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Metabolomic analysis of 
percutaneous fine-needle 
aspiration specimens of thyroid 
nodules: Potential application for 
the preoperative diagnosis of 
thyroid cancer
Inseon Ryoo1,*, Hyuknam Kwon2,*, Soo Chin Kim3, Seung Chai Jung4, Jeong A Yeom5, 
Hwa Seon Shin6, Hye Rim Cho7,8, Tae Jin Yun7, Seung Hong Choi7, Chul-Ho Sohn7, 
Sunghyouk Park2 & Ji-hoon Kim7

Thyroid nodules are a very common problem. Since malignant thyroid nodules should be treated 
surgically, preoperative diagnosis of thyroid cancer is very crucial. Cytopathologic analysis of 
percutaneous fine-needle aspiration (FNA) specimens is the current gold standard for diagnosing 
thyroid nodules. However, this method has led to high rates of inconclusive results. Metabolomics has 
emerged as a useful tool in medical fields and shown great potential in diagnosing various cancers. 
Here, we evaluated the potential of nuclear magnetic resonance (NMR) analysis of percutaneous 
FNA specimens for preoperative diagnosis of thyroid cancer. We analyzed metabolome of FNA 
samples of papillary thyroid carcinoma (n = 35) and benign follicular nodule (n = 69) using a proton 
NMR spectrometer. The metabolomic profiles showed a considerable discrimination between benign 
and malignant nodules. Receiver operating characteristic (ROC) curve analysis indicated that seven 
metabolites could serve as discriminators (area under ROC curve value, 0.64–0.85). These findings 
demonstrated that NMR analysis of percutaneous FNA specimens of thyroid nodules can be potentially 
useful in the accurate and rapid preoperative diagnosis of thyroid cancer.

Thyroid nodules are a very common problem, and they have been detected in up to 67% of the general population 
with ultrasonography (US) evaluations1–3. Cytopathologic analysis of percutaneous fine-needle aspiration (FNA) 
specimens is the current gold standard for diagnosing thyroid nodules4.

However, this procedure has led to high rates of inconclusive results, including nondiagnostic and atypia of 
undetermined significance or follicular lesion of undetermined significance5–7. For these inconclusive thyroid 
nodules, the Bethesda system and the majority of guidelines recommend repeat FNA4,5,8. Nevertheless, up to 50% 
of these repeated examinations continue to yield insufficient or indeterminate results6,7,9. In addition, the false 
negative rate of cytopathologic analysis has been reported to be up to 10.2%10.
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Due to the limitations of conventional cytopathologic analysis, several molecular analyses have been assessed 
and reported to have some potential as adjuncts to conventional cytopathologic analysis11–14. However, the results 
are still unsatisfactory, especially in terms of low sensitivity, negative predictive value, and high cost.

Metabolomics has emerged as a useful tool in multiple medical fields. It has shown great potential in diag-
nosing various cancers, such as breast, prostate, and colorectal cancers15–20. Several articles have presented the 
potential usefulness of the metabolomic approach for diagnosis of thyroid nodules21–27. Other than in vivo proton 
magnetic resonance spectroscopy (1H MRS), which might have limited clinical use, all of the previous studies 
were based on postoperative surgical specimens. The previous studies did not test the metabolomic approach as 
a preoperative diagnostic tool for thyroid nodules21–27. Post-operative specimens may not reflect the actual meta-
bolic signature of thyroid nodules analyzed by the current gold standard, FNA before operation.

Therefore, the purpose of this study was to evaluate the potential of nuclear magnetic resonance (NMR) anal-
ysis of percutaneous FNA specimens for preoperative diagnosis of thyroid cancer.

Results
Cytopathologic results of percutaneous FNA samples.  Among a total of 230 percutaneous FNA sam-
ples, 85 were benign (category II; all consistent with benign follicular nodules) and 53 were malignant (category 
VI; all papillary thyroid carcinomas) based on cytopathologic analyses according to the Bethesda system5 (Fig. 1).

Among them, 34 could not be analyzed due to the following reasons:
Thirty-four thyroid nodules (16 benign nodules and 18 malignant nodules) were not analyzed because of 

insufficient FNA sampling amount (n =​ 29), failed freezing storage of the FNA sample (n =​ 1), sample loss (n =​ 1), 
and insufficient water suppression or shimming (n = 3).

Finally, percutaneous FNA samples of 104 nodules from 100 patients (M:F =​ 23:77; mean age, 52.9 ±​ 10.8 
years; age range, 21–77 years; four patients with two nodules; 35 malignant nodules from 34 patients and 69 
benign nodules from 66 patients) were analyzed using NMR (Fig. 2). The size of the thyroid nodules on US 
ranged from 3.5 to 27.6 mm (mean, 10.5 ±​ 6.2 mm) for malignant nodules and from 4.4 to 40.1 mm (mean, 
15.2 ±​ 11.2 mm) for benign nodules. The information of 100 patients enrolled in this study was summarized in 
Table 1.

Of 35 malignant nodules, 25 nodules of 24 patients underwent surgery. All of these were confirmed to be 
malignant (papillary thyroid carcinoma).

Of 25 surgically confirmed papillary thyroid carcinomas, the results of BRAFV600E mutation were available in 
22 cancers. There were 18 BRAF V600E mutation-positive nodules and four mutation-negative nodules.

Only one of 69 benign nodules underwent surgery because of concomitant thyroid cancer. This case was 
diagnosed as nodular hyperplasia.

NMR analysis of benign and malignant thyroid nodules.  We performed multivariate statistical anal-
ysis to discriminate benign and malignant nodules. The orthogonal projections to latent structures-discriminant 
analysis (OPLS-DA) has been applied because it can discriminate groups in the presence of high structured noise 
or confounding factors. As indicated in Fig. 3, the OPLS-DA score plot (created using one predictive component 
and one orthogonal components) shows statistically significant discrimination between benign and malignant 
nodules with a Q2 value of 0.33 (R2Y =​ 0.59). In the prediction validation study with three-fold cross-validation, 
the accuracy, sensitivity, and specificity for diagnosing papillary thyroid carcinoma were 88.6%, 75%, and 95.6%, 
respectively.

Metabolic differences between benign and malignant thyroid nodules.  According to OPLS-DA 
loadings of the predictive latent variable, the relative amounts of lactate (1.3 ppm), choline (3.2 ppm), 
O-phosphocholine (3.2 ppm), and glycine (3.6 ppm) were greater in malignant nodules than in benign nodules. 
The relative amounts of citrate (2.6 ppm), glutamine (2.1 ppm), and glutamate (2.0 ppm) were greater in benign 

Figure 1.  Flow chart of the study group. *​Categories were defined according to Bethesda classification.
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nodules than in malignant nodules (Fig. 4). These findings corresponded with the significant metabolites identi-
fied in the unpaired Student t test (Table 2).

Performance of metabolomic analysis in discriminating between benign and malignant thyroid 
nodules.  For evaluating the discriminating model, we performed the receiver operating characteristic (ROC) 
curve analysis. The grades predicted by the PLS-DA model showed that area under the curves (AUCs) ranged 
from 0.64 (glycine; not shown) to 0.85 (citrate). Citrate exhibited the sensitivity of 90% and specificity of 80% 
(Fig. 5A). To evaluate other marker metabolites, we performed multiple ROC analysis with seven metabolites and 
the result showed that citrate was the best discriminator (Fig. 5B).

NMR analysis of BRAF V600E mutation-positive and negative papillary thyroid carcinomas.  In 
the analysis of difference in metabolomic profiles between BRAF V600E mutation-positive papillary thyroid car-
cinomas and mutation-negative papillary thyroid carcinomas, there were no significant differences because two 
groups did not separated with negative Q2 value (−0.536) at OPLS-DA analysis.

Discussion
To our knowledge, the current study enrolled the largest number of thyroid nodules for NMR analysis. It was also 
the first study showing that NMR analysis of percutaneous FNA specimens of thyroid nodules could be applied 
for preoperative diagnosis of thyroid cancer. Although some previous studies reported that preoperative in vivo 
1H MRS differentiated between benign and malignant thyroid nodules, this technique cannot be easily applied 
to patients with thyroid nodules. This is because thyroid nodules are not usually large enough to place voxel for  
in vivo 1H MRS and may be influenced by susceptibility artifact due to their anatomical adjacency to the 
airway21,23.

Although metabolic analysis usually uses biofluids such as urine, blood, cerebrospinal fluid, and bile 
juice15,17,19,20, this study was the first to show that FNA specimens of thyroid nodules can be analyzed by NMR 
for preoperative diagnosis of malignancy. We also proved that only a small amount of FNA specimen sample 

Figure 2.  Representative metabolomic spectra from the fine needle aspiration specimens of benign and 
malignant (papillary thyroid carcinoma [PTC]) thyroid nodules. 
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(20–40 μ​L) is required for metabolic analysis. A few papers have reported that the metabolic spectral analysis 
of tissue and FNA specimens from surgically resected thyroid tissues did not significantly differ for diagnosis of 
papillary thyroid carcinoma22,24.

Although some specimens could not be used for metabolomic analysis in the present study, NMR analysis was 
performed in approximately 75% of all cases especially with only the remainder of the samples after allotment for 
conventional cytopathologic analysis. This indicates that the NMR approach is not an extra burden for patients 
in providing a better diagnosis.

The present study had lower statistical power than previous studies using postsurgical specimens, which had 
Q2 (R2Y) ranging from 0.37 (0.75) to 0.91 (0.82)25,27. This might be due to the small sample volumes and subse-
quent lower sensitivity of detection for NMR analysis of percutaneous FNA specimens. Bleeding and contamina-
tion with skin, subcutaneous fat, muscle, thyroid capsule, and normal thyroid parenchyma in the course of needle 
passage may have affected the NMR spectra.

Higher relative concentrations of lactate and choline, and lower relative concentrations of citrate, glutamine, 
and glutamate in malignant thyroid nodules were found in the present study using preoperative percutaneous 
FNA specimens. These results are generally concordant with those of several previous in vivo 1H MRS studies 
and studies using surgical specimens21,23,25–28. This concordance suggests that preoperative metabolomic analysis 
could be a reliable test for characterizing the pre-operative metabolomic profiles of thyroid nodules.

Papillary thyroid 
carcinoma

Benign thyroid 
nodule

Number of patients 34 66

Age (years) 50.0 ±​ 11.7 54.4 ±​ 10.1

Male/Female 10/24 13/53

T stage

  T1a 3

  T1b 0

  T2 0

  T3 21

  T4 0

  N/A* 10

N stage

  N0 12

  N1a 11

  N1b 1

  N/A* 10

BRAF V600E mutation

  positive 18†

  negative 4

  N/A* 13

Table 1.   Demographic and pathologic characteristics of the patients. Note - Unless otherwise specified, the 
data are the means ±​ standard deviations. *​N/A, Not available. †18, one patient had two cancers with BRAF V600E 
mutation and remaining 16 patients had one cancer per person.

Figure 3.  Orthogonal projections to latent structure-discriminant analysis (OPLS-DA) score plot showing 
the discrimination between benign and malignant (papillary thyroid carcinoma) thyroid nodules. The 
model was obtained using one predictive and one orthogonal components. Benign group: class 1( black 
boxes), malignant group: class 2 (red diamonds) Pp represents the predictive component and Po represents the 
orthogonal component.
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Lactate concentrations are frequently increased in thyroid cancer and other malignant tumors21–23,25,26,29–31. 
Increased lactate level implicates an increase in the glycolytic pathway due to hypoxia or ischemia in tumor 
tissues or as a result of the Warburg effect25–27,29–32. Lactate was also proven to be a key factor in terms of cancer 
cell mobility33. Accelerated cancer cell metabolism has also been shown to produce more waste products, such as 
lactate, for extrusion and neutralization25,32.

Increased glycine in thyroid cancer may also result from increased glycolysis. Many recent studies reported 
that glycolytic intermediate metabolism plays an important role in tumorigenesis, and one of the main path-
ways is single carbon metabolism. Recently mitochondrial synthesis and consumption of glycine was proposed 
to be necessary for rapidly growing cancer cells. And glycine dehydrogenase (GLDC), which cleavages glycine 
and mediates folate cycle charging, are highly expressed on tumor promoting cells and its enhanced activity is 

Figure 4.  Identification of metabolites contributing to discriminating model.  (A) OPLS-DA loading plot 
showing the metabolites of benign nodules and malignant nodules (papillary thyroid carcinoma) for marker 
identification. (B) OPLS loading plot (S-TOCSY) showing the model coefficients for each NMR variable. The 
signals are color coded according to their weights as a discriminator between benign and malignant thyroid 
nodules. Metabolites that significantly discriminate the two groups were annotated on the model coefficient plot.

Metabolite

Area normalization value

P value†Benign PTC*

Citrate 2.45 ±​ 1.37 1.33 ±​ 0.49 0.004

Glutamate 6.45 ±​ 1.58 5.50 ±​ 0.81 0.003

Glutamine 1.82 ±​ 0.52 1.59 ±​ 0.43 0.01

Lactate 6.89 ±​ 2.65 9.54 ±​ 3.15 0.003

Choline 1.94 ±​ 0.52 2.67 ±​ 0.92 0.0008

O-phosphocholine 2.72 ±​ 0.96 3.50 ±​ 1.12 0.002

Glycine 0.63 ±​ 0.31 0.83 ±​ 0.41 0.005

Table 2.   Relative concentration of metabolites in benign and malignant nodules. Note - Unless otherwise 
specified, the data are the means ±​ standard deviations. *​PTC, papillary thyroid carcinoma. †P value for the 
comparison of means was calculated using the unpaired Student t test.



www.nature.com/scientificreports/

6Scientific Reports | 6:30075 | DOI: 10.1038/srep30075

associated with tumorigenesis. Therefore glycine could be one of important metabolites at tumorigenesis with its 
de novo synthesis and catabolism33–35.

Unlike the results of previous studies using postoperative surgical specimens, this study presented that choline 
was increased in thyroid cancer25,27. Because choline usually forms the phospholipids of cell membranes, malig-
nant tissue cells that have increased multiplication and proliferation can also exhibit increased choline contents 
(choline phospholipid metabolism in tumor cells), which has been supported in many previous studies of thyroid 
cancer using MRS21–23,26.

Citrate was the most powerful discriminator in the present study. Since proliferating cells exhibit aerobic glyc-
olysis and convert glucose to lactate (lactate fermentation, or the Warburg effect) at high levels, pyruvate-derived 
citrate synthesis in mitochondria may be reduced in these cells26,36,37. Several recent studies have reported that 
ATP citrate lyase, which uses citrate to synthesize acetyl CoA in a lipogenesis pathway for cell proliferation, is 
upregulated in some human cancers such as lung, colorectal, and ovarian cancers. In addition, these studies 
report that inhibition of ATP citrate lyase suppresses the proliferation of certain types of tumor cells38,39. As noted 
in these various cancers, proliferating thyroid cancer cells may also use citrate for lipogenesis and may have a 
lower concentration of citrate compared to that in benign cells.

Recent publications on cell metabolism emphasize that proliferating cells exposed to hypoxic conditions 
rely almost exclusively on reductive carboxylation of glutamine-glutamate-derived α​-ketoglutarate for de novo 
lipogenesis36,37. Furthermore, some renal cell lines utilize this type of reductive glutamine metabolism even in 
the normoxic state37. Therefore, several research groups are currently studying the possibility of developing a 

Figure 5.  ROC analysis of citrate and multiple marker metabolites. (A) The ROC curve of citrate showing 
the ability as a discriminator of a thyroid nodule. (B) Multiple ROC curve analysis showing that all the seven 
metabolites had additive values in discriminating benign thyroid nodules from papillary thyroid carcinomas 
(PTC). The single most important discriminator was citrate which was more abundant in benign thyroid 
nodules than in PTC.
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glutaminase inhibitor as an anti-cancer drug. These observations from earlier studies could possibly explain why 
proliferating cells or cancer cells might have lower glutamine or glutamate levels than normal cells.

This study has several limitations. First, since the reference used for comparison was based on Bethesda cate-
gories II and VI, which show typical benign and malignant cytologic features, the real metabolic spectra of benign 
and malignant thyroid nodules might be different from our results. Further study with a larger number of nodules 
should be performed to validate the diagnostic reference.

Second, about 25% of samples (34/138) in the present study could not be used for metabolic analysis. The most 
important reason was insufficient remaining sample volume after allotment for conventional cytologic analysis. A 
more delicate preparation method is needed to ensure a sufficient sample amount for both conventional cytologic 
analysis and NMR analysis. However, in this study, as approximately one third of the thyroid nodules (n =​ 50) 
were less than 1 cm which are not usually indicated for FNA, this could also make sample volumes insufficient.

Third, all malignant samples were papillary thyroid carcinomas. Further studies are necessary to evaluate the 
metabolic profiles of different thyroid neoplasms, such as follicular adenoma, follicular thyroid carcinoma, med-
ullary thyroid carcinoma, and anaplastic thyroid carcinoma.

Fourth, this study failed to reveal the correlation between metabolic spectra and BRAFV600E mutation, a use-
ful prognostic marker for papillary thyroid carcinoma. Further studies using a large number of thyroid nodules 
should be planned to correlate between various molecular markers and metabolic profiles.

Lastly, studies with a large number of patients should be undertaken to verify the usefulness of NMR analysis 
in various clinical applications including the nodules with insufficient or indeterminate results and how to use 
NMR analysis in conjunction with the current cytopapthologic analysis.

In summary, NMR analysis of preoperative percutaneous FNA specimens of thyroid nodules presented dif-
ferent metabolomic profiles for benign and malignant thyroid nodules in this study. NMR analysis of FNA speci-
mens of thyroid nodules may be useful in the accurate and rapid preoperative diagnosis of thyroid cancer.

Methods
Ethics statement.  This prospective study was approved by the institutional review board of Seoul National 
University Hospital. All the methods used in this study were carried out in accordance with the approved guide-
lines. Informed consent was obtained from all patients.

Study population and acquisition of nuclear magnetic resonance data.  From November 2012 to 
June 2013, 230 nodules of 214 consecutive patients underwent FNA for diagnosis of thyroid nodules and subse-
quent sampling for NMR analysis by 9 board-certified radiologists specializing in head and neck imaging (mean: 
6.4 years, 3–16 years of experience). Patients who had a history of previous FNA, thyroid surgery, or thyroid 
hormonal treatment were excluded from the study. For patients with multiple thyroid nodules, only the nodules 
with different ultrasonographic features from one another and located in different thyroid lobes were included.

Under the guidance of high-resolution US machines (IU22, Philips Medical Systems, Bothel, WA; AixPlorer, 
Supersonic Imagine, Aix en Provence, France; Logiq9, GE Medical Systems, Milwaukee, WI) with 10–12MHz 
linear transducers, FNA was performed with up to 4 needle passes using capillary or aspiration FNA techniques 
according to the characteristics of thyroid nodules. Immediately after FNA procedures, aspiration specimens 
were smeared on a slide, fixed with alcohol, and stained with Papanicolaou for conventional cytologic analysis. 
The remainders of aspiration specimens were collected in Eppendorf tubes (20–40 μ​L). The tubes were kept in a 
dry-ice box and stored in a liquid nitrogen tank until metabolomic analysis was performed.

Cytopathologic analyses were done according to the Bethesda system5. Among the 6 categories, benign (cate-
gory II) and malignant (category VI) thyroid nodules were chosen for NMR analysis. Furthermore, for surgically 
confirmed papillary thyroid carcinomas, the BRAFV600E mutation status was analyzed by direct DNA sequencing 
and metabolomic profiles were analyzed between mutation positive and negative groups.

Samples from thyroid nodules were slowly thawed in an icebox, after which they were centrifuged at 
13,000 rpm. The supernatant was collected with a pipette and placed in 1.7-mm SJ tubes with 0.25% trimethyl-
silane propionic acid (TSP) buffer in D2O to a final volume of 35 μ​L. The one-dimensional spectra of thyroid 
samples were measured using an NMR spectrometer (BrukerBiospin, AVIII700, Billerica, MA, USA) equipped 
with a 1.7-mm PATXI probe operating at a proton NMR frequency of 700.193 MHz.

The acquisition parameters were: pulse, CPMG; time domain size, 32,768; relaxation delay, 2 s; num-
ber of scans, 128; spectral width, 14,097 Hz; mixing time, 76 ms; and temperature, 25 °C. The lactate signal 
(δ =​ 1.342 ppm) was used as a reference value.

Data processing.  All time-domain NMR data underwent Fourier transformation, phase correction, and man-
ual baseline correction. The resulting frequency-domain data were binned at 0.0031-ppm intervals to reduce the 
complexity of NMR data for pattern recognition. The signals were normalized (area normalization) against total 
integration values and TSP buffer to exclude the effects of different volumes and NMR measurement variations. 
Data was then converted into an ASCII text file. The regions corresponding to water (4.71–5.1 ppm) were removed 
from all spectra. Binning, normalization, and conversion were performed using an in-house Perl program.

Statistical analysis.  The signals in specific bins that showed significant differences (P value <​ 0.05) between 
benign and malignant groups in terms of area normalization values were determined using the unpaired Student 
t test. Thereafter, metabolites were identified using Chenomx (Spectral Database, Edmonton, Alberta, Canada) by 
fitting the experimental spectra (significant signals) to those in the database.

The resultant spectral data sets were then imported into SIMCA-P version 11.0 program (Umetrics, Umeå, 
Sweden), and mean centering was performed with Pareto scaling for multivariate statistical analysis. Furthermore, 
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OPLS-DA was performed with one predictive component and two orthogonal components for benign and malig-
nant thyroid nodules and also for BRAFV600E mutation positive and negative papillary thyroid carcinomas.

Class discrimination models were created while ensuring that the cross-validated predictability value did 
not significantly increase to avoid over-fitting of the statistical model. Diagnostic performance was obtained by 
predicting three-fold cross-validation samples on the basis of a distinction model constructed using the rest of 
the samples. An a priori cut-off value of 0.5 was used to evaluate the prediction results40. An in-house written 
R script was used to identify the signals specific for each group by performing the Wilcoxon rank-sum test on 
all ppm variables (Q2 and R2). Eventually, the specific signals were compared to metabolites identified using the 
Chenomx data base.

The performance of the prediction derived from OPLS-DA modeling of NMR spectra was evaluated by com-
puting the AUC using an open source ROC curve analysis tool for metabolomics data (ROC Curve Explorer & 
Tester, www. roccet.ca).
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