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Abstract

Single-molecule tweezers measurements of double-stranded nucleic acids (dsDNA and dsRNA) provide unprecedented
opportunities to dissect how these fundamental molecules respond to forces and torques analogous to those applied by
topoisomerases, viral capsids, and other biological partners. However, tweezers data are still most commonly interpreted
post facto in the framework of simple analytical models. Testing falsifiable predictions of state-of-the-art nucleic acid models
would be more illuminating but has not been performed. Here we describe a blind challenge in which numerical predictions
of nucleic acid mechanical properties were compared to experimental data obtained recently for dsRNA under applied force
and torque. The predictions were enabled by the HelixMC package, first presented in this paper. HelixMC advances
crystallography-derived base-pair level models (BPLMs) to simulate kilobase-length dsDNAs and dsRNAs under external
forces and torques, including their global linking numbers. These calculations recovered the experimental bending
persistence length of dsRNA within the error of the simulations and accurately predicted that dsRNA’s ‘‘spring-like’’
conformation would give a two-fold decrease of stretch modulus relative to dsDNA. Further blind predictions of helix
torsional properties, however, exposed inaccuracies in current BPLM theory, including three-fold discrepancies in torsional
persistence length at the high force limit and the incorrect sign of dsRNA link-extension (twist-stretch) coupling. Beyond
these experiments, HelixMC predicted that ‘nucleosome-excluding’ poly(A)/poly(T) is at least two-fold stiffer than random-
sequence dsDNA in bending, stretching, and torsional behaviors; Z-DNA to be at least three-fold stiffer than random-
sequence dsDNA, with a near-zero link-extension coupling; and non-negligible effects from base pair step correlations. We
propose that experimentally testing these predictions should be powerful next steps for understanding the flexibility of
dsDNA and dsRNA in sequence contexts and under mechanical stresses relevant to their biology.
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Introduction

Nucleic acids play central roles in biological processes including

transcription, translation, catalysis and regulation of gene expres-

sion [1,2]. Double-stranded RNA and DNA (dsRNA and dsDNA)

stretch and twist when interacting with proteins [3,4] and when

forming compact structures such as nucleosomes [5] and packaged

viruses [6,7]. Understanding such deformations is critical for a

fundamental understanding of nucleic acids in their biological

contexts and for efforts to rationally engineer nanostructures built

from dsRNA and dsDNA helices. High precision experimental

data are becoming increasingly available from measurements

using optical and magnetic tweezers [8–20] that measure end-to-

end lengths and linking numbers of kilobase-length single

molecules upon variation of solution condition, sequence, applied

force and torque. In principle, these data offer rigorous challenges

that can falsify or validate – and thereby advance – models of

nucleic acid flexibility. However, such direct comparison of model

predictions and experimental observables remains incomplete.

On one hand, fits to analytical equations based on worm-like

chain (WLC) or elastic rod models are in common use for

interpreting single-molecule manipulation data [14,21–24], but

they lack the power of predicting new experimental results and

involve numerous approximations (see below). On the other hand,

high-resolution approaches that integrate all-atom energy func-

tions and crystallographic knowledge [25–32] offer the prospect of

predictive calculations, but the computational costs to simulate

kilobase-scale helices remain prohibitively large. Coarse-grained

models, such as the base-pair level models (BPLMs) pioneered by

Olson and colleagues [33] as well as models that use reduced

representations for each base (rather than base-pair) [34–36],

provide mesoscopic ‘‘bridges’’ between simple analytical models

and atomic-level simulations. In this work, we focus on BPLMs as

they have fewer degrees of freedom than single-base level models,

enabling efficient calculations, and their parameterization can be

more easily refined by the growing data of crystallographic

structures [33,37–47]. It is worth noting that BPLM is only

expected to be applicable to duplexes at low-to-medium tension.
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Structural transitions involving breaking of base-pairs or formation

of non-canonical base-pair interactions, typical at very high

tension, are better modeled with single-base level models [48–52].

Despite continuing advances, BPLM simulation methods have

not yet been used to make direct comparisons with single-molecule

experiments. BPLM simulations have focused on helices up to

hundreds of base-pairs, significantly smaller than the kilobase

lengths probed in single-molecule experiments at which helix

bending and twisting may play significant roles in the measured

properties. In addition, BPLM calculations have been primarily

developed for B-DNA duplexes; growing crystallographic knowl-

edge for dsRNA helices has not been integrated into the BPLM

framework. Finally, accurate methods for computing and

constraining the twist, writhe, and link of discrete, open-ended

helices have not been established until recently [53–56] and have

not been integrated into BPLM modeling.

Here, we describe a blind prediction challenge, where

developers of modeling algorithms (FCC, RD) predicted un-

released data on the mechanical properties of dsDNA and dsRNA

helices measured by a team of experimenters (Lipfert et al.,

unpublished data). More specifically, the torsional properties and

stretch modulus of dsRNA have not been previously reported (only

the bending persistence length of dsRNA was measured previously

[13]; the stretch modulus of dsRNA was published during the

modeling [20]). This challenge motivated the development of a

software package HelixMC, first presented in this work, to close

the methodological gaps described above and thus enable

simulations of force vs. extension, effective torsional persistence

vs. force, link vs. force, and extension vs. link experiments. The

goal of calculating actual experimental observables necessitated

several systematic studies to check widespread but poorly tested

modeling assumptions, including simulation-based validations of

the Moroz-Nelson formula for torsional persistence length [21,22].

Most importantly, the rigorous comparison between blind

predictions and data revealed how current BPLMs largely succeed

in modeling stretching and bending but apparently miss physics

necessary for understanding dsDNA and dsRNA torsional

properties. Finally, HelixMC predictions for previously unmea-

sured properties of two biological important variants, poly (A)/

poly (T) dsDNA and Z-DNA, delineate future experiments that

will allow incisive evaluation and revision of current modeling

approaches.

Results

Brief overview of the simulation
Before presenting the results of the blind prediction, we present

an overview of the simulation system and algorithm. Detailed

descriptions are given in the Methods section. BPLMs [33,37–46]

abstract the entire duplex into multiple base-pairs stacking on top

of each other. The coordinate transformation between two

neighbor base-pairs (i.e. a base-pair step) is conventionally

described with six standard step parameters (shift, slide, rise, tilt,

roll, and twist). The internal interactions between neighbor base-

pairs can therefore be described using the distribution of these

parameters drawn from the Protein Data Bank (PDB) in six-

dimensional (6D) space. Typically, these 6D distributions are

approximated with 6D multivariate Gaussians to allow continuous

sampling of the conformation space. We also tested an alternative

scheme which samples directly from existing parameters in the

database, without assuming Gaussianity.

The duplexes, represented in BPLM, are then simulated with a

Metropolis Monte Carlo (MC) method, with stretching forces and

torsional constraints incorporated into the energy function. By

default we simulated dsDNA/dsRNA of 3,000 base-pairs at room

temperature (298K). At the end of each cycle of Monte Carlo

updates, the helix extension and the linking number are recorded.

For direct comparison to single molecular tweezers analysis, these

data from simulations at different forces and torsional constraints

are then used to compute global mechanical properties including

bending persistence length, stretch modulus, torsional persistence

length and link-extension coupling, by fitting to analytical

equations based on the elastic rod model.

Setup of blind prediction challenges
Single-molecule tweezers experiments allow accurate measure-

ments of the extension and the linking number of long molecules

under externally applied stretching forces and torques. Typical

experiments include force vs. extension, effective torsional

persistence vs. force, link vs. force, and extension vs. link

measurements. The published literature on dsDNA mechanical

measurements is extensive (see e.g. [10,11,18,19]), but magnetic

tweezers data directly probing the torsional properties of dsRNA

had not been published at the time of this study (only the bending

of dsRNA has been previously studied [13]). Instead, a compre-

hensive experimental portrait (Lipfert et al., unpublished data) had

been acquired by one of us with colleagues but was not publicly

released. This situation therefore permitted blind prediction tests

of the BPLM approach. Our modeling challenges were to simulate

the different experimental setups, to test the applicability of

phenomenological formulae used for curve-fitting, and to make

quantitative predictions with estimated errors for the following

standard constants: bending persistence length A, stretch modulus

S, torsional persistence length C, and link-extension coupling g.

Accurate recovery of helix bending
Drawing on extensive prior work [33,54,56], we were able to

simulate dsDNA (for validation of the algorithm) and dsRNA (for

blind prediction) under applied force using HelixMC. Fig. 1 gives

example simulation frames with random sequences, with BPLMs

parameterized on crystallographic data with diffraction resolutions

better than 2.8 Å and without proteins. (Other BPLM variants are

Author Summary

DNA and RNA are fundamental molecules in the central
dogma of molecular biology. Many biological behaviors of
double-stranded DNA and RNA – including transcription/
translation by proteins and packaging into compact
structures – depend on their ability to flex and twist.
Single-molecule tweezers now provide accurate mechan-
ical measurements of DNA and RNA helices under force
and torque but have not been used to rigorously falsify
and thereby advance computational models. Here we
present the first such blind challenge, involving recent
dsRNA tweezers data that were kept hidden from
modelers and a new HelixMC toolkit that resolves
challenges in simulating long double helices from base-
pair level models. The predictions gave excellent agree-
ment with bending and stretching measurements of
dsRNA but failed to recover twisting properties, pinpoint-
ing a critical area of future investigation. HelixMC also
predicted that poly(A)/poly(T) and Z-DNA–biologically
important variants whose elastic responses have not been
studied with tweezers–will have distinct mechanical
properties. These results open a route to iteratively
falsifying and refining computational models of long
nucleic acid helices, as is necessary for attaining a
predictive understanding of their biological behaviors.
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described below.) For both dsDNA and dsRNA, higher stretching

force leads to longer end-to-end extensions and smaller fluctua-

tions orthogonal to the stretching direction, qualitatively consistent

with theoretical predictions and experimental observations.

Measurements of the mean end-to-end extension as a function

of force give quantitative data for how nucleic acid helices bend,

and we first tested if HelixMC recovered the bending persistence

length seen in experiments for dsDNA. The simulated data fit well

to standard models used in interpreting tweezers experiments,

including the extensible worm-like chain (WLC) model proposed

by Bouchiat et al. [23] (Fig. 2A; A = 54.760.6 nm), the inexten-

sible WLC model [23] (A = 5361 nm), and an alternative

extensible WLC fitting model developed by Odijk [57]

(A = 5561.0 nm); see Table S1 and Fig. S1. The agreement of

all three fits to each other and to more direct estimates of A by

averaging the base-pair step transforming matrix [33]

(A = 53.061.0 nm) confirmed the robustness of A as a comparison

metric between experimental and simulated data. To bracket

Figure 1. Visualizations of sample conformations from the simulations. Only the axis curve of the helices are shown. Black, red and blue
lines: conformations from simulations at 40 pN stretching force. Green, cyan and magenta lines: conformations from simulations at 0.4 pN stretching
force. (A) Side view (projection on XZ plane). Left: DNA. Right: dsRNA. (B, D) DNA conformations. (C, E) dsRNA conformations. (B, C) Top view
(projection on XY plane). (D, E) Top view showing only the 40 pN simulations.
doi:10.1371/journal.pcbi.1003756.g001
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systematic error, we further performed simulations using BPLMs

with a high-resolution subset of crystallographic data (2.0 Å vs.

2.8 Å diffraction resolution cutoff), without using a Gaussian

approximation for the BPLM distributions, and symmetrizing the

base-pair step parameters; these variations gave less than 10%

changes in A (Table 1 and S2). We did however find that inclusion

of protein/DNA crystallographic structures, which include more

distorted helical conformations, led to reduction of A by 30% to

39 nm. Given this level of systematic error, the agreement of the

HelixMC calculation and the experimental value for dsDNA (A in

the range of 44–49 nm at near-physiological salt concentrations

[16,20,58,59]) was reasonable.

The agreement for dsDNA suggested that the prediction of the

dsRNA bending would be similarly accurate. The HelixMC

prediction for dsRNA was 66 nm, greater than the value for

dsDNA, with a systematic error of ,30%, again based on an

alternative BPLM parameterization including protein/RNA crys-

tallographic models (Table 2 and Fig. 2B). Experimental dsRNA

tweezers measurements gave values of A = 5762 nm (Lipfert et al.,

unpublished data) and 5963 nm [20], greater than the value for

dsDNA and in quantitative agreement with the HelixMC value.

Stretch modulus and ‘springiness’
In addition to enabling fits of the bending persistence length A,

force/extension curves give estimates of the stretch modulus S,

particularly at high force where the helix is pulled straight without

bends. For dsDNA simulations with several variations, the

HelixMC calculations gave estimates of S = 2000 pN. As with

the bending behavior, inclusion of protein/DNA structures

produced lower stretch modulus values, corresponding to more

flexibility (S = 1500 pN; Table 2). These calculations overestimat-

ed the experimentally measured value for dsDNA of S in the range

of 900–1400 pN [20,60,61], slightly beyond our estimated error.

The HelixMC prediction for the stretch modulus of dsRNA was

S = 980 pN, with a systematic error of 25%. This estimate was also

supported by using an alternative model to fit the simulation

stretch modulus (Table S3 and Fig. S1). Given the dsDNA results

above, we expected this HelixMC value to overshoot the

experimental measurement. Nevertheless, beyond this error in

absolute values, we strongly expected that dsRNA would give a

relative stretch modulus significantly lower than dsDNA. Unlike

the nearly straight axis curve of dsDNA, the base-pair centers of

dsRNA trace a ‘spring-like’ axis curve, twirling in circles of radius

8 Å. We developed a novel ‘‘springiness’’ hypothesis, that this

‘‘spring-like’’ property of dsRNA would render it more pliable to

stretching, analogous to a spring’s lower stretch modulus

compared to a straight wire (Fig. 3). Indeed, the experimental

measurements for the dsRNA stretch modulus was 3506100 pN

(Lipfert et al., unpublished data), more than two-fold less than for

dsDNA, in agreement with our prediction. An independent

experimental dsRNA measurement released at the time of

modeling gave a similar value lower than dsDNA (500–683 pN)

[20]. Additional simulation-based tests of the ‘springiness’

hypothesis are described in Supplementary Results and Table

S4, S5.

Discrepancies in torsional persistence length
The development of magnetic tweezers with increasingly

sophisticated geometries has enabled torsion-sensitive measure-

ments of dsDNA [16,62–64] and, most recently, measurements on

dsRNA that were included in our blind challenge. Before

describing the blind comparison, we present HelixMC simulations

that were necessary to shed light on puzzling prior results on

dsDNA torsional stiffness. Measurements based on topoisomer

distributions of closed dsDNA circles, fluorescence polarization

anisotropy of intercalated dyes, and x-ray scattering of tethered

gold nanoparticles give lower values for torsional persistence

length (C = 25–80 nm [47,65–68]) than measurements from

optical and magnetic tweezers experiments (C = 100–120 nm

[12,16,17,21,59]) from several different laboratories and with

different tweezers geometries. One potential resolution to these

discrepancies is that the apparent torsional stiffness of dsDNA is

enhanced beyond its intrinsic value due to tethering constraints

that attenuate torsional fluctuations in single-molecule experi-

ments [44]. However, testing this hypothesis has been complicated

by a prior inability to integrate link (number of helix turns) in base-

pair-level simulations. Additional concerns have stemmed from the

poor quality of fits to infer C from single molecule experiments

with the analytical Moroz-Nelson formula [21,22], which assumes

the Fuller writhe expression and negligible self-avoidance effects.

To address these problems, we reasoned that the direct

simulations enabled by HelixMC would reveal any systematic

overestimation of intrinsic torsional persistence length due to

tethering constraints or to the inaccuracy of the Moroz-Nelson

model. First, we simulated link fluctuations in dsDNA helices as a

function of force, analogous to experiments in references [12,17],

Figure 2. Structures and axis-curves for ideal dsDNA and
dsRNA. Left: DNA. Right: dsRNA. The length of the helices is 50 base-
pairs. The red lines are the corresponding axis-curves, forming a spiral.
Blue numbers are the vertical length of the axis-curve spirals and red
numbers are the diameter of the spirals. The axis curve for dsRNA is
more ‘‘springy’’ than DNA.
doi:10.1371/journal.pcbi.1003756.g002
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and computed the effective torsional persistence length Ceff by

dividing the contour length of the polymer by the variance of the

link (Table 2 and Fig. 4A–B). We first observed that the

asymptotic value of Ceff (29–40 nm) in our simulation was within

error of the ‘intrinsic’ value computed from a normal mode

analysis (37.5 nm [43]), suggesting that C is not overestimated due

to the tethering setup in single molecule experiments. We also

tested the effects of x-y constraints (perpendicular to the direction

of pulling) that might dampen torsional fluctuations, although such

constraints are negligible in magnetic tweezers setups (and would

also be expected to have a suppressive effect on bending

fluctuations). Applying a harmonic x-y restoring force with

strength of 0.025 pN/nm gave no significant change in Ceff (Fig.

S2), disfavoring tether constraints as an explanation for the high C
anomaly. Second, to test the use of the Moroz-Nelson formula, we

fit these simulation data to the Moroz-Nelson model, and found

excellent agreement with the same C values as described above.

The rarity of self-clashing conformations (Supplementary Results

and Table S6) and validity of the Fuller writhe formula above

0.4 pN further supported the use of this analytical fit. As a final

crosscheck, we also computed the torsional persistence length

using the slope of torque vs. number of turns in independent link-

constrained simulations at 7 pN, analogous to an alternative

experimental approach [16,59,62] (Fig. 4C–D, Supplementary

Methods). This second simulation method gave torsional persis-

tence length values that agreed well with the first method (within

1%, Table S7), confirming the robustness of the simulation

method and Moroz-Nelson fits for inferring C in a way that

matches experimental procedures.

Given the checks above, the discrepancy between the simulated

dsDNA torsional persistence length C = 28.8 nm and the value in

single molecule experiments C = 109 nm cannot be easily

explained by systematic errors in the modeling. Furthermore,

the deviation of experimental measurements from the Moroz-

Nelson formula [16,17] does not appear to be due to inaccuracies

in this phenomenological model, given the successful fits of the

model to simulated data. The discrepancies in C value and fitting

curve strongly indicate either missing physics in modeling dsDNA

in both the BPLM and simpler elastic-rod frameworks or currently

unknown systematic errors in the experiment (see below,

Discussion). Given these issues, we expected that our blind

prediction for the torsional persistence length of RNA (C = 53 nm)

might be an underestimate of the value measured from magnetic

tweezers experiment. Indeed the experimental value was two-fold

higher, with C = 100 nm. However, as with the dsDNA measure-

ments, the Moroz-Nelson formula fit these experimental measure-

ments relatively poorly (Lipfert et al. unpublished data), suggesting

that some basic assumption of the BPLM approach is violated (see

Discussion below).

A stringent test from link-extension (‘‘twist-stretch’’)
coupling

The first measurements of helix mean end-to-end distance

versus mean linking number for dsDNA highlighted gaps in

theories of DNA elasticity [14,15]. We thus expected that our final

blind challenge, to predict analogous experiments for dsRNA,

would provide a highly stringent test for HelixMC and the BPLM

approach.

Before presenting the blind comparison, we describe simulation-

based tests of assumptions made in the experimental inference of

the link-extension coupling g (also described as twist-stretch

coupling). In previous work, the coupling has been estimated from

two different kinds of experiments: (1) stretching the polymer at

different forces and observing how the linking number changes in

the process [14,69], and (2) setting up a constant stretching force

and observing the polymer’s extension as increasing numbers of

turns are introduced [14,15]. In both cases, bending fluctuations at

low force (,15 pN) should, in principle, cause deviations from the

linear relationships assumed to fit the experimental data (Supple-

mentary Results, Fig. S3, S4). Nevertheless, linear relationships

have been empirically observed for link and force (in experiment

type 1) and of link and extension (in experiment type 2, but not in

experiment type 1) for experiments on dsDNA. Furthermore,

linear fits from these independent types of experiments gave

consistent results (g = 290620 pN?nm and 270620 pN?nm,

respectively); due to the convention in use, the negative sign

corresponds to over-winding of the double helix upon extension

(Table 2 and Fig. 5). This empirical relation was indeed confirmed

in our simulations. We discovered linear correspondences between

dsDNA link and extension in both types of simulated experiments,

despite non-linear relationships of the underlying variables. The

simulated dsDNA data gave couplings of g = 2130 pN?nm and 2

150 pN?nm, respectively, for the two types of experiments, with

Table 1. Summary and statistics of the curated base-pair step parameter sets.

DNA RNA

Default 2.8_all 2.0_noprot default 2.8_all 2.0_noprot

# of data 2964 32261 1456 4503 28397 1404

Resolution cutoff 2.8 2.8 2.0 2.8 2.8 2.0

Contain proteins? N Y N N Y N

k-means clustering?1 Y N Y N N N

Shift (Å)2 0.00(0.57) 0.00(0.64) 0.03(0.59) 0.00(0.57) 0.05(0.66) 20.02(0.60)

Slide (Å) 0.32(0.86) 20.12(0.82) 0.35(0.92) 21.58(0.39) 21.62(0.44) 21.58(0.41)

Rise (Å) 3.30(0.23) 3.30(0.25) 3.29(0.21) 3.22(0.20) 3.25(0.24) 3.23(0.16)

Tilt (degree) 20.05(3.56) 0.03(3.85) 0.08(3.36) 0.02(2.86) 0.13(3.51) 20.09(2.47)

Roll (degree) 1.60(5.17) 3.03(6.25) 1.76(5.53) 7.89(4.33) 7.71(5.20) 8.18(4.06)

Twist (degree) 35.21(6.24) 33.87(5.42) 35.18(6.44) 31.72(4.25) 31.78(4.73) 31.69(4.36)

1For removing A-DNA conformation. Only for DNA parameter sets.
2First value is the mean of that parameter; second value in the parenthesis is the corresponding standard deviation.
doi:10.1371/journal.pcbi.1003756.t001

Blind Predictions of DNA and RNA Tweezers Experiments

PLOS Computational Biology | www.ploscompbiol.org 5 August 2014 | Volume 10 | Issue 8 | e1003756



T
a

b
le

2
.

M
e

ch
an

ic
al

p
ro

p
e

rt
ie

s
ca

lc
u

la
te

d
fr

o
m

al
l

si
m

u
la

ti
o

n
s

p
e

rf
o

rm
e

d
.

S
im

u
la

ti
o

n
s

A
:

b
e

n
d

in
g

p
e

rs
is

te
n

ce
(n

m
)

S
:

st
re

tc
h

m
o

d
u

lu
s

S
(p

N
)

C
:

to
rs

io
n

a
l

p
e

rs
is

te
n

ce
le

n
g

th
(n

m
)

S
lo

p
e

o
f

li
n

k
v

s.
fo

rc
e

(r
a

d
/p

N
)

S
lo

p
e

o
f

e
x

te
n

si
o

n
v

s.
li

n
k

(n
m

/t
u

rn
)

g
:

li
n

k
-e

x
te

n
si

o
n

co
u

p
li

n
g

1
(p

N
?n

m
)1

g
:

li
n

k
-e

x
te

n
si

o
n

co
u

p
li

n
g

2
(p

N
?n

m
)2

D
N

A

Ex
p

e
ri

m
e

n
t3

4
5

(2
)

1
0

0
0

(2
0

0
)

1
0

9
(4

)
0

.0
6

4
0

.4
4

(0
.1

)
2

9
0

(2
0

)4
2

7
0

(2
0

)

d
e

fa
u

lt
5

5
4

.7
(0

.6
)

1
9

5
6

.9
(1

0
2

.1
)

2
8

.8
(0

.1
)

0
.2

0
2

(0
.0

0
1

)
0

.4
7

3
(0

.0
1

5
)

2
1

3
1

.0
(7

.5
)

2
1

4
7

.4
(9

.0
)

d
e

fa
u

lt
_

fr
ag

6
5

4
.5

(0
.6

)
1

9
9

3
.4

(1
0

6
.1

)
2

8
.7

(0
.1

)
0

.2
0

6
(0

.0
0

1
)

0
.4

6
1

(0
.0

1
7

)
2

1
3

5
.0

(7
.9

)
2

1
4

6
.3

(9
.5

)

2
.8

_
al

l
3

9
.4

(0
.5

)
1

5
0

4
.8

(9
0

.8
)

4
0

.5
(0

.3
)

0
.2

2
7

(0
.0

0
1

)
0

.7
4

3
(0

.0
2

5
)

2
1

5
6

.7
(1

0
.6

)
2

1
7

7
.9

(1
2

.3
)

2
.8

_
al

l_
fr

ag
3

9
.1

(0
.4

)
1

5
1

7
.8

(7
8

.4
)

4
0

.4
(0

.3
)

0
.2

2
9

(0
.0

0
1

)
0

.7
5

7
(0

.0
3

0
)

2
1

5
8

.2
(9

.2
)

2
1

8
2

.9
(1

1
.9

)

2
.0

_
n

o
p

ro
t

5
0

.0
(0

.5
)

2
1

4
6

.7
(1

1
5

.2
)

2
7

.0
(0

.1
)

0
.2

1
8

(0
.0

0
2

)
0

.4
8

3
(0

.0
2

5
)

2
1

4
3

.7
(8

.5
)

2
1

6
4

.9
(1

2
.2

)

2
.0

_
n

o
p

ro
t_

fr
ag

5
0

.0
(0

.6
)

2
1

2
2

.9
(1

4
6

.0
)

2
7

.0
(0

.2
)

0
.2

1
8

(0
.0

0
1

)
0

.4
9

6
(0

.0
1

4
)

2
1

4
2

.4
(1

0
.8

)
2

1
6

7
.5

(1
2

.5
)

p
o

ly
(A

)/
p

o
ly

(T
)

d
e

fa
u

lt
1

1
1

.1
(0

.8
)

4
3

7
3

.4
(1

9
0

.8
)

9
7

.7
(0

.4
)

0
.0

4
0

(0
.0

0
0

)
0

.3
0

7
(0

.0
1

7
)

2
2

1
0

.6
(9

.5
)

2
2

1
4

.0
(1

5
.1

)

p
o

ly
(A

)/
p

o
ly

(T
)

2
.8

_
al

l
3

8
.5

(0
.4

)
2

4
0

3
.1

(1
7

0
.3

)
3

8
.1

(0
.1

)
0

.0
8

6
(0

.0
0

4
)

0
.3

5
1

(0
.0

1
4

)
2

9
7

.2
(8

.2
)

2
1

3
4

.3
(1

1
.0

)

p
o

ly
(G

)/
p

o
ly

(C
)

d
e

fa
u

lt
6

2
.0

(0
.6

)
1

5
0

0
.3

(5
9

.5
)

2
8

.9
(0

.2
)

0
.2

6
0

(0
.0

0
1

)
0

.5
4

0
(0

.0
0

8
)

2
1

2
3

.1
(5

.4
)

2
1

2
9

.0
(5

.5
)

p
o

ly
(G

)/
p

o
ly

(C
)

2
.8

_
al

l
5

1
.5

(0
.6

)
1

3
1

5
.1

(5
7

.3
)

5
3

.7
(0

.3
)

0
.2

4
3

(0
.0

0
1

)
1

.0
3

7
(0

.0
1

7
)

2
1

8
8

.4
(9

.5
)

2
2

1
7

.0
(1

0
.1

)

Z
-D

N
A

1
7

5
.4

(1
.0

)
2

6
1

8
.5

(5
9

.0
)

1
2

6
.9

(0
.3

)
0

.0
0

1
(0

.0
0

0
)

0
.0

1
2

(0
.0

1
5

)
2

4
.0

(0
.7

)
2

4
.9

(6
.4

)

R
N

A

Ex
p

e
ri

m
e

n
t3

5
7

(2
)

3
5

0
(1

0
0

)
1

0
0

(2
)

N
/A

2
0

.8
5

(0
.0

4
)

N
/A

4
7

(1
4

)

d
e

fa
u

lt
6

6
.3

(0
.9

)
9

7
9

.0
(4

0
.5

)
5

3
.0

(0
.2

)
0

.1
6

1
(0

.0
0

1
)

0
.7

9
7

(0
.0

1
1

)
2

1
1

6
.5

(5
.2

)
2

1
2

4
.2

(5
.4

)

d
e

fa
u

lt
_

fr
ag

6
6

.5
(0

.8
)

9
8

3
.1

(3
7

.9
)

5
2

.7
(0

.2
)

0
.1

6
1

(0
.0

0
1

)
0

.8
0

2
(0

.0
1

6
)

2
1

1
6

.2
(4

.8
)

2
1

2
5

.5
(5

.4
)

2
.8

_
al

l
4

6
.9

(0
.7

)
7

7
6

.7
(3

6
.5

)
4

2
.4

(0
.3

)
0

.1
6

5
(0

.0
0

1
)

0
.6

5
0

(0
.0

2
0

)
2

7
6

.7
(3

.8
)

2
8

0
.3

(4
.5

)

2
.8

_
al

l_
fr

ag
4

6
.9

(0
.7

)
7

7
3

.1
(3

5
.7

)
4

2
.8

(0
.3

)
0

.1
6

4
(0

.0
0

1
)

0
.6

4
8

(0
.0

0
8

)
2

7
6

.8
(3

.8
)

2
7

9
.8

(3
.8

)

2
.0

_
n

o
p

ro
t

7
6

.3
(1

.1
)

9
9

6
.9

(4
2

.2
)

4
9

.7
(0

.2
)

0
.2

2
0

(0
.0

0
1

)
1

.0
3

0
(0

.0
0

9
)

2
1

4
6

.7
(7

.0
)

2
1

6
3

.5
(7

.1
)

2
.0

_
n

o
p

ro
t_

fr
ag

7
5

.8
(0

.9
)

1
0

3
4

.0
(3

9
.3

)
4

9
.9

(0
.2

)
0

.2
1

9
(0

.0
0

1
)

1
.0

4
5

(0
.0

0
4

)
2

1
5

1
.2

(6
.5

)
2

1
7

1
.9

(6
.6

)

p
o

ly
(A

)/
p

o
ly

(U
)

d
e

fa
u

lt
8

2
.0

(0
.9

)
1

3
5

4
.0

(5
1

.3
)

5
7

.6
(0

.3
)

0
.1

2
0

(0
.0

0
1

)
0

.6
8

9
(0

.0
1

4
)

2
1

3
3

.8
(5

.6
)

2
1

4
8

.4
(6

.4
)

p
o

ly
(A

)/
p

o
ly

(U
)

2
.8

_
al

l
5

9
.1

(0
.8

)
1

0
4

9
.2

(4
8

.5
)

6
9

.2
(0

.3
)

0
.1

4
5

(0
.0

0
1

)
0

.9
8

1
(0

.0
2

6
)

2
1

4
6

.7
(7

.5
)

2
1

6
3

.9
(8

.8
)

p
o

ly
(G

)/
p

o
ly

(C
)

d
e

fa
u

lt
8

6
.4

(0
.9

)
1

1
9

7
.1

(4
1

.7
)

6
2

.9
(0

.4
)

0
.1

7
9

(0
.0

0
1

)
1

.0
5

0
(0

.0
1

8
)

2
1

7
5

.6
(7

.1
)

2
2

0
0

.0
(7

.8
)

p
o

ly
(G

)/
p

o
ly

(C
)

2
.8

_
al

l
5

1
.7

(0
.7

)
7

0
6

.2
(2

9
.4

)
3

4
.8

(0
.1

)
0

.2
4

6
(0

.0
0

3
)

0
.8

3
1

(0
.0

0
6

)
2

8
2

.1
(3

.8
)

2
9

3
.4

(4
.0

)

T
h

e
va

lu
e

s
in

p
ar

e
n

th
e

si
s

ar
e

th
e

co
rr

e
sp

o
n

d
in

g
fi

tt
in

g
e

rr
o

rs
.

1
C

o
m

p
u

te
d

fr
o

m
th

e
sl

o
p

e
o

f
lin

k
vs

.
fo

rc
e

p
lo

ts
.

2
C

o
m

p
u

te
d

fr
o

m
th

e
sl

o
p

e
o

f
e

xt
e

n
si

o
n

vs
.

lin
k

p
lo

ts
.

3
D

at
a

fr
o

m
Li

p
fe

rt
e

t
al

.,
u

n
p

u
b

lis
h

e
d

d
at

a.
4

D
at

a
fr

o
m

G
o

re
e

t
al

.
N

at
u

re
2

0
0

6
(r

e
f.

[1
4

])
.

5
Se

e
T

ab
le

1
fo

r
d

e
ta

ile
d

d
e

sc
ri

p
ti

o
n

fo
r

e
ac

h
p

ar
am

e
te

r
se

t.
6

‘‘_
fr

ag
’’

st
an

d
s

fo
r

u
si

n
g

fr
ag

m
e

n
t

p
ic

ki
n

g
sa

m
p

lin
g

m
e

th
o

d
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

cb
i.1

0
0

3
7

5
6

.t
0

0
2

Blind Predictions of DNA and RNA Tweezers Experiments

PLOS Computational Biology | www.ploscompbiol.org 6 August 2014 | Volume 10 | Issue 8 | e1003756



systematic errors of 630 pN?nm, based on alternative BPLM

parameterizations (Table 2). The dsDNA calculations were

therefore in agreement with experimental values within the

estimated errors.

For dsRNA, the HelixMC-predicted g value was 2120 pN?nm

(from simulations of both types of experiments), with errors of

640 pN?nm based on alternative BPLM parameterizations

(Table 2 and Fig. 5). This predicted dsRNA value is the same,

Figure 3. Force vs. extension plots from the simulations. Data are fitted to extensible WLC model by Bouchiat et al. (A) DNA_default. (B)
RNA_default.
doi:10.1371/journal.pcbi.1003756.g003

Figure 4. Torsional persistence length from the simulations. (A, C) DNA_default. (B, D) RNA_default. (A, B) Effective torsional persistence
lengths at different stretching forces, fitted to Moroz-Nelson model. Only the last six points are used in the fit since Moroz-Nelson model is a high-
force expansion. (C, D) Torque vs. the target link constraint plots in link-constrained simulations, at 7 pN stretching forces. Data are fitted to straight
lines.
doi:10.1371/journal.pcbi.1003756.g004
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within error, as the dsDNA simulations. Nevertheless, separation

of the link into twist and writhe components in the simulation

suggested a different physical picture of link-extension coupling to

dsRNA than for dsDNA. The simulated writhe vs. force slope is

negative for dsRNA but nearly zero for dsDNA. This effect can be

again attributed to the ‘‘springiness’’ of dsRNA axis curve, which

carries an intrinsic writhe. Stretching dsRNA unwinds this writhe,

while stretching dsDNA has little impact on its already straight

axis curve. This behavior would result in a positive link-extension

coupling g value, opposite in sign to dsDNA. However in the

HelixMC dsRNA simulations, the helix twist, the other compo-

nent of link, rises with extension and overpowers the writhe

decrease to produce a net negative link-extension slope, matching

the sign of dsDNA simulations.

The dsRNA tweezers experiments gave a value of g = +
47614 pN?nm, different from the value given by blind prediction

(2120 pN?nm). This discrepancy is well beyond the error

associated with different BPLM parameterizations, providing

strong evidence against the current BPLM framework for

modeling the torsional flexibility of dsRNA. Since the link-

extension slope for RNA is a result of cancellation between a

positive twist-extension correlation and a negative writhe-exten-

sion correlation, the predicted slope is quite sensitive to changes of

many of the parameters of the underlying Gaussian potential

(Supplementary Results, Table S8, S9). Indeed, by modification of

the parameters, we were able to recapitulate the experimentally

measured link-extension coupling, as discussed extensively in the

experimental paper associated with this work (Lipfert et al.,

unpublished data). However we note here that this reparameter-

ization is not unique, because the number of parameters (15, for a

6D covariance matrix) is far greater than the number of

experimental measurements (four, i.e. bending persistence, stretch

modulus, torsional persistence and link-extension coupling).

Design of future tests
To understand the sequence-dependence of the mechanical

properties being studied, and to propose future tests of the BPLM

approach, we performed additional simulations of poly(A)/poly(T)

and poly(G)/poly(C) for both DNA and RNA (which has U

instead of T). Stretches of these homopolymer sequences play

critical roles in accessibility of chromatin to RNA polymerase and

transcription factors [70,71]. We also performed simulations on Z-

form DNA, which has been hypothesized to occur during DNA

transcription to absorb torsional stress [72]. The results are listed

in Table 2. For sequence-dependent simulations, we found that for

poly(A)/poly(T) DNA, using the default dataset, all the measured

mechanical properties increased by 1.5- to 3- fold compared to the

random-sequence simulations. However if we used BPLM

Figure 5. Link-extension coupling constants from the simulations. (A, C) DNA_default. (B, D) RNA_default. (A, B) Link per kbp vs. force plot
(black dots) with a linear fit (blue solid lines). The link values are offset such that the first point (at 0.04 pN stretching force) has a link of zero. The
corresponding twist (green triangles) and writhe (red squares) component for each link data point, as well as linear fits (dotted and dashed lines) are
also shown in the figures. In panel A, the writhe is close to zero, and the link and twist are almost undistinguishable. (C, D) Extension vs. target link
constraint in link-constrained simulations with linear fits, at 7 pN stretching forces. The first and last data points are not used for fitting as the linear
relationship breaks down at high numbers of turns.
doi:10.1371/journal.pcbi.1003756.g005
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parameters from the 2.8_all dataset, which includes protein-

binding DNA structures, the poly(A)/poly(T) results were not

significantly different from the random-sequence results. The

difference of predicted stiffness can be explained by the different

underlying base-pair step parameters (Supplementary Results,

Table S10). We also found smaller but measurable differences

between other sequence-specified and random-sequence simula-

tions, and between sequence-specified simulations performed with

different base-pair step parameter sets. Further experimental

comparisons between sequence-specific and random-sequence

DNA/RNA will provide stringent tests of these predictions and

to help discriminate which dataset (if any) is more accurate in

modeling the sequence-dependence of the mechanical properties.

Simulations of Z-DNA gave dramatically higher bending and

torsional persistence lengths (175 nm and 125 nm, respectively)

compared to random B-DNA (55 nm and 29 nm, respectively).

Again, this higher stiffness is encoded in the underlying step

parameters (Supplementary Results, Table S10). Furthermore, the

link-extension coupling is estimated to be near zero; this value arises

from a complicated cancellation of twist and writhe, and is difficult

to explain with simple arguments. Our simulation results agree with

data obtained by Thomas and Bloomfield [73] indicating Z-DNA to

be much stiffer than B-DNA, with a bending persistence length of

200 nm. However, previous studies on Z-DNA using light

scattering, electron microscopy and fluorescence anisotropy have

led to inconsistent results, with bending persistence length ranging

from 21 to 200 nm and an extremely low torsional persistence

length of 7 nm [73–75]. These studies did not agree on whether Z-

DNA is stiffer then B-DNA. Additional single-molecule tweezers

experiments on Z-DNA appear necessary to resolve these issues,

and would provide stringent tests of the BPLM approach.

Discussion

We have presented a set of fundamental tests of how well base-pair

level models predict the flexibility of double-stranded nucleic acids,

motivated by a desire for improved rigor in this field and by recent

single-molecule measurements of dsRNA helices that were blinded to

the modelers. A new software package HelixMC that integrates

rigorous treatment of twist, writhe, and link allowed direct simulations

of dsDNA and dsRNA tweezers experiments with base-pair level

models. By fitting the simulated observables with the same analytical

models used in experimental measurements, we were able to make

direct comparisons of simulation and theory for properties including

the bending persistence length, stretch modulus, torsional persistence

length and link-extension coupling. We obtained predictions that

match some experimental observations, particularly in the ratios of

dsRNA to dsDNA values for mechanical properties like bending

persistence length. However, we observed quantitative discrepancies

for torsional persistence length at high force and the incorrect sign of

the link-extension coupling constant for dsRNA. An extensive set of

simulations checked that assumptions such as the effects of tethering,

the Moroz-Nelson model of torsional persistence length, the curation

of the database used to parameterize the BPLM, and the fitted

relation of force and link could not account for these discrepancies.

The discrepancies between the BPLM model and tweezers

measurements could be due to at least five reasons. First,

electrostatic repulsion may account for some discrepancies, but it

is difficult to see how corrections needed to increase the torsional

stiffness of simulations by three-fold would not also substantially

increase the simulated bending stiffness beyond the current values,

which agree well with experiments. Experiments with different ionic

conditions (particularly highly screening conditions) would help

bound these effects. A second possibility is that the base-pair step

distributions observed in crystallized nucleic acids do not reflect the

fluctuations of nucleic acids in solution [47]. In this case, however,

neither a simple overall scaling nor the parsimonious adjustment of

a few parameters suffices to bring simulated data into agreement

with experiments. Large changes in multiple BPLM parameters are

required, in different directions for dsDNA vs. dsRNA and beyond

the systematic deviations seen in different curated crystallographic

databases, especially to account for a sign change in dsRNA link-

extension coupling while retaining the experimental value for

dsDNA link-extension coupling (Supplementary Results and Table

S8, S9). A third explanation might involve thermal fluctuations

involving bulges or non-Watson-Crick pairs, as have been resolved

recently albeit with rare population [76]; the population of these

alternative structures could be potentially enhanced during torsional

stress. Due to the energetic cost of such fluctuations, we would

predict that they would lead to a strong temperature dependence of

torsional properties. Fourth, the conformation of each base-pair step

may affect neighboring base-pair steps. Recent Au-SAXS scattering

experiments and crystallographic analyses have suggested the

importance of such correlations [47,77]. Preliminary tests with

multi-base-pair fragments in HelixMC indicate that such correla-

tions may have up to 2-fold effects on predicted tweezers-measured

properties (Supplementary Results and Fig. S5, S6).

A final explanation for the discrepancy involves the applied

tension in single molecule tweezers experiments. On one hand, the

tweezers data at low force (,5 pN) are used to infer the bending

persistence length A and low-force effective torsional persistence

lengths Ceff. These parameters are sensitive to both bending as well

as intrinsic torsional persistence length via fluctuations captured by

the Moroz-Nelson model. In this low force regime, BPLM gives

predictions for both parameters with less-than-two-fold discrepan-

cies, for both dsDNA and dsRNA. On the other hand, forces higher

than 4 pN are required to suppress bending fluctuations and

thereby to isolate stretch modulus S, intrinsic torsion persistence

length C, and link-extension coupling g. For these values, the BPLM

predictions do not agree with dsDNA or dsRNA measurements.

Indeed, there is a more fundamental discrepancy: while the Moroz-

Nelson model accounts for the predicted torsional persistence length

vs. force from BPLM calculations over a wide range of model

parameters, the experimental measurements of Ceff at forces .2 pN

cannot be fit by this analytical model. These high-force discrepan-

cies could be rationalized by a model in which tensions greater than

1 pN favor structural states that are more pliant to stretching but

torsionally stiffer than the ensemble of conformations seen in

crystallized dsRNA and dsDNA. Nucleic acids in solution under

constant tension or strong torque, as might be provided by solution-

based tweezers [78] or circularization, may enable bulk experimen-

tal methods like NMR or Au-SAXS to test this model. It is also

possible that single-molecule tweezers experiments on alternative

polymers such as poly(A)/poly(T) or Z-form DNA (simulated above)

will agree well at all forces with BPLM predictions and thereby offer

a baseline for comparison to the mixed sequence dsDNA and

dsRNA cases. Alternatively if atomic-level computational methods

could predict the structure of the putative weakly stretched state and

design sequences or atomic modifications that favor it, the HelixMC

toolkit should be able to integrate predictions for long helices that

can then be precisely tested through future tweezers experiments.

Methods

System setup and summary of the algorithms
The BPLM framework has been described in detail in previous

studies [33]. Briefly, each base pair in the nucleic acid is

represented by a vector representing the base-pair center and by

Blind Predictions of DNA and RNA Tweezers Experiments
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a coordinate frame representing the orientation of the base-pair

[42]. The degrees of freedom of the system are the base-pair steps,

defined by the transformation of coordinates from one base-pair to

the next base-pair. Each step is described by six parameters (shift,

slide, rise, tilt, roll and twist) [79]. The transformation of the step

parameters to Cartesian coordinates follows the Calladine and El

Hassan Scheme (the CEHS definition) [80], which is also the

convention used in the 3DNA package [81,82]. The ‘technical

details’ section of the 3DNA manual offers comprehensive

examples of this scheme.

In HelixMC, the origin and the frame of the first base-pair is

placed at the origin of the global coordinate system. That is, the

base-pair center is placed at the coordinate origin; the normal

vector of the base-pair is aligned with the z-axis; and the long-axis

of the base-pair lies on y-axis. In terms of experimental setup, this

placement is analogous to fixing one end of the nucleic acid to a

surface (i.e. the xy-plane in our simulation), an approach routinely

employed in magnetic and optical tweezers studies.

Once the origin and the frame of the first base-pair are set, the

coordinates of the entire helix can be computed from the six base-

pair step parameters. In HelixMC, the conformation of helix is

stored and updated in this space of the step parameters, instead of in

the Cartesian space. This is similar to describing protein conforma-

tions with the internal torsion angles instead of using the Cartesian

coordinates of the atoms. For each base-pair step, we assumed the six

step parameters form a multivariate normal distribution, of which

the parameters were derived by surveying the existing RNA crystal

structures (see below). This assumption is equivalent to assuming that

positions and orientations of adjacent base-pairs are constrained by a

six-dimensional harmonic potential [33].

In this work, the BPLM system was simulated using the Monte

Carlo (MC) algorithm. A typical MC run consists of tens of

thousands of cycles. A sample, which includes the current

extension and linking number of the helix, was extracted at the

end of each cycle (i.e. number of cycles equals to number of

samples in the simulation). For each cycle, the base-pair steps of

the entire helix was updated sequentially starting from the first

base-pair step. For each update, a proposed move was generated

by modifying only the conformation of the target base-pair step,

while keeping the conformation of the rest of the helix intact. Note

that the term ‘‘conformation’’ here refers to the six step

parameters of each base-pair step, not the Cartesian coordinates

of the base-pairs. Because we assumed the step parameters follow a

multivariate normal distribution, this proposed conformational

move can be efficiently achieved by drawing a random sample

from the distribution.

The standard Metropolis criterion [83] was then used to

whether to accept the proposed MC move:

P(accept)~
1 DEƒ0

e
{DE=kBT DEw0

(
ð1Þ

Here DE equals the energy after the proposed move minus the

energy of the initial conformation, T is the temperature and kB is

the Boltzmann constant. Because the internal interactions between

the base-pair steps are included in the multivariate Gaussian

sampling, the DE in Eq. (1) only reflects the applied torque and

force, as described next. For cases where external forces and

torques are absent (free helix), the DE is always zero and the

acceptance rate is 100%. For cases with external forces and

torques, since each update is applied to one base-pair step only,

the new proposed conformation is usually similar to the previous

conformation. Therefore the acceptance rates are reasonable in

the force and torque range used in this work (8% (40 pN) to 55%

(1 pN) for dsDNA, Table S11).

We performed two types of simulations. In the first type of

simulation, a stretching force along the z-direction was applied to

the free end of the nucleic acid (the other end was fixed to the

origin), and no torsional constraint was applied to the system. The

energy of the system due to the applied force was

E~{zF ð2Þ

Here F is the applied stretching force, and z is the helix extension.

This simulation was equivalent to the measurement of force-

extension curves in typical single-molecule magnetic tweezers or

constant-force optical tweezers experiments [8,13,62,84–86].

In the second type of simulation, the nucleic acid was subjected

to a fixed stretching force and was required to maintain a link

(which is equivalent to the bead rotation) close to a target value

through a harmonic potential. The energy of the system was:

E~{zFz
1

2
krot(Lk{Lkt)

2 ð3Þ

Here krot is the stiffness of the torsional trap (200 pN?nm by

default), Lk is the helix link, and Lkt is the target link of the trap.

This type of simulation corresponded to torsion-trapped tweezers

experiments [14–17].

In both types of simulations, we computed the base-pair center

and the coordinate frame of the terminal base-pair as well as the

overall link of the helix after each full-helix MC update. The

number of base pairs in the simulated double helices was set to

3,000 (3 kbp) in this work unless stated otherwise.

At the beginning of the simulation, we initialized the helix by

assuming that all base-pair steps have step parameters equal to

their average values in the input parameter database. We then

performed by default 120 cycles of full-helix MC updates to relax

the helix under the specified stretching force (but no link-

constraint). For link-constrained simulations, we performed further

relaxation steps analogous to the torsional trap experiments, which

involve slowly rotating magnets of the torsional traps to bring the

helix from zero-turn state to a highly twisted state. We first turned

on the link constraint, but set initial target link equal to the current

link of the helix. Then we performed the following cycles:

1. If the current target link was not within 20 degrees of the

desired link (input by user), we changed the current target link

by 20 degrees towards the desired link. Otherwise we set the

target link to be the desired link and exited the loop.

2. We performed MC updates on the helix until the link of the

helix was within 20 degrees of the current target link, then went

back to step 1.

After this ‘‘trap-ramping’’ step, we further relaxed the helix under

the specified force and link constraint for 50 cycles. These relaxation

steps ensured that the state of the helix at the beginning of the

simulation was random and representative of the specified force and

link constraint, without memory of the initial conformation.

In the HelixMC package, all the parameters discussed above,

including the number of base-pairs and the applied external forces

and link constraint, can be modified by user inputs. The details of

the setup of the HelixMC calculations reported in this work are

given in Supplementary Methods. We set the number of samples

collected during our simulations to ensure that the standard errors

of the average extensions and links were below 0.2% (Table S12).
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Computation of link: From BPLM to ribbon model
Computing torsional properties and modeling torque in

HelixMC required the integration of mathematical formulae

developed in a number of separate papers by different authors. To

document our final approach, we describe these equations and

their connections here in some detail.

The observed bead rotation in a single-molecule tweezers

experiment is mathematically described by the link (also known as

the linking number). The original definition for the link of circular

dsDNA is based on a closed continuous ribbon model [87–91]. A

ribbon is defined by two mathematical objects: an axis curve,

which is a smooth non-self-intersecting closed curve following the

axis of the polymer; and a set of ribbon vectors, which are unit

normal vectors everywhere along the axis curve that are

perpendicular to the axis curve and pointing to reference points

on the polymer [91]. To compute the link, we followed previous

work by Britton et al. [56] to convert the BPLM to a ribbon model

(Fig. 6A). Here we defined the axis curve to be the line connecting

the base-pair centers (black vectors, also known as the base-pair

centerline), and the ribbon vectors to be the long-axis of the base-

pair (red vectors). This discretization scheme leads to a polygonal

axis curve where multiple straight lines are joined by sharp bends

(at the base-pair centers), and the ribbon vectors are defined only

at each bend. While this discretization is simple and easy to

manipulate numerically, it leads to two problems that forbid direct

applications of the formulations for the closed continuous ribbon

model to the BPLM. First, the discretization leads to an axis curve

with discontinuous first derivatives at each bend. Therefore the

tangent vectors at these bends are ill-defined, and the correspond-

ing ribbon vector is in general not perpendicular to both the axis

curve segments connected to the bend. This behavior invalidates

the original assumption that the axis curve is smooth and the

ribbon vectors are always perpendicular to the axis curve. Second,

the BPLM we studied here is for open duplexes, different from the

closed curve assumption in the conventional treatment.

By the Călugăreanu theorem (also known as the White’s

formula, or the Călugăreanu-White-Fuller theorem), link equals

the sum of writhe and twist [87–90]. Intuitively, writhe represents

the degree of coiling of the ribbon axis curve, and twist represents

the amount of internal twist stored in the ribbon due to the local

rotations of ribbon vectors. The sum of coiling and internal twist

gives the overall bead rotation of the ribbon. In the following

sections, we discuss separately how to compute the writhe and

twist for such an open, polygonal ribbon.

Writhe calculation
Before discussing the writhe calculations for the BPLM, we first

review the original definition of writhe, which described the coiling

of the axis curve. The writhe of a smooth closed ribbon can be

computed using the Gauss linking integral:

Wr~
1

2

þ
L

þ
L

(dr2|dr1):
r12

r12j j3
ð4Þ

Here r1 and r2 are the Cartesian coordinates of the axis curve,

r12 = r12r2 is a vector connecting points r1 and r2, and we

compute writhe (and, below, link and twist) in units of radians.

Note that writhe only depends on the axis curve of the ribbon.

Fuller proposed a simplified version of this integral [91]:

WrF ~

þ
L

(t|dt):ez

1zt:ez

ð5Þ

Here ez is a unit vector aligned with z-axis, and t is the tangent

vector of the axis curve. The Fuller writhe simplifies the original

double integral into a single integral but is only correct modulo

4p.

WrF:Wr (mod 4p) ð6Þ

Here the expression ‘‘a;b (mod n)’’ means

að Þ mod n~0 ð7Þ

Mathematically speaking, a and b are said to be congruent modulo n.

The calculation of writhe of BPLM in this work is based on

previous studies on polygonal open curves [53–55]. In the section

below, we will derive the formulas for computing writhe in BPLM,

mainly following the approach developed by Rossetto and Maggs

[54].

Constructing a closed curve. To apply Eqs. (4) and (5) to

the BPLM, first we need to convert the open axis curve into a

closed curve. This is achieved through the following steps (Fig. 6B)

[54]. First, we attached two extension segments l1 and l2, to the

lower and upper ends of the helix axis curve h. l1 and l2 are

parallel to the z-axis, and are extended towards z = 2‘ and z = +
‘. Second, we connect l1 and l2 with a curve C, such that C, l1 and

l2 lie on the same plane. We also let C be far apart from the

original axis curve, such that the distance between any point on h
and any point on C approaches infinity. In this way, we can apply

the above equations to a closed curve L = h+l1+l2+C. For Eq. (4),

we get

Wr~
1

2

þ
L

þ
L

(dr2|dr1):
r12

r12j j3

~
X

i[fh,C,l1,l2g

X
j[fh,C,l1,l2g

1

2

ð
i

ð
j

(dr2|dr1):
r12

r12j j3
ð8Þ

Here
Ð

h

Ð
C

( dr2 | dr1) :
r12

r12j j3
~ 0, because any point in C

and any point in h is infinitely distant away, therefore |r12| = ‘

and the integral vanishes. Terms that do not involve h, such

as
Ð

l1

Ð
l1

( dr2 | dr1) :
r12

r12j j3
and

Ð
l1

Ð
l2

( dr2 | dr1) :

r12

r12j j3
, also vanish, because C, l1 and l2 lie on the same plane,

and therefore (dr26dr1)? r12 = 0. Therefore we have

Wr~
1

2

ð
h

ð
h

(dr2|dr1):
r12

r12j j3
z

ð
h

ð
l1

(dr2|dr1):
r12

r12j j3

z

ð
h

ð
l2

(dr2|dr1):
r12

r12j j3

ð9Þ

Using a similar argument, we also have

WrF ~

ð
h

(t|dt):ez

1zt:ez

ð10Þ

By the above construction, we extended the writhe definition for

closed curves to open curves. In the next step, we will show how to

evaluate Eq. (9) and (10) for a polygonal curve.

Evaluation of the Fuller writhe. We first compute the Fuller

writhe (Eq. (10)) in our system. In this integral, the tangent vector t is

a unit vector that starts as ez (tangent vector of l1), moves along the

helix axis curve h, and ends up as ez again (tangent vector of l2). If
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we translated the starting points of all the vectors t to the origin, t
traces out a closed curve on a unit sphere, starting and ending at the

zenith. Fuller proved that the spherical area enclosed by this closed

curve equals the value of integral [91]. Based on this geometrical

analogy, previous studies [54,55] have shown that the spherical area

enclosed by the tangent vectors of a polygonal line can be computed

by breaking down the area into spherical triangles:

WrF ~
XN{2

i~1

V(ez,ti,tiz1) ð11Þ

Here V(ez, ti, ti+1) is the area (solid angle) of the spherical triangle

with vertices defined by the three vectors, ti~
riz1{ri

riz1{rij j is each

tangent vector, and N is the total number of base-pairs in the model.

Note that V is a signed area, with sgn(V) = sgn((ez6ti) ? ti+1). Here

sgn is the sign function:

sgn(x)~

1 xw0

0 x~0

{1 xv0

8><
>: ð12Þ

The absolute value of the V equals the spherical excess of the triangle:

V(a,b,c)j j~AzBzC{p ð13Þ

Here A, B, C are the angles at the vertices a, b, c. These angles can be

evaluated as

A~arccos
a|b

a|bj j
: a|c

a|cj j

� �
ð14Þ

B and C can be evaluated in the same way.

Evaluation of the exact writhe. Now we evaluate the exact

writhe formula (Eq. (9)). The first integral is a double integral involving

only the helix axis curve h. This integral can be evaluated by noticing

that it equals the spherical area swept by the unit vector
r12

r12j j.

Similar to the above computation of Fuller writhe, we can break down

this area for a polygonal line into spherical quadrangles [53]:

1
2

Þ
L

Þ
L

(dr2|dr1):
r12

r12j j3
~
PN{1

i~3

Pi{1

j~1

Vij

Vij~V
rij

rij

�� �� , ri,jz1

ri,jz1

�� �� , riz1,jz1

riz1,jz1

�� �� , riz1,j

riz1,j

�� ��
 ! ð15Þ

Figure 6. The base-pair level model and the twist and writhe calculation. (A) Illustration of the base-pair level model and ribbon model
abstraction. Black dots and vectors: centers of base-pairs and the axis curve; red vectors: original ribbon vectors; blue vectors: reference ribbon
vectors. See the main text for definition of a and b. (B) Conversion from an open curve to a closed curve for writhe calculation. (C) Twist for a straight
line segment. (D) Effect of using reference ribbon vectors in the middle of a helix. The corresponding a, b, T, Twref and Tw are given. The original
ribbon (red) is perfectly straight with zero twist. Using reference ribbon vectors either leads to no change (left) or a 2p difference (right) in twist.
Taking a into account resolves the 2p difference. (E) Cases where the twist definition of Britton et al. [56] would fail to give reasonable answers.
doi:10.1371/journal.pcbi.1003756.g006
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Here Vij is the area of spherical quadrangle with vertices defined by

the four unit vectors. Note that Vii = 0 and Vi,i+1 = 0, therefore these

terms are neglected from the summation. The quadrangle area can be

computed similarly using its spherical excess:

V(a,b,c,d)~AzBzCzD{2p

A~arccos
a|b

a|bj j
: a|d

a|dj j

� �
,B~arccos

b|c

b|cj j
: b|a

b|aj j

� �
� � � ð16Þ

And sgn(Vij) = sgn((rj,j+16ri,i+1) ? rij).

To evaluate the second integral, we first translate our closed curve

such that the lower end of h is at the origin. Because writhe is a

geometrical property, it remains constant to such a translation. We

call the new helix axis curve and extension segments h9, l19 and l29.

In this new coordinate system, the segment l19 overlaps with the 2z
axis, which simplifies the calculations. We now evaluate the integral:ð

h

ð
l1

(dr2|dr1):
r12

r12j j3
~

ð
h0

ð
l0
1

(dr2|dr1):
r12

r12j j3

~

ð
h0

ð0

{?
(
dr2

dz
|dr1):

r12

r12j j3
dz

ð17Þ

Note here we let r1 to be the variable of outer integral and r2 to be

the variable of inner integral. We know that
dr2

dz
~ ez and r2 = (0,

0, z). We also let r1 = (a, b, c), where a, b, c can be any real number.

For the inner integral in Eq. (17),

ð0

{?
(
dr2

dz
|dr1):

r12

r12j j3
dz~

ð0

{?
(ez|dr1):

r2{r1

r2{r1j j3
dz

~

ð0

{?

{(ez|dr1):r1

(a2zb2z(c{z)2)3=2
dz

~(r1|dr1):ez
1

a2zb2zc2zc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zb2zc2
p

~
(r1|dr1):ez

r1j j2zr1
:ez r1j j

~
(u|du):ez

1zu:ez

ð18Þ

Here we used the property (ez6dr1) ? r2 = (r26ez) ? dr1 = 0. The

integral in the second step can be computed by change of variables

(with z~ c {
ffiffip
a tan h ). In the final step we let u~

r1
r1j j

.

Combining Eq. (17) and (18)

Ð
h

Ð
l1

(dr1|dr2):
r12

r12j j3
~
Ð

h’

(u|du):ez

1zu:ez

u~
r1

r1j j

ð19Þ

Note this final expression is analogous to the Fuller writhe integral

(Eq. (10)), therefore we can evaluate this discretized integral using

the same algorithm. We can apply the same strategy to evaluate the

third integral:

Ð
h

Ð
l2

(dr1|dr2):
r12

r12j j3
~
Ð

h’’

(u’|du’):ez

1zu’:ez

u’~{
r1

r1j j

ð20Þ

Here h0 is the translated helix axis curve, such that the upper end of

h0 is at the origin.

In the above paragraphs we demonstrated how to compute the

Fuller writhe and the exact writhe for a polygonal open curve. The

Fuller writhe involves computing a single sum, so the computa-

tional complexity is of O(N) (N is the number of base-pairs).

However Fuller writhe is only correct modulo 4p, and it has been

shown to give inaccurate results in low force and high torque

situations ([54,92] and results herein). On the other hand, the

evaluation of the exact writhe involves computing a double sum,

and is of O(N2). Therefore it is currently difficult to perform link-

constrained simulations for long helices using the exact writhe

formula, where the link is evaluated in every update. In the section

below, we will show that the Fuller formula can be used in link-

constrained simulations as it gives correct answers in the force and

link range used here. For simulations with low stretching force,

however, the exact formula is needed to obtain accurate answer. Both

writhe computation formulas are implemented in HelixMC. We note

here that a sweep line algorithm may reduce the computational

complexity to approximately O(N log(N)) [93], but this algorithm is

not yet implemented in HelixMC. Such accelerations will likely be

necessary for HelixMC to model high link scenarios in which the

Fuller formula breaks down due to, e.g., plectoneme formation.

Twist calculation
The twist for a smooth ribbon can be computed as

Tw~

þ
L

t:(l|
dl

ds
)ds ð21Þ

Here t is the tangent vector of the axis curve, and l is the

normalized ribbon vector. Unlike writhe, twist is a local identity,

well defined on a curve segment of arbitrary length. Therefore

twist is well defined for a smooth open curve. In addition, twist is

additive. For our polygonal ribbon, the overall twist of the ribbon

equals the sum of the twists of all the line segments. As an example,

consider a straight line segment parallel to z-axis of length L
(Fig. 6C). The ribbon vector starts as l0, varies smoothly and ends

as l1. Using the fact that the tangent vector t = ez and the ribbon

vectors are perpendicular to t, Eq. (21) can be evaluated as

Tw~

ðL

0

ez
:(l|

dl

ds
)ds~

ðL

0

l|dlj j ð22Þ

Here we used the property that l6dl is parallel to ez.

Geometrically, this integral is twice the area on unit circle swept

by l throughout the integration. Therefore the twist of a straight

line segment is just the angle (in radians) between the vectors l0

and l1. This result is consistent with the conventional definition of

twist parameter in a base-pair step.

However, applying the above result for straight line segments to

our polygonal ribbon is nontrivial, because here the ribbon vectors

are not necessarily perpendicular to the straight line segments. A

naı̈ve strategy would be to simply sum the twist parameters of all

base-pair steps in the helix to obtain the overall twist, but this sum

turns out to be inconsistent with the ribbon twist considered in the

Călugăreanu theorem. It thus cannot be added with writhe to

produce a link that corresponds to the actual experimental

observable of, e.g., bead rotation in a magnetic tweezers

experiment. As pointed out by Britton and colleagues [56], the

ribbon twist of dsDNA (‘twist’ discussed below refers to the ribbon

twist, unless stated otherwise) is different from the conventional

definition of twist parameter for a base-pair step, necessitating a

new procedure to calculate twist for base-pair steps.
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The main challenge in computing twist for the discrete chains of

the nucleic acid helix is that the ribbon vector at each base pair, li,
is not in general, normal to the continuous axis curve traced by

base pair centers ri, as is assumed in the mathematical treatment

of ribbons. Our strategy therefore is to first define at each base pair

a ‘reference’ ribbon vector bi that obeys this mathematical

convention, and to compute a reference twist. We will then

compute additional twist contributions by li using its angle with bi.

Fig. 6A illustrates the polygonal ribbon model. The choice of

bi~
ti { 1 | ti

ti { 1 | tij j, where ti21 and ti are unit vectors pointing

into and out of ri, guarantees normality of bi to the axis curve.

Then we can compute the reference twist based on the above

result for straight line segments:

Twref ~Tw1z
XN{2

i~2

bizTwN{1

cos bi~bi
:biz1 sgn(bi)~sgn((bi|biz1):ti)

ð23Þ

Here N is the total number base-pairs in the model, Tw1 and

TwN21 is the twist contribution of the first and the last base-pair

steps (N21 base-pair steps in total), where b’s are not defined. bi is

the signed angle between the reference ribbon vector bi and bi+1.

Note that because both bi and bi+1 are orthogonal to ti, bi is also

the dihedral angle bi - ti - bi+1 (Fig. 6A, inset).

The use of alternative reference ribbon vectors to compute the

twist can be justified with the following thought experiment.

Imagine holding the two ends of a continuous ribbon, and then

change the ribbon vectors by rotating the ribbon in the middle. As

long as the two ends stay fixed, such changes of ribbon vectors do

not affect the overall number of turns of the ribbon (i.e. the link).

In addition, the writhe stays constant because it only depends on

the axis curve, which is unmodified in this process. By the

Călugăreanu theorem, we can conclude that the twist, which

equals the link minus writhe, remains unchanged. Therefore in a

continuous ribbon we may modify any ribbon vector except the

two ends without affecting the overall twist. However for a

discretized ribbon (as in our BPLM), such modifications of ribbon

vectors may change the twist by 2np, where n is an integer

(Fig. 6D). In general, we have the following modulo congruence

relation between the true twist and reference twist (see Eq. (7) for

definition of modulo congruence):

Twref ~Tw1z
XN{2

i~2

bizTwN{1

:Tw (mod 2p)

ð24Þ

To address the modulo 2p ambiguity, we must take into account

whether the original ribbon vectors li sweep out additional turns

around the axis curve relative to the reference ribbon vectors bi.

Here we calculate the local twist of each base-pair step as:

Ti~(bizaiz1{ai) mod 2p

cos ai~bi
:li sgn(ai)~sgn((bi|li):ti{1)

ð25Þ

Here ai is a signed angle between li and bi; Ti is folded into the

range [2p, p) upon the modulo 2p operation. For the terminal

base-pair steps, we first attach virtual segments to both ends,

pointing towards 2z and +z respectively, to obtain the

corresponding bi, then Eq. (25) can be employed to compute T1

and TN21 (illustrated in Fig. 6D). The overall twist can then be

calculated by summing all the Ti:

Tw~
XN{1

i~1

Ti ð26Þ

As an additional consistency check, Eq. (26) satisfies Eq. (24), as

shown below.

Tw~
XN{1

i~1

Ti

:{a1z
XN{1

i~1

bizaN (mod 2p)

:(b1{a1)z
XN{2

i~2

biz(bN{1zaN ) (mod 2p)

:Twref (mod 2p)

ð27Þ

The factors a1 and aN correspond to the twist contribution from

two ends of the helix; all internal factors cancel.

Our twist definition is similar to the definition proposed by

Britton and colleagues [56]. The main difference is in the

definition of a angle. The previous proposal defined the tangent

vector at base-pair i as ~tti~
ti { 1z ti

ti { 1z tij j, then projected the

original ribbon vector li to the plane defined by ~tti, to obtain the

new ribbon vector di. Then a is defined as the angle between di

and bi:

cos ai,B~bi
:di sgn(ai,B)~sgn((bi|di):~tti) ð28Þ

While this definition is mathematically correct and gives results

equivalent to our definition, the expression can become ill-defined

when there is a sharp bend in the ribbon. Fig. 6E illustrates such

cases. In the first example, the original ribbon vector l1 is parallel

to the tangent vector ~tt1, therefore the projection gives a null vector

d1, making a ill-defined. In the second example, we take l19 as the

ribbon vector, then the projection gives d19 parallel to b1, leading

to a zero a even though l19 and b1 are quite distinct from each

other. In both cases, our definition just sets a equals to the angle

between l1 and b1 and the angle between l19 and b1, leading to a

well-defined result. While this type of sharp bend does not occur in

natural dsDNA, in our system the line segment of the last base-pair

step and the added virtual segment can form such sharp bends,

making the previous definition unsuitable for HelixMC.

The definition in Eq. (25) has two additional convenient

properties. First, if the axis curve of the dsDNA/dsRNA is

perfectly straight and pointing towards +z, and the base-pairs are

all parallel to the xy-plane, the calculated ribbon twist equals to the

sum of the base-step twist parameters [56]. Second, in our system

setup, if the normal vector of the last base-pair aligns along +z, the

computed link corresponds exactly to the bead rotation observed

in single molecule tweezers experiments.

Curation of the base-pair step parameters
The multivariate Gaussian distributions for sampling are

constructed using the base-pair step parameters from crystallo-

graphic models in the PDB. To ensure the quality of the data in the

default parameter sets, we used models derived from data with
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resolutions better or equal to 2.8 Å. Protein-binding DNA/RNA

structures were excluded from the dataset since protein binding may

affect the deformability of the nucleic acids. We also tested several

other selection schemes to estimate the systematic error, including

using higher resolution cutoff (2.0 Å) or including protein-binding

structures. We then used the 3DNA software [81,82] to extract the

base-pair step parameters for the canonical Watson-Crick base-

pairs (i.e. not including G-U wobble base-pairs and other non-

canonical base-pairs). Parameter sets with twist #5u (due to Z-DNA

conformations), with rise $5.5 Å (due to ligand intercalation), or

with any value more than four standard deviations away from the

mean were discarded as outliers. For the dsDNA datasets, we

noticed that there were two major clusters in the data, correspond-

ing to the A-form and B-form dsDNA (except for the ‘DNA_2.8_all’

dataset, where the protein binding rendered A-DNA and B-DNA

inseparable by clustering). We used the k-means algorithm to

separate the two clusters and only used the B-DNA parameters in

sampling (Table 1, Supplementary Methods and Fig. S7). For Z-

DNA, the dataset is composed of two distinct base-pair step

distribution for the GC steps and the CG steps. The population

distribution for the Z-DNA dataset is shown in Fig. S8. Detailed

statistics and population distribution of the curated dataset are

shown in Table 1, S13 and Fig. 7. Fig. S9 shows the correlation

plots between each base-pair step parameter for the default dataset.

For each type of base-pair step (16 in total, e.g. 59-AT-39/59-

AT-39, 59-CA-39/59-TG-39, etc.), a multivariate Gaussian was

fitted based on the corresponding six base-pair step parameters,

enabling sequence-dependent simulations. We note here that one

can also categorize the base-pair parameters into 10 independent

sequence-specific categories using the symmetry of the base-pair

steps [40,80]. This symmetrization is not the default option in

HelixMC; symmetrization gives minor changes in the predicted

mechanical properties (Supplementary Methods and Table S2).

For simulations with random sequence, in each update we

randomly picked a distribution from the 16 types of step parameters

and drew samples from it. In this sampling scheme, we effectively

averaged the 16 types of parameters, so all base-pair steps follow the

same parameter distribution [40]. The distribution can be further

approximated with a single multivariate Gaussian (Supplementary

Results). The approximation leads to a reduced number of parameters

in the model, and therefore facilitates the understanding the effect of

each parameter on the observed mechanical properties. However, we

note that this sampling scheme may lead to unrealistic base-pair step

combinations (for example, 59-AT-39/59-AT-39 followed by 59-GC-

39/59-GC-39), therefore the sequence of the RNA is not always well

defined in each simulation snapshot. To justify that our sampling

scheme indeed gave reasonable estimates of the mechanical properties

of a random RNA, we also performed simulations with a single

randomly generated RNA sequence (Table S14). The obtained

mechanical properties using a single random sequence agreed within

simulation error to our default random sequence simulation.

In addition, we observed that some of the population

distributions in our dataset did not appear Gaussian (Fig. 7).

To test the validity of the Gaussian approximation, we also

tested a different sampling scheme, by randomly picking

parameter sets existing in the database without assuming

Gaussianity, and obtained nearly undistinguishable results (see

Results). All the curated parameter sets and sampling schemes

used in this work are available and further documented in the

HelixMC package.

Software availability
The bottleneck steps of HelixMC have been optimized in C

(using Cython); a typical single-point HelixMC calculation for a

DNA/RNA helix of experimental length (few kilo-base-pairs) takes

minutes to hours on a standard desktop computer (Table S15).

HelixMC is coded in Python in an object-oriented fashion that

allows easy modification and extension, is free and open-source

(http://github.com/fcchou/helixmc), and enables fast and accu-

rate predictions with available computational power.

Figure 7. Normalized population distributions of the base-pair step parameters. Black: DNA. Red: RNA. Solid lines: default dataset (2.8 Å
resolution cutoff, excluding protein-binding models). Dashed lines: 2.8_all dataset (2.8 Å resolution cutoff, including protein-binding models). Dotted
lines: 2.0_noprot dataset (2.0 Å resolution cutoff, excluding protein-binding models). The inset illustrates the geometrical definition of each base-pair
step parameter.
doi:10.1371/journal.pcbi.1003756.g007
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Validation of the link calculations
We numerically tested the validity of the link calculations above

by comparing simulated link values to the bead rotations (Fig. 8A).

Here the ‘‘bead rotation’’ is defined as the angle between the y-axis

of the global coordinate and the projection of the ribbon vector of

the last base-pair to the xy-plane. This is equivalent to attaching a

virtual bead along the ribbon vector of the last base-pair and

observing its rotation, analogous to recent single-molecule

tweezers experiments [17]. For better comparison, in Fig. 8A we

folded the computed link into the range of [2p, p), and found that

the experimentally observed bead-rotation indeed corresponds to

the link. The match between the link and the bead rotation was

close but not exact (RMSD of 4.5u), because the normal vector of

the last base-pair did not point exactly to +z during the simulation;

this discrepancy induces negligible error in computed helix

mechanical properties.

As discussed above, the Fuller formula is faster but gives exact

writhes only in certain conditions. The formula breaks down if the

helix path fluctuates so that segments point away from the applied

force (towards 2z). Fig. 8B shows a plot of exact writhe vs. Fuller

writhe in a simulation of 3 kbp dsDNA at 0.1 pN stretching force. It

is apparent that in this setting the Fuller formula is only correct

modulo 4p (two turns; spacing between parallel lines). To test under

which conditions the Fuller formula was accurate, we computed its

RMSD error to exact writhe across simulations. For force-extension

simulations, Fuller writhe is effectively exact if the force is larger

than 0.4 pN for dsDNA and 1 pN for dsRNA (Fig. 8C). For

link-constrained simulations, the Fuller formula holds in the current

simulated link-range, but breaks down when the target link exceeds

640 turns for DNA and 620 turns for dsRNA (corresponding to

supercoiling densities of 0.022 and 0.012; Fig. 8D).

Fitting model for simulated and experimental data
As with experimental measurements, the simulated data were

summarized through fits to the elastic rod model, which assume

that the total energy of the helix without external force and torque

can be expressed using the above parameters by an integral along

the helix axis curve s:

E~
kBT

2

ðL

0

ds Ab2zBz2zCh2zDzh ð29Þ

Here L is the helix contour length, kB is the Boltzmann constant and

T is the temperature. The constants are bending persistence length

A, B = S/kBT the stretching stiffness (where S is the stretch

modulus), torsional persistence length C, and D = g/kBT is the

unit-less link-extension coupling (here we use the convention in ref.

Figure 8. Validation of the link calculations. (A) Plot of calculated link vs. bead rotation in DNA simulation with 7 pN stretching force and no link
constraint. The red line is the function y = x. The link is folded into the range of 0 to 1 turn for better comparison. RMSD of the calculated link is 5.7u.
(B) Plot of Fuller writhe vs. exact writhe in DNA simulation with 0.1 pN stretching force and no link constraint. The separation of two turns between
parallel traces demonstrates that Fuller writhe is only correct modulo 4p in this criteria. (C) RMSD for Fuller writhe at different stretching forces with
no link constraint. Black: DNA; Red: dsRNA. (D) RMSD for Fuller writhe at different link constraints in simulations at 7 pN stretching force.
doi:10.1371/journal.pcbi.1003756.g008
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[14], where g has units of pN?nm). The three quantities b, z and h
describe the deformations per unit length of a short rod segment. b
is the bending deformation that measures how the tangent vector

changes along the rod, z is the extensional deformation that

measures the change in the length of the segment, and h is the

torsional deformation that determines how the each segment is

rotated around the rod axis with respect to adjacent segment. The

analytical equations used to fit experimental measurements, derived

from this model, are compiled in the Supplementary Methods.

Supporting Information

Figure S1 Comparison of extensive WLC model by
Bouchiat et al. and Odijk. Blue lines: fits of the model by

Bouchiat et al. Red broken lines: fits of Odijk WLC model. (A)

DNA. (B) RNA.

(EPS)

Figure S2 Effect of xy-constraint on the mechanical
behavior for dsDNA and dsRNA. Black: without xy-con-

straints (regular behavior); Red: with xy-constraints. (A, C, E) DNA;

(B, D, F) RNA. (A, B) force-extension; (C, D) effective torsional

persistence length vs. force; (E, F) link vs. force. The constraint is a

harmonic constraint centered at x = y = 0 (E~ 1
2

k( x2 z y2 ) , x
and y is the corresponding coordinate components for the last base-

pair in the helix). The force constant k is set to 0.0025 pN/Å.

(EPS)

Figure S3 Plots of the helix extension (end-to-end
distances) vs. the stretching force. (A) DNA; (B) RNA.

The blue lines are linear fits using the last three data points. For

both DNA and RNA the linear relationship holds only when force

.15 pN.

(EPS)

Figure S4 Link-extension couplings computed using
simulations of two different experimental setups. Here

g1 is computed from the slopes of link vs. force plots; g2 are

computed from the slopes of extension vs. link constraint plots.

The data can be well fitted by a straight line (R2 = 0.96).

(EPS)

Figure S5 Effect of multi-base-pair parameter sets on
the mechanical properties of dsDNA. Red: multi-base-pair

parameter sets. Black: control parameter sets. (A) Bending

persistence length; (B) Stretch modulus; (C) Torsional persistence

length; (D) Link-extension coupling (slopes of link vs. force

measurements).

(EPS)

Figure S6 Effect of multi-base-pair parameter sets on
the mechanical properties of dsRNA. Red: multi-base-pair

parameter sets. Black: control parameter sets. (A) Bending

persistence length; (B) Stretch modulus; (C) Torsional persistence

length; (D) Link-extension coupling (slopes of link vs. force

measurements).

(EPS)

Figure S7 Population distributions of base-pair step
parameters during k-mean clustering. The clustering is

used in curating the ‘‘DNA_default’’ parameter set. The black line

represents the original full data extracted from the PDB. This full

data is clustered into 3 different clusters represented by the blue,

green, and red lines. Red and green clusters represent B-DNA and

are retained; blue cluster is removed from the final dataset as it

represents A-DNA conformations.

(EPS)

Figure S8 Population distribution of base-pair step
parameters for Z-DNA. The black lines represent the GC/

GC base-pair steps and red lines represent the CG/CG steps.

(EPS)

Figure S9 The correlations between the base-pair
step parameters. Black: DNA; Red: RNA. The ellipses

represent the contours of the multivariate Gaussian at three

standard deviations.

(EPS)

Table S1 Comparison of bending persistence length (in
nm) computed by different methods. The values in

parenthesis are the corresponding fitting errors. See Table 1 for

detailed description for each parameter set.

(DOC)

Table S2 Effect of the symmetrization of the base-pair
step parameter set on predicted mechanical properties.

The values in parenthesis are the corresponding fitting errors. See

Table 1 for detailed description for each parameter set.

(DOC)

Table S3 Comparison of stretch modulus (in pN) com-
puted by different methods. The values in parenthesis are the

corresponding fitting errors. See Table 1 for detailed description for

each parameter set.

(DOC)

Table S4 Effect of parameter grafting in the predicted
mechanical properties. 1Single Gaussian parameter set built

from the default dataset. 2Chimera single Gaussian parameter set.

See Supplementary Results for explanation.

(DOC)

Table S5 Changes of conformational parameters upon
stretching for 100-bp DNA and RNA helices. Simulations are

performed using the default parameter set. The changes of shift, slide

and tilt upon stretching are small (below 0.02 standard deviation)

and therefore not shown. 1 sin a ~
Leff

Laxis

, where Laxis is the length

of the axis curve, Leff is the effective helix contour length and a is the

super-helical pitch angle. Leff ~ ( 1z F=S) L, where F is the

applied stretching force, S is the stretch modulus, and L is the helix

contour length. See Supplementary Methods for more information. 2

The first value is the average parameter, followed by the

corresponding Z-score.

(DOC)

Table S6 Steric clashes in simulations. Simulations are

performed on helices of 3,000 base-pairs. In each simulation,

1,000 frames are generated for checking the number of steric

clashed conformations.

(DOC)

Table S7 Comparison of torsional persistence length
(in nm) computed by different methods. The values in

parenthesis are the corresponding fitting errors. See Table 1 for

detailed description for each parameter set.

(DOC)

Table S8 Effect of individual parameters in covariance
matrix for DNA. 1 Values for the original parameter set computed

using the full simulation (see the ‘DNA_gau’ entry in Table 1). 2

Halving or doubling the variance of ‘shift’ parameter in the

covariance matrix. 3 Reverse the sign of the shift-slide covariance

in the covariance matrix.

(DOC)
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Table S9 Effect of individual parameters in covariance
matrix for RNA. See captions of Table S9 for detailed

explanations.

(DOC)

Table S10 Standard deviations of parameters for ran-
dom DNA, poly(A)/poly(T) and Z-DNA. 1 Z-DNA has a

minimum repetitive unit of two base-pairs, therefore it has two

distinct step parameter set (GC and CG).

(DOC)

Table S11 Acceptance rate of the Monte Carlo simula-
tions. Link constrained simulations are performed at 7 pN

stretching force.

(DOC)

Table S12 Values and sampling error of observables in
HelixMC simulations at difference forces and link-
constraints. The values in parenthesis are the corresponding

sampling errors.

(DOC)

Table S13 Covariance matrices for DNA and RNA
default parameter sets. Data are derived from crystallographic

models excluding proteins and with diffraction resolutions of 2.8 Å

or better. Additional data sets, including sequence-dependent

parameters, are available in the HelixMC package (http://github.

com/fcchou/helixmc).

(DOC)

Table S14 Comparison of simulations with default
random sequence and a single random sequence.

(DOC)

Table S15 Example computational time of HelixMC on
a Linux desktop. Computer specification: Intel Core i7-3770

CPU @ 3.40 GHz, 24 GB RAM. Operation system: Linux Mint

13 Maya. Computation is performed using Enthought Python

Distribution 7.3-1 academic edition. Each simulation uses a single

thread and ,700 MB of memory. All simulations are performed

with 7 pN stretching force.

(DOC)

Text S1 Supplementary Methods.

(DOC)

Text S2 Supplementary Results.

(DOC)
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260.

6. Earnshaw WC, Casjens SR (1980) DNA packaging by the double-stranded DNA

bacteriophages. Cell 21: 319–331.

7. Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, et al. (2001) The

bacteriophage Q29 portal motor can package DNA against a large internal force.

Nature 413: 748–752.

8. Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the

elasticity of single DNA molecules by using magnetic beads. Science 258: 1122–

1126.

9. Strick TR, Allemand JF, Bensimon D, Bensimon A, Croquette V (1996)

The elasticity of a single supercoiled DNA molecule. Science 271: 1835–

1837.

10. Strick TR, Dessinges MN, Charvin G, Dekker NH, Allemand JF, et al. (2003)

Stretching of macromolecules and proteins. Reports on Progress in Physics 66: 1.

11. Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule

DNA mechanics. Nature 421: 423–427.

12. Bryant Z, Stone MD, Gore J, Smith SB, Cozzarelli NR, et al. (2003) Structural

transitions and elasticity from torque measurements on DNA. Nature 424: 338–

341.

13. Abels JA, Moreno-Herrero F, van der Heijden T, Dekker C, Dekker NH (2005)

Single-Molecule Measurements of the Persistence Length of Double-Stranded

RNA. Biophysical Journal 88: 2737–2744.

14. Gore J, Bryant Z, Nöllmann M, Le MU, Cozzarelli NR, et al. (2006) DNA

overwinds when stretched. Nature 442: 836–839.

15. Lionnet T, Joubaud S, Lavery R, Bensimon D, Croquette V (2006) Wringing

Out DNA. Physical Review Letters 96: 178102.

16. Lipfert J, Kerssemakers JW, Jager T, Dekker NH (2010) Magnetic torque

tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments.

Nature Methods 7: 977–980.

17. Lipfert J, Wiggin M, Kerssemakers JWJ, Pedaci F, Dekker NH (2011) Freely

orbiting magnetic tweezers to directly monitor changes in the twist of nucleic

acids. Nature Communications 2: 439.

18. Bryant Z, Oberstrass FC, Basu A (2012) Recent developments in single-molecule

DNA mechanics. Current Opinion in Structural Biology 22: 304–312.

19. Forth S, Sheinin MY, Inman J, Wang MD (2013) Torque Measurement at the

Single-Molecule Level. Annual Review of Biophysics 42: 583–604.

20. Herrero-Galán E, Fuentes-Perez ME, Carrasco C, Valpuesta JM, Carrascosa

JL, et al. (2013) Mechanical Identities of RNA and DNA Double Helices

Unveiled at the Single-Molecule Level. Journal of the American Chemical

Society 135: 122–131.

21. Moroz JD, Nelson P (1997) Torsional directed walks, entropic elasticity, and

DNA twist stiffness. Proceedings of the National Academy of Sciences 94:

14418–14422.

22. Moroz JD, Nelson P (1998) Entropic Elasticity of Twist-Storing Polymers.

Macromolecules 31: 6333–6347.

23. Bouchiat C, Wang MD, Allemand J, Strick T, Block SM, et al. (1999) Estimating

the persistence length of a worm-like chain molecule from force-extension

measurements. Biophysical Journal 76: 409–413.
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