison of sediment DNA metabarcoding and macrofauna 
surveys applied to monitor benthic impacts of salmon farms (He 
et al., 2021). Although the authors found a certain coherence in rel-
ative abundance of common macrofauna bioindicators inferred from 
morphological and eDNA data, they observed that the correlation 
with organic enrichment was much stronger for meiofauna, which is 
not usually included in biomonitoring studies. Significant differences 
were also found between water eDNA samples and bulk DNA ex-
tracts from adjacent benthic communities (Antich et al., 2021). The 
authors concluded that water eDNA is a poor proxy for the analysis 
of benthic communities, although they do not exclude that the use 
of taxon-specific markers could improve the congruence between 
eDNA and bulk DNA metabarcoding data.

The importance of marker selection has also been emphasized 
in the case of freshwater macrobenthos metabarcoding. The per-
formance of different markers, with focus on key insect orders 
(Ephemeroptera, Plecoptera and Trichoptera) was tested by Ficetola 
et al. (2021). The authors demonstrate the complexity of the marker 
selection process and advocate for the use of multiple markers to 
cover the widest range of taxa. Combining data from different mark-
ers was shown to considerably improve the match between mac-
robenthic indices inferred from bulk DNA and morphotaxonomic 
surveys (Meyer et al., 2021). A multimarker approach was also rec-
ommended for the assessment of macroinvertebrate communities 
from the bulk preservative (Martins et al., 2021). Despite the impor-
tance of using multiple markers, the authors also demonstrate that 
the presence of heavily sclerotized exoskeleton can act as a limiting 
factor for the detection of some taxa.

The comparison of bulk DNA vs water eDNA metabarcoding has 
been reported by two papers. Gleason et al. (2021) show that bulk 
DNA metabarcoding more accurately represents the local stream 
macroinvertebrate community, with water eDNA data being over-
whelmed by non-metazoan sequences. The same difference was 
observed when comparing bulk DNA to water eDNA and morpho-
logical inventories of pond macroinvertebrates (Harper et al., 2021). 
However, the authors consider both approaches as complementary 
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and suggest that they should be combined for comprehensive assess-
ment of the invertebrate community. The importance of bulk DNA 
metabarcoding as a tool for the assessment of marine ecosystems 
is also highlighted by van de Loos and Nijland (2021). The authors 
review various technical biases affecting bulk DNA metabarcoding 
workflow and discuss possible improvements that could help over-
coming these biases in the future.

The analysis of water samples from five sites in the Brazilian 
Atlantic forest and one adjacent site in Cerrado grasslands allowed 
Lopes et al. (2020) to demonstrate that eDNA metabarcoding sig-
nificantly improves traditional monitoring methods, confirming 
the presence of frog species undetected by traditional methods. 
For a few years, invertebrate-derived DNA (iDNA) from leech 
blood-meal have been used to track mammalian species (Schnell 
et al., 2012). Here, Drinkwater et al. (2021) apply this approach to 
assess differences in mammalian diversity across a gradient of for-
est degradation in Borneo. For monitoring elusive mammals, the 
iDNA method complements the more traditional and widely used 
camera trapping.

The last two papers in this section provide examples of me-
tabarcoding optimizations aiming at improving its effectiveness in 
biomonitoring surveys. Guerrieri et al. (2021) show how soil pres-
ervation methods can affect estimates of taxonomic richness and 
community composition. The authors propose guidelines for opti-
mizing soil preservation conditions in agreement with the objectives 
and practical constraints of the research project. On the other hand, 
Mächler et al. (2021) address the optimization of data analysis, by 
investigating how stringency filtering can affect eDNA diversity es-
timates. The authors conclude that the use of Hill numbers can help 
in comparisons of eDNA datasets that strongly differ in diversity.

4  |  Other perspec t ives for  eDNA-based 
biomonitor ing

The last three articles in this special issue present ground-breaking ap-
proaches to monitoring biodiversity. Martel et al. (2021) clearly show 
that eDNA surveys paired with occupancy modelling can uncover 
metapopulation dynamics and their drivers. Such type of information 
is important for monitoring endangered species distributed in meta-
populations and is quite difficult to obtain via traditional inventories. 
Shum and Palumbi (2021) reanalyzed a published marine metabar-
coding dataset concerning cobble communities found within kelp for-
est ecosystems. They focussed on diversity data at the intraspecific 
level to infer population structure and demographic trends. This type 
of approach greatly increases the scope and value of metabarcoding 
studies, also opening the way towards metaphylogeography (Turon 
et al., 2020). Finally, Sigsgaard et al. (2021) successfully tracked in-
sects from cow dungs from different environments, and showed that 
eDNA metabarcoding represents an efficient method for assessing 
insect diversity, with potential for biomonitoring in relation with the 
relatively easy standardization of such an approach.

5  |  CONCLUSION

As shown by the collection of papers published in this issue, poten-
tial applications of eDNA in biomonitoring are highly diverse. Their 
scope ranges from tracking endangered species to surveying biodi-
versity or assessing environmental impact. Some papers focus on 
integrating eDNA into existing bioindication systems, whereas oth-
ers use eDNA to expand the range of bioindicators and include in-
conspicuous, commonly overlooked microbial and meiofaunal taxa. 
All these papers attest to major efforts that have been done to im-
prove eDNA methodology at every step of the workflow from sam-
pling to data analysis. They also contribute to better understand the 
biological and technical factors impacting the eDNA analyses. Yet, 
despite this huge new knowledge and numerous practical advan-
tages, the implementation of eDNA in routine biomonitoring still 
has not taken off.

It is now high time to move on and to transform the eDNA field 
into a truly applied science. The biodiversity crisis and global envi-
ronmental changes call for an urgent modernization of the tools to 
monitor biodiversity and assess the ecological status of our envi-
ronment. As shown by the papers published here, the eDNA meth-
odology achieved top levels of technical and scientific excellence in 
many areas. Certainly, there are some biases and limitations inherent 
to eDNA specificity, but there is no reason to consider that the tech-
nology is less “safe to use” than the conventional morpho-taxonomic 
approaches. There are also actions to be taken to ensure the quality 
and to build confidence in eDNA analyses through standardization 
of technical protocols and intercalibration tests. However, in view of 
the substantial efforts that have been made by the scientific com-
munity and illustrated by the content of this special issue, it is rea-
sonable to expect that the implementation of eDNA-based tools in 
biomonitoring will not be long in coming.
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