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Automatic liver segmentation not only plays an important role in the analysis of liver disease, but also reduces the cost and
humanity’s impact in segmentation. In addition, liver segmentation is a very challenging task due to countless anatomical variations
and technical difficulties. Many methods have been designed to overcome these challenges, but these methods still need to be
improved to obtain the desired segmentation precision. In this paper, a fast algorithm is proposed for liver extraction from CT
images with single-block linear detection. The proposed method does not require iteration; thus, the computational time and
complexity are decreased enormously. In addition, the initialization is not crucial in the algorithm, so the algorithm’s robustness
and specificity are improved. The experimental evaluation of the proposed method revealed effective segmentation in normal and
abnormal (liver hemangioma and liver cancer) abdominal CT images. The average sensitivity, accuracy, and specificity for liver
cancer are 96.59%, 98.65%, and 99.03%, respectively. The results of image segmentation approximate the manual segmentation
results by the technical doctor. Moreover, our method shows superior flexibility to newly published method with comparable

performance. The advantage of our method is verified with experimental results, which is described in detail.

1. Introduction

At present, many postprocessing techniques with informa-
tion from Computed Tomography (CT) images help confirm
diagnoses, biopsies, and morphological anatomies [1-3]. Also
these techniques of Magnetic Resonance Imaging (MRI)
images are important in the pathophysiology and develop-
ment of disease [4, 5]. Sharma and Aggarwal [6] discussed the
merits and limitations of automated segmentation methods.
Postprocessing techniques, with abdominal CT images, are
widely used to determine types of liver disease. Liver seg-
mentation from CT images in postprocessing techniques not
only is an essential prerequisite, but, by playing an important
role in confirming liver function, pathological, and anatom-
ical studies, is also a key technique for diagnosis of liver
disease. An accurate liver segmentation method is helpful in
diagnosis, treatment, and computer-aided operations with 3D
reconstruction techniques. An accurate liver segmentation
method is also used to confirm lesion size and degree for

specific treatment or the lesion sharp and location for surgical
operations, such as radiotherapy.

The level set method, introduced to the field of image
processing, image restoration, and target tracking, has been
in use since the 1990s. In recent journals [8, 9], the level
set method was proposed for liver segmentation with CT
images. Also, the level set method was used to segment
magnetic resonance images with intensity clustering prop-
erties to overcome intensity inhomogeneities in the images
[10]. Then, based on energy minimization, the method was
improved to estimate joint bias fields and segment magnetic
resonance images [11]. To avoid error accumulation, the level
set function is usually reinitialized to maintain a Signed
Distance Function (SDF) in this method, resulting in greater
computational time. In 2010, Li et al. [12] proposed Distance
Regularized Level Set Evolution (DRLSE) for image segmen-
tation, which established a SDF near zero level set during evo-
lution, thus simplifying the numerical calculations and saving
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considerable time. However, in the acquisition process, the
details in the CT images were obscured by artifacts, such as
the following: strip, motion, beam hardening, ring, and metal
artifacts and also the partial volume effect [13], adding to
the CT image complexity. Therefore, this method revealed
unsatisfactory results in abdominal CT image segmentation.

Assessment of disease attracts many researchers’ interest
through medical image [15, 16]. Numerous model-based
methods, mainly based on local and prior global liver shape
knowledge, have been proposed to perform liver segmenta-
tion from CT images [17-19]. In 2016, Shi et al. reported a new
MLR-SSC prior shape model [14]. Their model achieves better
accuracy and superior performance in liver cases having low
contrast with neighboring organs and presence of pathologies
but requires relatively good initial shapes and significant
computational time.

To effectively deal with the above problems, we pro-
posed a single-block linear detection algorithm (SBLDA) for
automatic liver segmentation from abdominal CT images.
Our proposed method, whose underlying technique is used
to segment retinal blood vessels, successfully extracts the
liver’s edge from CT images [20, 21]. The contribution of our
framework may be enumerated as follows:

(1) Our algorithm overcomes artifacts and reveals satis-
factory segmentation results in abdominal CT images
with low contrast.

(2) Our method does not require iteration and ini-
tialization; thus, computational time decreases and
robustness increases.

2. Theoretical Formalism

The diagram of the segmentation method, using single-block
linear detection, is shown in Figure 1. The diagram includes
three major parts: image preprocessing, liver edge extraction
with SBLDA, and image postprocessing. Image preprocessing
is subdivided into two steps: setting window width and
window location and suppressing noise. During single-block
linear detection, we first select the input image as seeds and
initialize the confidence matrix with zero and then update
the confidence matrix with SBLDA. Image postprocessing
includes the following: (1) removing the ring artifacts in
abdominal CT images and decreasing misclassifications with
morphological processing, (2) reconnecting structures dis-
connected from the main liver edge with median filtering,
and (3) locating the liver area in terms of the liver’s anatomic-
features.

2.1. Suppressing Noise. In image preprocessing, the window
width (400) and window location (40) are chosen to better
display the original image. The noise in the images may lead
to false update of the confidence matrix, which is usually
misclassified as liver edge. However, the effect of the noise
on segmentation can be reduced by smoothing the original
images with median filtering.

Edges are of critical importance to the visual appearance
of images, so it is important to preserve the edges while
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FIGURE 1: Diagram of the single-block linear detection algorithm.

removing noise. The median filtering has been demonstrably
to be useful in removing noise but preserving edges for
a given fixed window size. Therefore, median filtering is
widely used in image preprocessing. The 2D median filter-
ing algorithm is summarized in the form of pseudocode
(Pseudocode 1). The segmentation results, with and without
median filtering (window size is five by five), are shown
in Figures 2(a) and 2(b), respectively. In Figure 2(b), the
confidence matrix has a false update, and the noise is
misclassified as liver edge.

2.2. Seed Initialization in Traditional Algorithm. In the his-
togram of the abdominal CT images (Figure 3), assume that
h(p) is the histogram value of the highest pitch and p is
the corresponding intensity value. The minimal and maximal
liver intensity ranges are roughly defined as p + 3 [7]. The
intensity of the pixels in the determined range is assigned
the value one; the remainders are assigned the value zero.
Then, the initialized liver area (seed-image), V, is created,
in which one or more points are usually selected as seeds in
some algorithm [22]. Because of the abdominal CT images’
complexity and artifacts, a rough liver estimation from CT
images with this method is so inefficient that the traditional
algorithm yields bad segmentation results. Fortunately, in the
SBLDA, it is not crucial or important to determine the liver
area before starting the algorithm. We use the original CT
image I as the seed-image (V; = I) for SBLDA.

2.3. Single-Block Linear Detection Algorithm. During the
single-block linear detection process, w denotes the detec-
tion window size. The pixel CT and block CT values of
the input image at position (x, y) are expressed as I(x, y)
and C(x, y), respectively. The block CT value C(x, y) is
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Input: window, InputImage
Output: OutImage

ex = floor (window width/2)
ey = floor (window height/2)
for x = ex : (image width — ex)

i=0
for fx =0 : window width

i=i+1
end
end
window = sort (window)

end
end

[image height, image width] = size (InputImage)
[window height, window width] = size (window)

for y = ey : (image height — ey)

for fy = 0 : window height
window (i) = Inputlmage (x + fx —ex, y + fy —ey)

OutImage (x, y) = window (window width * window height/2)

PSEUDOCODE 1: Pseudocode of median filtering algorithm.

(a)

(b)

FIGURE 2: Suppressing noise. The segmentation results with and without performing median filtering (window size: 5 by 5) are shown in (a)

and (b), respectively.

the average CT values of the corresponding block (block
size: N), which is defined in (1). Then, ratio parameter of
candidate points R(x, y) orientated at 8 degree (8 = 0°,45°,
90°,135°,180°,225°%,270°,315°), the maximum of which is

N-1N-1
1

stored in R,,, is approximated using (2). When R,, exceeds
the predefined threshold, T, the corresponding confidence
matrix C,(x, y) is set to one; otherwise, the matrix is set to
zero (see (4)):

Clxy)= W; ;I(X+i>y+1) @
([C(x+lLy+w)+C(xx1,y-w)-2I(x+1,y)]
2l (x+1,y)
[Cx+w,y+1)+C(x-w,y+1)-2I(x,y+1)]
R(x,y) = - 21 (x, y 1) @)

[Cx+l+w,y+xl-w)+C(xxl-w,y+l+w)-2[(x+1,y+1)]

2I(x+1,y+1)
[Cx+1l+w,yFl+w)+C(xxl1-w,yFl-w)-2I(x+1,yF1)]

2l (x+ 1,y F1)



R, = max {[R (x, y)|}

1, R,=2T

Cyp(x,y) =
0, R,<T.

The estimation of the ratio parameter is shown in Fig-
ure 4. V, is the CT value of any selected point in SBLDA. The
value of confidence matrix for this selected point is initialized
to zero (C,, = 0). V_ is the CT value of the candidate point
orientated at 6 degree. An example of 6 = 45° is given in
Figure 4. C, and C, are the block CT values of the points
located w/2 size away from V/, in opposite directions (w = 7,
N = 3); the ratio parameters for this point, R, (45 degrees,
e.g.),areexpressedas R, = (C,+C,-2V,)/2V_ (defined in (2)).
When the candidate point belongs to boundary points, the
amplitude value of R, is large. If the maximum value of |R|,
orientated at eight directions, is greater than threshold T, the
corresponding value of confidence matrix for V; is updated to
one (C,, = 1).

The segmentation results of a CT image, with various
values of T (T = 0.8, 0.9, and 1.2), are shown in Figure 5.
The value of threshold T' plays a key role in SBLDA. If the
value of T is too small, the liver area with noise would be
misclassified as liver edge (Figure 5(a)). If the value of T is
too large, some liver edges would be missed and then nonliver
area would be misclassified as liver (Figure 5(c)). The result,
with optimal T', is shown in Figure 5(b). The appropriate value
for the threshold T is described in Section 2.

In this paper, the ratio parameter is well evaluated if a
point is at the boundary in the proposed algorithm; thus
the algorithm is iteration-free. In addition, this algorithm’s
segmentation accuracy is greatly improved, especially for
weak edge areas.

2.4. Removing Artifacts. Because of random disturbance,
there are many artifacts in CT images, such as ring and
strip artifacts. Not only are ring artifacts and the liver closely
linked, but they also have very similar intensity. In some cases,
ring artifacts usually affect segmentation results. To obtain
the mask of the edge, M, we performed a morphological open
operation on the edge of the original CT image. Then, by
the product of M and the original image, ring artifacts in
the CT images were removed. The segmentation results, with
and without performing morphological filtering, are shown
in Figure 6.

2.5. Morphological Processing and Liver Segmentation. Based
on the liver’s anatomical features, the liver is in the left region
of the abdominal CT image and has the largest area. The
liver edge is obtained after morphological processing based
on the confidence matrix calculated by SBLDA. An example
of the segmentation with SBLDA is shown in Figure 7. The CT
image used in this example is plane 64 of database 19 from
publicly available database (3Dircadbl). The original input
and output images with preprocessing are shown in Figures
7(a) and 7(b), respectively. In Figure 7(c), the confidence

BioMed Research International
(3)

(4)

matrix is displayed after SBLDA. At the same time, the mask
M (Figure 7(d)), used to remove ring artifacts and improve
the segmentation accuracy, is extracted. The confidence
matrix is performed with erode operation to remove the error
edge points and then retain the maximum connected region
(Figure 7(e)). The matrix shown in Figure 7(e) is inverted
and eroded, and the new matrix is shown in Figure 7(f).
Then, by retaining the maximum connected region and
smoothing with a Gaussian filter, the liver edge is extracted
with and without mask, M, as shown in Figures 7(g) and 7(h),
respectively. The corresponding results are shown in Figures
7(i) and 7(j). The green rectangles are enlarged and shown on
the right.

3. Experimental Results

The experimental environment of our system was as follows:
the CPU was an Intel(R) Core(TM) Quad Q8400; the basic
frequency was 2.66 GHz; the hard disk was 300 GB; the RAM
was 6 GB; the main operating system was Windows 7. This
study included abdominal CT images (4 normal, 4 cancer,
and 4 hemangioma liver samples) acquired on a LightSpeed
Volume Computed Tomography (VCT) GE healthcare CT
scanner (with halo detector, 64 slices, General Electric Med-
ical System). Each image was acquired at 512 x 512 pixels.
We used a set of manual segmentations for comparison
with the segmentations generated by our proposed method.
To evaluate our method’s performance, we used a publicly
available database (3Dircadbl) that includes 20 CT scans (10
women and 10 men) with corresponding manual segmenta-
tion results provided by the French Research Institute against
Digestive Cancer (IRCAD). This database was composed of
3D CT scans, in which 75% of the cases include hepatic
tumors. Each matrix size in a plane was 512 x 512 pixels.
Experimental results validated the feasibility and specificity
of SBLDA for liver segmentation.

In Figure 8, the average accuracy of segmentation was
estimated for various values of T with N random CT images
(N = 10,15). To have a meaningful estimation, CT liver
images with and without tumor (1:1) were selected. Both
curves in Figure 8 demonstrated that the accuracy was higher
than 96% when threshold T was between 0.82 and 1. During
liver segmentation, an eight-pixel neighborhood was used to
compute the ratio parameter with the best values (T' = 0.85,
w = 9) in all cases. Outliers were further removed with
morphological filtering using a disk structuring element with
a radius of two pixels. To remove ring artifact, morphological
filtering with a disk having a radius of 20 pixels was used.
The disconnected structures of the main liver edge were
reconnected with median filtering.
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FIGURE 3: Gray histogram of abdominal liver CT (figure adapted
from reference [7]).
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FIGURE 4: The estimation of ratio parameters.

Figures 9(a)-9(d), 10(a)-10(d), and 11(a)-11(d) show the
segmentation results of the normal and abnormal (liver
cancer and liver hemangioma) abdominal CT images with
SBLDA. For comparison, the manual segmentation results
were shown at the bottom of the corresponding figures. The
weak edge in the CT image in Figure 9(a), which was difficult
for an observer to classify, was enlarged and indicated by red
solid arrows in Figure 12(a). The satisfactory result of weak
edge segmentation using our proposed method was shown in
Figure 12(b) (green solid oval). Figures 12(c) and 12(d) show
the weak edge and the corresponding segmentation result

TABLE 1: Sensitivity, specificity, accuracy, and the corresponding
average of the proposed method.

Normal
1 2 3 4 Average
Sensitivity  0.9939  0.9927  0.9695  0.9894 0.9864
Specificity  0.9947 09815  0.9843  0.9924 0.9882
Accuracy  0.9946  0.9837  0.9824  0.9920 0.9882
Liver cancer
1 2 3 4 Average
Sensitivity  0.9674 09732 0.9727  0.9504 0.9659
Specificity  0.9912 0.995 0.9874 0.996 0.9865
Accuracy  0.9902  0.9937  0.9858  0.9916 0.9903
Liver hemangioma
1 2 3 4 Average
Sensitivity  0.9782  0.9827 0.991 0.9827 0.9837
Specificity  0.9844 0.981 0.995 0.9893 0.9874
Accuracy  0.9838 0.9811 0.9947  0.9886 0.9870

of the CT image shown in Figure 9(c). The weak edge of
the sample with liver cancer (Figure 10(c)) was enlarged and
shown in Figure 13(a); the segmentation results were shown
in Figure 13(b). The experimental results in Figures 12 and 13
show the efficiency of our method for weak edge subtraction.
In the liver segmentation process, true positives (TP)
and true negatives (TN) were correctly classified. A false
positive (FP) indicates that a nonliver pixel is classified as
a liver pixel. A false negative (FN), in which a liver pixel is
classified as a nonliver pixel, is also an error. In this study,
we used three statistical measures of the performance of
a binary classification to evaluate our proposed algorithm:
sensitivity, specificity, and accuracy. Sensitivity measures the
proportion of true positives, whereas specificity measures
true negatives. Accuracy measures the proportion of correctly
segmented pixels to the total number of pixels in a CT image.
Let P and N represent the total number of pixels in the liver
and nonliver; then sensitivity, specificity, and accuracy are
defined as follows: sensitivity = TP/(TP + FN), specificity =
TN/(IN + FP), and accuracy = (TP + TN)/(P + N).
Table 1 presents the quantitative validation from normal and
abnormal CT image segmentation. The advantage of SBLDA
was evident in terms of sensitivity, specificity, and accuracy.
To evaluate the accuracy and performance on the
3Dircadbl database, we compared our method with Shi’s
method (MLR-SSC). The following five parameters were
selected as the basis for the quantitative analysis: (1) vol-
umetric overlap error (VOE), (2) signed relative volume
difference (SRVD), (3) average symmetric surface distance
(ASD), (4) root mean square symmetric surface distance
(RMSD), and (5) maximum symmetric surface distance
(MSD). These parameters were represented as mean and
standard deviation of the overall datasets. An open source
code, provided by the “MICCAI 2007 Grand Challenge”
workshop, was used to calculate the quantitative comparative
results. The average computation time in the training and
testing stages was selected to evaluate the computational
complexity. Before the segmentation of each dataset, the
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TABLE 2: Quantitative results between our method and newly proposed methods based on the 3Dircadbl database.
Method VOE (%)  SRVD (%)  ASD(mm) RMSD(mm) MSD (mm) L aningtime fTestingtime — opry gpp
(hour) (min)
Shietal. [14] 8.74 +2.37 241+ 1.71 1454037  255+059  26.91+7.72 400 8.5 2.33
Our method 784 +2.95 342 +211 1.97 £1.02 4.71+1.96 37.05 +9.82 N/A 36.4 2.66

FIGURE 5: The segmentation results of a CT image with various values of T' (T = 0.8, 0.9, and 1.2) are shown in (a), (b), and (c), respectively.

FIGURE 6: Artifacts removal. The segmentation results without ring artifacts removal and with ring artifacts removal were shown in (a) and

(b), respectively.

optimal value of T was estimated by 10 random CT images
in the dataset. Quantitative comparative results, where N/A
stood for no spending time, were shown in Table 2. Our
method consumed less time to obtain higher performance in
the VOE (7.84 versus 8.74). The value of other four parameters
was close to those reported by MLR-SSC algorithm. However,
the consumption of time was a significant reduction.

Our method’s average computation time, in the run-
ning stage, is 36.4 min per database. Shi’s method, however,
requires much time (about 400h) in the training stage

and 8.5min in the testing stage [14]. Because there is no
offline training stage in our method, the computational time
and complexity are decreased enormously. In MLR-SSC, the
initial shapes are relatively poor in some cases with large liver
tumors, leading to significant segmentation error. However,
in our method, the segmentation result is not affected by
initialization.

Shown in Figure 14 was a 3D visual example of seg-
mentation results, based on datasets 19 from 3Dircadbl
database. The referential segmentation results of a 3D visual
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FIGURE 7: An example of SBLDA. The subparts of image preprocessing, segmentation with SBLDA, image postprocessing, and final result
were indicated by (1)-(4). The regions (green rectangles) were zoomed in to validate the importance of removing artifacts.

0.98
0.96
0.94
092
09
0.88 |
0.86 |
0.84 |
0.82

Accuracy

FIGURE 8: The average accuracy of segmentation with various values
of T.

liver (included in the 3Dircadbl database) are shown in
Figure 14(a). Promising segmentation results, obtained with
our proposed method, are shown in Figure 14(b).

4. Conclusion

In this paper, we proposed a CT liver segmentation method,
based on a single-block linear detection algorithm, and veri-
fied the method’s feasibility with theoretical and experimental
results. Because the algorithm starts without predefined
seeds’ images, initialization does not affect its performance.
Moreover, this method uses a noniteration process, thereby
saving total CPU running time. Advantages of the method
are revealed in the method’s easily neglected weak edge. In
addition, the method generates a higher average specificity
(98.65%) and accuracy (99.03%) for liver edge extraction
from CT abdominal images (liver cancer). The results of
image segmentation approximate a technical doctor’s manual
segmentation results. Quantitative results are as similar as
those for MLR-SSC. Compared with MLR-SSC, our method
not only saves considerable runtime but also is not affected
by initial shapes.

Despite the available results, our proposed method could
be improved further in the following ways: (1) much
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(d)

(h)

FIGURE 9: Segmentation results of normal CT images. (a-d) The segmentation results with proposed method. The liver areas marked by

technical doctor are shown in (e-h).

FIGURE 10: Segmentation results of CT images with liver cancer. The segmentation results with SBLDA and doctor are shown in (a-d) and

(e-h), respectively.

segmentation error exists in CT images with relatively small
liver regions; (2) when the tumors are at the edge of the
liver, tumor extraction might fail. That, extraction of only
liver without tumor would be helpful to only segment healthy
organs, such as transplantation candidates. Future work will
focus on overcoming the above challenging situation.
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FIGURE 11: Segmentation results of CT images with liver hemangioma. The segmentation results with SBLDA and doctor are shown in (a-d)
and (e-h), respectively.

(a) (®) ()

FIGURE 12: Weak edge segmentation results of normal liver tissue samples. (a) and (c) mark the neglected weak boundary (green oval). (b)
and (d) show the segmentation results of weak boundary with the reported algorithm.

(®)

FIGURE 13: Weak boundary segmentation results of liver cancer samples. (a) marks the neglected weak boundary (green oval). (b) shows the
weak boundary segmentation results with the proposed algorithm.
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(a)

(b)

FIGURE 14: 3D visual liver of referential segmentation results (a) and segmentation results with our proposed (b).
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