
Causal inference of gene regulation with
subnetwork assembly from genetical genomics data
Chien-Hua Peng1, Yi-Zhi Jiang2, An-Shun Tai2, Chun-Bin Liu2, Shih-Chi Peng3,

Chun-Ta Liao4, Tzu-Chen Yen3,* and Wen-Ping Hsieh2,*

1Departments of Resource Center for Clinical Research, Chang Gung Memorial Hospital, Taoyuan 33305,
Taiwan, Republic of China, 2Institute of Statistics, National Tsing Hua University, Hsinchu 30013, Taiwan,
Republic of China, 3Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan
33305, Taiwan, Republic of China and 4Department of Otorhinolaryngology, Head and Neck Surgery, Chang
Gung Memorial Hospital, Taoyuan 33305, Taiwan, Republic of China

Received March 1, 2013; Revised November 1, 2013; Accepted November 17, 2013

ABSTRACT

Deciphering the causal networks of gene inter-
actions is critical for identifying disease path-
ways and disease-causing genes. We introduce a
method to reconstruct causal networks based on
exploring phenotype-specific modules in the
human interactome and including the expression
quantitative trait loci (eQTLs) that underlie the joint
expression variation of each module. Closely
associated eQTLs help anchor the orientation of
the network. To overcome the inherent computa-
tional complexity of causal network reconstruction,
we first deduce the local causality of individual sub-
networks using the selected eQTLs and module
transcripts. These subnetworks are then integrated
to infer a global causal network using a random-
field ranking method, which was motivated by
animal sociology. We demonstrate how effectively
the inferred causality restores the regulatory struc-
ture of the networks that mediate lymph node
metastasis in oral cancer. Network rewiring clearly
characterizes the dynamic regulatory systems of
distinct disease states. This study is the first to
associate an RXRB-causal network with increased
risks of nodal metastasis, tumor relapse, distant
metastases and poor survival for oral cancer.
Thus, identifying crucial upstream drivers of a
signal cascade can facilitate the discovery of poten-
tial biomarkers and effective therapeutic targets.

INTRODUCTION

To identify disease-causing genes, the genes should
be characterized in the context of regulatory systems.

Thus, a major goal of research conducted for identifying
disease-causing genes is to elucidate the causal interrela-
tionships among DNA, RNA, proteins and metabolites.
The regulatory systems underlying diseases can be ab-
stracted into directed gene networks, which potentially
provide the cellular context of dysregulated genes in a
given disease state. Recent studies have gone beyond dis-
covering differentially expressed genes in diseases and
have attempted to infer dysfunctional regulatory gene
networks. Directed gene network inference is the task of
deciphering the causal relationships among genes.
Typically, causal inference requires target perturbations,
which can be either experimental perturbations (e.g. single
gene knockout) or natural genetic perturbations
(e.g. DNA polymorphisms). Natural genetic polymorph-
isms are widely recognized to facilitate the inference of
causations in networks, and current studies have
adopted this strategy by using expression quantitative
trait loci (eQTLs).
The eQTL mapping process identifies genomic regions

responsible for altering the expression of genes across a
population. Therefore, eQTL markers can be regarded as
natural perturbations that result in distinct gene activities,
and these markers can serve as anchors to orient the edges
in a gene network (1–3). Consequently, eQTL information
has been used to identify causal relationships between
complex traits and reconstruct causal gene networks.
The eQTL mapping process can help reduce the size of
equivalence classes in the possible causal networks that
identically explain gene expression profiles (4). Schadt
et al. (1) proposed the conditional independence test to
infer the causal, reactive and independent relationships
between 2 genes, and follow-up studies have considered
the orientation of each pair of genes in the network
(2,5). Structural equation modeling (SEM) is also a
popular method for causal inference (6,7); however,
most SEM-based models must search large numbers of
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possible networks, and researchers have attempted to
alleviate this problem by using optimization algorithms
(8–10). In addition to the aforementioned two-step
strategies, joint inference of eQTLs and their correspond-
ing causal networks have been attempted recently (4,11).
Neto et al. (4) used the Markov chain Monte Carlo
(MCMC) method to iteratively update network structure
through single-edge proposals and estimate QTLs condi-
tional on the proposed phenotype network. However, this
intensive computing task is a bottleneck to the scalability.
Hageman et al. (11) described another approach to jointly
infer a genotype–phenotype map by using Bayesian and
improved MCMC strategies. However, this approach can
only accommodate a network on the order of 30 nodes.
Most current strategies encounter the same problems

of computational efficiency and difficulties in handling
genome-wide eQTL data. Therefore, to overcome the ef-
ficiency problem in causal network inference, we propose
a novel method to deconstruct a global map into multiple
subnetworks that integrate phenotype-associated gene
modules and their driving eQTLs. The first step toward
this goal was to preselect the functional modules related to
a phenotype of interest. In subsequent steps, the causality
relationships among the module members were inferred by
integrating eQTLs. Finally, all the local subnetworks were
assembled through a ranking strategy. We present a brief
summary of each step and related research next.
In the postgenomic era, a key challenge is to relate the

status of a disease with the underlying collective changes
in gene activities. Thus, identifying phenotype-associated
functional modules is the first step in pinpointing the dys-
functional regulatory systems of a disease. A functional
module refers to a set of active genes in this study because
genes function in concert rather than independently.
Traditionally, coexpression networks have been used to
identify functional modules in several diseases (12–15).
In this category, WGCNA provides comprehensive
functions for analyzing coexpression networks (16).
Nevertheless, a coexpression network covers not only
direct interactions between genes but also numerous
indirect or confounding associations. To reduce indirect
and confounding effects, our coexpression analysis is
constrained with physical interactions: we consider
coexpression patterns of genes encoding physically inter-
acting pairs of molcules. Because the human interactome
is growing dramatically in coverage and quality,
integrating expression profiles with molecular interaction
data enables the detection of previously unknown active
modules beyond the scope of well-defined pathways. To
address this problem, several methods have been de-
veloped to identify differentially expressed modules from
the human interactome (17–20). In pioneering work,
Ideker and colleagues devised (18) an aggregate z-score
and mutual information to select modules that are most
associated with phenotypes. Hwang et al. (19) proposed a
MANOVA-based scoring method to consider the correl-
ation structure of genes; thus, the functional module
identified tends to consist of highly correlated genes.
Other edge-based approaches detect active modules
with the topology structure of condition-relevant inter-
actions (21–23). Most of these methods are based on the

well-known hypothesis that the expression profiles of
functionally relevant genes are typically highly correlated.
By contrast, rewiring a signaling network has recently
been shown to induce phenotypic changes in cancer cells
and generate disparities in coordinated gene coexpression
patterns in distinct patient groups (24,25). Dynamic
modularity is suggested to be highly sensitive to physio-
logical conditions and is thus considered to determine
tumor phenotypes and patient outcomes. Therefore, we
designed a hybrid scoring method by integrating molecu-
lar interaction data and gene expression to rank interplay
partners and to measure the potential of a functional
module for discriminating a phenotype of interest.

Our construction of subnetworks requires the detection
of the eQTLs underlying each gene module. Traditional
eQTL analysis refers to single-trait analysis or single-
marker analysis, which considers one transcript or one
marker at a time and requires hundreds of thousands of
model fittings (26–29). Thus, both types of eQTL mapping
lead to high false-positive rates. Advanced eQTL mapping
methods, such as Bayes (30), have combined all the tran-
scripts and markers, but these methods still cannot deal
with highly correlated markers in the linkage disequilib-
rium block. These methods tend to arbitrarily select only
one marker out of the set of correlated markers. In fact,
most eQTLs do not exhibit strong effects, and most tran-
scripts are usually associated with several loci, particularly
physically linked ones with small effects (31). To overcome
these challenges, Lirnet regularized the problem by
bounding the L1 and L2 norms of the solution and
relied on prior biological knowledge about genetic
markers, such as sequence conservation, synonymous
types, and splicing effects (32). Similarly, in our study,
we adopted the sparse partial least squares (SPLS) regres-
sion because of its specific advantages. First, SPLS regres-
sion reduces the false-positive rate by alleviating multiple
testing because the regression considers multiple tran-
scripts as a multivariate response and accommodates
tens of thousands of markers at a time using both L1
and L2 penalties (33,34). The correlations among the tran-
scripts are also considered for capturing markers with
small effects. Second, SPLS regression accommodates
the grouping structure of genomic markers because it
selects groups of correlated markers rather than a single
marker. The third benefit is low memory requirement and
fast convergence; SPLS regression can better handle the
correlation among dense markers and thus gain more
power on weak linkages. By including the results of the
SPLS, the local causality of each subnetwork is further
inferred using the Bayesian network with the preselected
markers and module transcripts.

The final step in the framework we propose here is the
assembly of all the subnetworks, which is challenging
because the local interrelationships among genes are likely
to be modified in the context of the full-scale network. This
problem is similar to reconstructing a structural network
for a society with social species (35). In animal societies, the
characteristic of one member to regulate other members is
called dominance. The dominance relationships within a
social group can be arranged into a nonsequential
network (35). Numerous mathematical methods have
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been developed to determine the dominance hierarchy in an
animal society based on the observed competitive inter-
actions among the society’s members (36–39). The
pairwise competition outcomes carry information about
the dominance hierarchy, and this local information can
be transferred into a global hierarchy through information
transitivity. By comparison, our proposed approach uses
the results of local causality testing in the subnetwork as
the decisive outcomes of pairwise competitions between
social members. Consequently, this study deduced the
causal relationships among genes in a global network
from local causalities using a social network ranking
strategy (38).

Here, we demonstrate the proposed method using a
data set from patients with oral squamous cell carcinoma
(OSCC). The resulting network was constructed with
modules that might function in lymph node metastasis,
and the causal inference was compared with the records
in the KEGG pathway. When the inferred regulation
differs from that in the regular biological system,
network motifs can be adopted as biomarkers to suggest
the most upstream causes of the disease. In this study, we
evaluated the ability of top network-based biomarkers to
detect nodal metastasis among OSCC patients and
assessed their prognostic significances for tumor relapse
and patient survival outcomes.

MATERIALS AND METHODS

Overview of causal gene network inference

Our goal was to construct a directed network topology
representing causal signal flows among genes. We
determined the existence of an edge between any given
pair of genes and inferred the edge orientation concomi-
tantly. The model space of such a directed network infer-
ence may grow at a super-exponential rate with increasing
numbers of genes. Thus, to enhance efficiency and scal-
ability, we searched in a ‘divide-and-conquer’ manner.
An overview of analysis steps and the rationale behind
them is presented next and is summarized in Figure 1.

Step 1: Identifying discriminative functional modules for
a phenotype of interest
Genes typically cooperate in a modular manner to
coordinately carry out specific cellular function. The first
step was to identify discriminative functional modules that
correlate with distinct phenotypes. In this initial step,
gene expression levels were incorporated with a pooled
molecular interaction data set that includes protein–
protein interactions, protein–gene interactions (40) and
known pathways (41). Coexpression patterns of physic-
ally interacting pairs were considered for discovering
modules.

Step 2: Inferring genetic architectures (eQTLs)
underlying the discriminative modules
‘Perturbations’ of genes are known to be required for un-
covering causal genetic relationships. Naturally occurring
genetic variations are one source of such perturbations
that can be used to infer causal gene network. Thus,

eQTL data can aid in causal inference, where causality
follows from the central dogma (i.e. DNA variations
lead to changes in gene expression profiles or functional
sites in proteins, which in turn alter the activity of other
genes or change phenotypes). In brief, this causal nature
of genetics allows the orientation of the downstream genes
to be anchored under the common eQTLs, thereby
providing the roots for the causal network structure.
Thus, for each discriminative functional module from
Step 1, SPLS regression was used to identify the corres-
ponding eQTL markers that control the expression
patterns of the module members in this step.

Step 3: Inferring local causality subnetworks
To distinguish disease-causing genes from their down-
stream responsive genes, we adopted the Bayesian
network, whose nodes represent genes or eQTLs and
whose directed arcs represent conditional probabilistic
dependencies. Such a model is intrinsically capable of de-
picting the flow of causality among multiple interacting
genes (i.e. the presence of a directed edge from node x
to node y implies gene x regulates gene y). However,
several network structures that represent distinct causal
processes are likelihood equivalent. To orient network
edges that cannot be determined using expression data
alone, we added eQTL nodes into the Bayesian network.
This is because an eQTL may have causal effects on the
expression of certain genes. Because a gene and its
upstream regulators probably share underlying eQTLs,
numerous edge directions were precluded based on the
central dogma (mentioned in Step 2). Incorporating
eQTL nodes can break likelihood equivalence in a
Bayesian network by creating new conditional independ-
ence relationships and can exclude a large portion of the
space of possible networks.

Step 4: Assembling local subnetworks into a global
causal gene network
In the preceding step, Bayesian network inference was
performed for each pair of modules and their correspond-
ing eQTLs. With this approach, the regulation direction
for any pair of genes is inferred more than once. Only the
counts of regulatory directions were recorded for each
pair of genes under all the subnetworks covering the
2 genes. This summarized information was then assembled
together with the random-field ranking method to decide
all the edge orientations in a global network.

Single-nucleotide polymorphism typing and gene
expression profiling

Genome-wide single-nucleotide polymorphism (SNP)
genotypes and gene expressions of 57 OSCC primary
tumors were measured by Affymetrix SNP Array 6.0
platform and Exon 1.0 ST array (42). The data were
obtained from the Gene Expression Omnibus database
under accession number GSE25104. Among the 57
OSCC samples, 38 nodal metastasis cases were pathologic-
ally confirmed. The remaining 19 cases were free of nodal
metastasis for at least 36 months.
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Identification of discriminative modules

A module is defined as a gene set whose members
have interactive interrelationships in the human
interactome (40,41). Each gene in the molecular inter-
action data can be a seed for a module candidate. To
expand the module iteratively from a seed gene, a hybrid
scoring method was used to prioritize the inclusion of
interplay neighbors of a seed. This hybrid scoring
method combined 2 types of scoring rules. First, because
functionally collaborative genes tend to exhibit highly
correlated expression patterns (43,44), for each physical
interaction i between the current module member xi1
and its interacting neighbor xi2 outside the module, we
defined

ri1 ¼ jcorrðxi1,xi2Þj

where corr is the Pearson correlation coefficient (PCC) of
gene expression between xi1 and xi2 that is calculated from
all samples to evaluate their cooperative potentials.
Second, dynamic changes in the organization of

the human interactome have been demonstrated to
be associated with disease outcomes (24). The dynamic
genes may at least partly organize the communication
of functional pathways, and their expression profiles
might positively correlate under one condition and nega-
tively correlate or not correlate under another condition.

Thus, we defined the following measure of correlation
difference:

ri2 ¼ jcorr1ðxi1,xi2Þ � corr2ðxi1,xi2Þj

where corr1 is the PCC of gene expression between xi1 and
xi2 among the samples for one condition, and corr2 is the
PCC of gene expression between xi1 and xi2 among the
samples for the other condition.

We calculated ri1 and ri2 for each physical interaction i.
To evaluate the magnitude of the correlation ri1 and
the correlation difference ri2, we further ranked either
numbers, respectively, among all physical interactions in
the human interactome data set. Accordingly, each
physical interaction received 2 percentiles, qi1 and qi2.
Thus, a bonding score is defined as follows:

Qi ¼ maxðqi1,qi2Þ:

A physical interaction with a high bonding score could
indicate that the corresponding pair of genes correlates
highly across all samples or displays a large disparity in
correlation between 2 sample groups. Therefore, we
regard the interaction to be active if its bonding score is
sufficiently high. Consequently, a neighbor of the current
module members was considered a candidate for entry
into the module if its binding score was higher than that
of other neighbors and greater than a prespecified r. If the

Figure 1. Overview of the proposed method. This flowchart presents a brief overview of the four main steps of causal network reconstruction for a
phenotype of interest.
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highest bonding score was less than r, the module stopped
expanding. Because we sought only potentially active
interactions, we considered r=90% in this study to
exclude physical interactions with bonding score below
the 90th percentile. Furthermore, we tested the ability to
discriminating disease status with the joint expression
profiles by using the Hotelling’s T test when the candidate
was included as a module member. If passed a significance
level of 0.05, this neighboring gene was included in the
expanded module. The neighbors of the new member
were considered for inclusion in the next iteration.
The iterative expansion procedure was stopped when the
addition of any neighboring genes did not pass the
Hotelling’s T test, or when the size of the expanded
module exceeded 10. The module size was limited to 10
because a large module seldom has common driving
eQTLs that are useful for anchoring network edges.
Furthermore, in the proposed method, we assembled
small Bayesian subnetworks to reduce the intrinsic heavy
load of directly inferring an entire large network. With
increasing module size, the time complexity for inferring
a single Bayesian subnetwork in Step 3 grows exponen-
tially (Supplementary Figure S1), which diminishes the
benefit of assembling subnetworks. As Supplementary
Figure S1 indicates, the time required for a module size
of 15 is nearly double that for a module size of 10, and the
inference time increase enormously thereafter. Hence, to
efficiently construct subnetworks for each pair of modules,
10 is a feasible limit of module size. The Hotelling’s T test
procedures are described in detail in Supplementary
Methods.

Mapping the driving eQTLs underlying
discriminative modules

The second step was to identify sequence variations that
potentially cause alterations in the expression of discrim-
inative modules. We attempted to perform module-level
eQTL mapping. The transcripts within each module were
considered as multivariate response variables, and SNPs
were considered as predictors. However, the ordinary least
squares regression model cannot handle a multivariate
response variable and a large number of SNP markers,
especially for the ‘small n, large p’ problem. Even the
general multivariate regression model does not handle
the ‘n<<p’ problem and the collinearity among explana-
tory variables. Regularized methods have attempted
to overcome the problem by bounding the L1 or L2
penalty. The LASSO is one such method. Although
using LASSO assures sparseness of the solution, the
number of variables selected by the LASSO is bounded
by the number of samples. The LASSO also tends to ar-
bitrarily select one variable out of several highly correlated
covariates. To overcome these limitations for multivariate
responses, we adopted the SPLS regression, which was
developed based on solid theoretical support (33,34).
The SPLS regression achieves variable selection by
using the L1 penalty to set the coefficients of the irrelevant
variables to 0. The SPLS regression also performs
grouped selection by imposing the L2 penalty to handle
multicollinearity among covariates, which results in

groups of collinear variables (34). Thus, the SPLS regres-
sion avoids the curse of dimensionality and can select the
entire group of correlated variables into the model without
a predefined grouping structure. The problems solved by
the SPLS regression were also combated by the elastic net
described by Zou and Hastie (45). The elastic net handles
multicollinearity in the variable selection problem by
combining the LASSO with ridge regression.
However, SPLS regression copes with multicollinearity
by integrating Wold’s PLS algorithm (46), which is
based on basic latent decomposition and conjugate
gradient that accelerate its convergence and reduce its
storage demand. Because the algorithm of SPLS was
designed to achieve better efficiency and require lower
memory usage than the elastic net, we used SPLS regres-
sion for selecting eQTLs.
We considered the module-level eQTL model

Y ¼ ðXWÞRt+F

¼ Xð�Þ+F

where the matrices Y and X represent the q response vari-
ables and P explanatory variables, respectively, in n
samples; W transforms X into uncorrelated variables;
the matrix R is a coefficient matrix; and F is an error
matrix. Both columns of Y and X are assumed to be
centered to zero. To find the latent variables that have
maximum covariance with the response variables, the
SPLS model derives the direction vectors in the columns
of W by adding an L1 and L2 penalties:

min
w,c
� �wtXtYYtXw+ð1� �Þðc� wÞXtYYtXðc� wÞ

+�1jjcjj1+�2jjcjj
2
2

restricted to wtw ¼ 1 and c is estimated a priori as

ĉ ¼ ðjZj � �max
1�j�p
jZjjÞ+signðZÞ,with Z ¼

XtY

jjXtYjj
,ðxÞ+

¼ maxð0,xÞ

The numbers � and � are two parameters to control the
size of the final model. Because of the sparsity of matrix
W, most of the estimates for the coefficient � are zeros and
it leads to selection of variables in our eQTL mapping
process.
The model building algorithm was implemented in the

R package called spls and used to map the associated
SNPs that control the expression of the discriminative
modules. Because cis-acting elements (cis-markers) of
gene expression usually acquire major effects (47), we
tested the association between a given module and all of
the SNPs within 1 million bases of the transcription start
or stop sites of all corresponding module members.
Because most module members were derived from
distinct chromosomes or were located far apart on the
same chromosome, this set of cis-markers for any gene
could be trans-acting elements (trans-markers) for the
remaining members. Therefore, cis-markers and trans-
markers from functionally related genes within the same
module were simultaneously analyzed. We typed the SNP
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data by using high-density Affymetrix SNP 6.0 arrays, and
the size of SNPs was still a challenge for the SPLS model.
Thus, we adopted a two-step strategy to screen eQTLs for
each module. In the first step, we perform SNP selection
on each chromosome, and in the second step, we
combined all the selected SNPs to build an overall
model by using SPLS regression again.
As described by Hageman et al. (11), highly linked

SNPs change a network’s topology. Therefore, we
adopted a heuristic rule to screen for unlinked representa-
tive SNPs. Unlike the LASSO that arbitrarily chooses one
SNP from a group of physically or genetically linked SNPs
and ignores the remaining SNPs, the SPLS regression
captures all correlated SNPs with a grouping structure,
which allowed us to identify the most representative
SNP with the strongest effect from the entire group
of correlated SNPs. For this purpose, all the SNPs
underlying the same module were first grouped into SNP
blocks using hierarchical clustering with complete linkage
cut at distance of 500 kb, which is commonly assigned
as the size of a linkage block (48). For each block, the
representative SNP with the strongest association
with the module expression was selected using the
MANOVA test.

Bayesian network model for subnetwork inference

The discriminative modules and the underlying eQTLs
detected in the previous steps were the building blocks
used to construct the network.
Because a Bayesian network describes conditional inde-

pendence relationships and models the flow of causality
among multiple interacting quantities, the mathematical
representation of a Bayesian network is similar to that
of a causal network. Therefore, we used the framework
suggested by Bøttcher and Dethlefsen to compute
a network score with the joint multivariate probability
distribution (49). The eQTLs can be upstream causes of
altered expression in the Bayesian network, but the reverse
regulatory direction from gene to eQTL is not allowed. No
connections are allowed between any eQTLs, whereas any
regulatory relations between genes are possible. We
assumed an additive genetic effect and encoded the geno-
types as 0, 1 or 2, but also allowed alternative marker
coding. The Bayesian network is described as follows.
Node s in graph G corresponds to the continuous
random variable Xs. A directed edge from node s to
node t indicates that Xt is causally dependent on Xs.
Graph G follows the Markov assumption, which states
that every variable Xi is independent of its nondescendant
variables when Xi is conditioned on its parent variables in
G. Thereafter, the joint distribution of Xi that character-
izes the network structure can be written in the following
product form:

PðX1,X2,:::,XnÞ ¼
Yn
i¼1

PðXijXpaðiÞÞ ð1Þ

where XpaðiÞ indicates the variables representing all the
parent nodes of i.

Given a training data set D, the Bayesian network
attempts to determine the best-fitted network that maxi-
mizes the following marginal likelihood PðGjDÞ:

logPðGjDÞ ¼ log

 Z
Pð�jGÞPðDjG,�Þd�

+ logPðGÞ � logPðDÞ

! ð2Þ

where Pð�jGÞ is the prior of the parameters for a given
network structure G, and P(D) is independent of G. The
marginal likelihood is decomposed according to (1).
Therefore, the contribution to the marginal likelihood of
each node only depends on the node itself and its parent
nodes.

Even with an efficient heuristic searching algorithm, the
Bayesian network still has an intensive computational load
when the number of nodes is large. Based on the idea of
‘divide and conquer’, the proposed method first teases apart
the global network into small overlapping local subnet-
works, which expedites the tackling of this problem by
using the Bayesian network approach, and then assembles
the subnetworks by using a ranking strategy, as described in
the next section. Thus, we first build a local causality sub-
network for all genes and eQTLs in each pair of modules.
Notably, module memberships or physical interactions
among module members are not included in Bayesian
network analysis. The regulatory direction between any
2 genes is evaluated relative to their linkage strength with
the eQTLs and relative to their expression correlation to the
other genes in the Bayesian network. If the signal is robust,
the same regulatory direction will be repeatedly inferred, re-
gardless of what their accompanying elements are in the
Bayesian inference. This step breaks the boundary of a
module incrementally and includes new relationships in
addition to the previously known physical interactions
through the accumulation of evidence.

Reconstruction of multiple local subnetworks is compu-
tationally efficient and can be performed in parallel. Given
n modules from the previous step, the Bayesian network

can construct nðn�1Þ
2 local gene subnetworks. Therefore, the

directionality of any pair of genes may be evaluated more
than once in the context of distinct module combinations.
For example, consider that gene i and gene j are in the
same module; the causal relationship between gene i and j
are evaluated by Bayesian network at least n � 1 times,
and not all of the results are consistent. Accordingly, the
results of multiple local causality tests between any two
genes is recorded in an N-by-N causation matrix C=[cij],
i, j=1, . . . ,N where cij indicates the number of times the
ith gene is identified as a direct upstream regulator of the

jth gene, and the N is the total number of genes. The
simplest approach to determine the edge orientation is
to select the major direction of the corresponding pair of
genes: if Cij is larger than Cji, the edge is oriented from
gene i to gene j, and vice versa; however, if Cij equals Cji,
the major directionality cannot be determined and the
edge is not created. Other than including this simple
decision step that only considers the local information
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from a pair of genes, we adopted an improved strategy
that balances the relative strength of other gene pairs.
The random-field ranking method is summarized in the
following subsection.

Random-field ranking procedure for local gene
network assembly

A common feature of animal societies is the dominance
hierarchy among the social members. This hierarchy
resembles the regulatory relationships among genes.
Inferring dominance relations among members of a
society has been studied in social network analysis.
Based on decisive outcomes of pairwise competitions
between group members, Fushing et al. (38) proposed a
random-field ranking method that transforms local dom-
inance relationships into a global nonsequential ranking
network through information transitivity. Transitive
dominance is indirect information that is computed
based on the common interacting partners between two
individuals. Because the causation matrix C is analogous
to local pairwise competitive outcomes in social network
analysis, we adopted the random-field ranking method to
assemble local causalities of multiple subnetworks.

In the first step of the ranking procedure, the control
potentials were estimated based on the causation matrix
C. A Beta random field comprising random variables Pij

with posterior Beta distribution Betaðcij+1,cji+1Þ was con-
structed to infer control potential Pij for any pair of genes
(i, j) that were based on causation records cij and cji. Pij

represents the probability that the ith gene directly alters
the activity of the jth gene, and its reverse control potential
Pji equals 1�Pij. This control probability was converted

to direct control odds W0
ij ¼

Pij

1�pji
. The key feature of this

algorithm is the incorporation of indirect dominance in-
formation. To consider indirect causal information, a
suitable R, which is the number of intermediate genes
along a path from gene i to gene j, should be selected.
In this study, R was only considered to be 1. The transitive

control odds were defined as W1
ij ¼

Q
h 6¼i,j max 1,

PihPhj

1�PihPhj

n o
,

where gene h is any common interacting neighbor between
genes i and j. To obtain transitive control odds >1, the
product PihPhj should be sufficiently large. Consequently,
weak transitive causal information is not followed. Based
on the direct pairwise causalities and transitivity relation-
ships among the additional intermediate genes, matrix W
of the overall control odds between the ith and jth genes
was defined as

W ¼ ½Wij� ¼
W0

ijW
1
ij

W1
ji

" #
:

Enhanced control potential matrix P*, based on W, was
derived as

P� ¼ ½P�ij� ¼
Wij

1+Wij

� �
:

P�ij represents the enhanced probability that gene i regu-
lates gene j.

In the second step, we used simulated annealing to
estimate ranking coordinates of all genes in the global
network by minimizing the error accumulation in the
ranking protocol (see detailed descriptions in
Supplementary Methods). For each gene pair (i, j), K
control potential matrices P

ðkÞ
ij were generated from

Betaðcij+1,cji+1Þ. Subsequently, enhanced control poten-
tial matrix P�ðkÞ was calculated as mentioned above.
Because the values in the lower triangle of any P�ðkÞ rep-
resent the probabilities of lower-ranking genes regulating
higher-ranking genes, an error occurs when an element in
the lower triangle exceeds 0.5. Consequently, the rows and
columns of P�ðkÞ must be rearranged according to an
optimal permutation of the ranks of the genes to
minimize the number of entries that are >0.5 in the
lower triangle. To obtain optimal ranking coordinates
for all genes, we followed the method of Fushing et al.
and used simulated annealing to determine the optimal
order (see detailed descriptions in Supplementary
Methods). To estimate the relative ranks of the genes in
the causation matrix, �P�K was defined as follows:

�P�K ¼
1

K

XK
k¼1

P�ðkÞ

Correspondingly, the global causal gene network was re-
constructed from multiple local causalities. If the values of
both cij and cji in the causation matrix were zero, no direct
causal relationship was inferred for gene i and gene j in
any local subnetwork. From this perspective, each
nonzero component cij, 15 i, j 5 N, in the upper
triangle of the causation matrix C implied an edge of the
global causal network. The network edge was oriented by
the relative ranks of the corresponding pair of genes (i, j):
gene j was causally connected to gene i if gene i was ranked
higher than gene j, and vice versa. Using this approach,
the global causal gene network can be inferred, as
described in ‘Results’ section.

Model availability

All described methods were implemented in R package.
Our package ‘Gemonet’ is hosted at http://www.stat.nthu.
edu.tw/�wphsieh/causalinference.html. The package does
not include the random-field ranking algorithm. The
original version of the ranking strategy for social
networks is available on request through Dr Fushing
Hsieh at fhsieh@ucdavis.edu.

RESULTS

Identification of discriminative functional modules and
their biological significance

Identifying differentially expressed modules is the first step
in reconstructing causal gene networks, which are dys-
functional in the lymph node metastasis in OSCC. We
overlaid the expression values on corresponding genes in
the interaction map and searched for responsive modules
that were highly discriminative of lymph node metastasis
(see ‘Materials and Methods’ section). Each gene in the
interaction data functioned as a seed for expanding a
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module. A bonding score was defined for each interaction
to select genes that are coexpressed or genes that
switch their correlation structure between patient groups
with and without nodal metastasis. As detailed in
Supplementary Methods, the Hotelling’s T test was used
to select modules with discriminative power in separate
patients groups. This process identified 574 overlapping
modules for lymph node metastasis in OSCC, with an
average module size of 8.84 genes and a total of 1808
unique genes.
Cancer metastasis is a multistep process that includes

the degradation of the extracellular matrix (ECM), apop-
tosis evasion, cell invasion, migration, angiogenesis, cell
adhesion and growth. We performed enrichment analysis
on the genes of those 574 modules with DAVID (50,51) to
investigate how well the modules functioned in a metasta-
sis-related process, as annotated by Gene Ontology (GO)
and KEGG database (41,52). Table 1 lists the 10 most
significant GO terms in the category of ‘biological
process’, including the regulation of cell proliferation,
regulation of apoptosis, cell migration and cell motion,
which are recognized as major metastatic processes.
Certain genes appeared repeatedly in the modules,

and these were related to tumor metastasis. CYP
epoxygenases, which can promote metastasis through
CD44-mediated adhesion and CD82 repression,
appeared in 22 modules (53,54). The transforming
growth factor beta family and SMADs genes, which are
required for invasion and prometastatic activities (55),
were present in 17 and 9 modules, respectively. Most
modules included other key families of genes, such as
those encoding ECM and cell adhesion molecules
(CAMs); ECM–CAM interactions have been shown to
markedly enhance metastatic processes. In addition to
the genes directly involved in metastasis, other genes be-
longing to related processes are recruited in tumor metas-
tasis (23). For example, several modules contained ERBB
family genes, cell cycle regulatory genes and the HGF gene
for lymphangiogenesis regulation.
Moreover, most members of the 574 modules function

in common pathways. Table 2 lists the signaling and meta-
bolic pathways that were significantly enriched. The top
pathway is focal adhesion, which is known to play pivotal
roles in cancer metastasis. Beyond anchoring the cell,
the focal adhesion complex functions as a signal carrier
that transmits signals from the ECM. ECM–tumor cell

interactions, which rank third in Table 2, are mediated
by integrins and are critical in the metastasis cascade.
This process triggers signal transduction and increases
the tyrosine phosphorylation of focal adhesion kinase
(FAK), thereby inducing cell proliferation, survival, mi-
gration, invasion and metastasis (56–58). Collectively, the
pathways listed in Table 2 contribute to the major events
of the invasion–metastasis cascade.

Unlike conventional single-gene analysis of expression,
the proposed discriminative module can include genes that
do not individually pass the stringent criterion of the sig-
nificance test, but are crucial when working collabora-
tively. Numerous metastasis-related genes, such as CAM
genes (integrin a/b family), SMAD-family genes and genes
encoding phosphoinositide-3-kinases (PIK3CB, PIK3CG
and PIK3R5), were not significant in single-gene
analysis, but were required for connecting other critical
responsive genes. These metastasis-related genes might
produce small effects that are steadily accumulated and
amplified along the pathway; hence, only a module-
based method can detect these genes.

Inference of genetic architectures underlying the
discriminative modules

The next step was to identify the genetic variants that can
explain the variations in module expression. We used
SPSL regression to map eQTLs at the module level to
identify multiple SNPs associated with multiple related
genes in a discriminative module. Figure 2 illustrates the
distribution of the number of eQTLs for the 574 discrim-
inative modules; an average of 36 eQTLs was identified
per module. The SNPs linked physically to genes encoding
CAMs including laminins, collagens and integrins were
most frequently selected as driving eQTLs and can thus
be viewed as regulatory hotspots for module expression.
Among these hotspots, the allelic markers that link to
LAMA3 and ITGB3 have been shown to be susceptible
to lymph node metastasis in OSCC (59,60). Both genes
produce glycoproteins that mediate cell–ECM adhesion,
cell migration, proliferation and survival. Furthermore,
the SNP markers underlying the modules with most of
the members belong to FAK signaling pathways are
linked to CAMs (Figure 3). These eQTLs are probably
the genetic basis of the variations observed in the expres-
sion of FAK-related modules across OSCC patients with
and without nodal metastasis. Thus, these eQTL hotspots

Table 1. Top 10 most enriched GO terms in the category of ‘biological process’

GO term P Bonferroni correction

GO:0010033� response to organic substance 3.77� 10�34 1.73� 10�30

GO:0009719� response to endogenous stimulus 3.76� 10�28 1.73� 10�24

GO:0042127� regulation of cell proliferation 5.82� 10�27 2.68� 10�23

GO:0042981� regulation of apoptosis 1.24� 10�26 5.71� 10�23

GO:0043067� regulation of programmed cell death 1.65� 10�26 7.61� 10�23

GO:0010941� regulation of cell death 2.67� 10�26 1.23� 10�22

GO:0008284� positive regulation of cell proliferation 1.02� 10�20 4.70� 10�17

GO:0016477� cell migration 8.27� 10�20 3.81� 10�16

GO:0006928� cell motion 4.96� 10�19 2.28� 10�15

GO:0051270� regulation of cell motion 2.89� 10�18 1.33� 10�14
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suggest that the linked CAMs likely cause an aberrant
control of FAK signaling pathways, thereby promoting
the metastatic phenotype. Other eQTL hotspots in our
results also link to genes that are associated with cancer
metastasis. For example, the S100-family proteins are well
known to function in metastatic tumors (61–63): the
secretion of tumor necrosis factor, transforming growth
factor beta and VEGF-A from primary tumors
upregulates the S100 chemokines, which in turn support
the adhesion and dissemination of malignant cells in a
calcium-dependent manner. The SNPs linked to the
S100 chemokines may change the affinity of the
chemokines to those inducing factors.

These observations indicate the potential paths through
which DNA polymorphisms might affect nodal metastasis

in OSCC. The SNPs associated with those selected
modules are likely to be functionally relevant. Thus,
leveraging causative eQTL information may facilitate the
reconstruction of a causal gene network.

Reconstruction of causal gene networks for lymph
node metastasis

In this study, our primary goal was to reconstruct the
causal gene network. A subnetwork was built with each
pair of gene modules and their associated eQTLs using the
Bayesian network approach (49). Moreover, the global
causal gene network was reconstructed based on local
causality inferences of multiple subnetworks to reduce
the overall computational load. The challenge of this
approach is that it may alter local causalities in the sub-
network in the context of the global gene network. To
overcome this difficulty, we developed our framework to
assemble the subnetwork based on a social ranking
strategy proposed by Fushing et al. (38), and we named
it random-field ranking in this study.
As mentioned in the preceding subsection, the metasta-

sis-related focal adhesion signaling map was the most
enriched pathway for the discriminative modules at a sig-
nificance level of 0.05; most of the modules clustered in the
actin-regulation branch and the phosphatidylinositol-
signaling branch of the focal adhesion pathway. Studies
have shown that the focal adhesion complex is involved in
lymph node metastasis of head and neck cancer (64,65).
This pathway is probably one of the key mechanisms
mediating lymph node metastasis in OSCC. Thus, to test
the proposed method, we demonstrated the causal
network inference with the focal adhesion signaling
pathway, whose causal relationships are mostly known
in the KEGG database. Accordingly, this approach
makes it possible to evaluate the consistency of the
presented method with the experimentally verified

Table 2. Significantly enriched KEGG pathways

Pathway in KEGG P Bonferroni

hsa04510:Focal adhesion 8.22� 10�39 1.57� 10�36

hsa05200:Pathways in cancer 5.05� 10�22 9.64� 10�20

hsa04512:ECM-receptor interaction 1.26� 10�21 2.40� 10�19

hsa00980:Metabolism of xenobiotics by cytochrome P450 1.83� 10�15 3.60� 10�13

hsa04810:Regulation of actin cytoskeleton 2.91� 10�14 5.56� 10�12

hsa04062:Chemokine signaling pathway 2.45� 10�11 4.67� 10�09

hsa04110:Cell cycle 7.71� 10�11 1.47� 10�08

hsa05220:Chronic myeloid leukemia 2.52� 10�10 4.82� 10�08

hsa04664:Fc epsilon RI signaling pathway 1.44� 10�09 2.75� 10�07

hsa03320:PPAR signaling pathway 2.73� 10�09 5.22� 10�07

hsa04910:Insulin signaling pathway 4.58� 10�09 8.74� 10�07

hsa04370:VEGF signaling pathway 4.63� 10�09 8.85� 10�07

hsa05215:Prostate cancer 7.36� 10�09 1.41� 10�06

hsa05221:Acute myeloid leukemia 2.93� 10�08 5.60� 10�06

hsa04270:Vascular smooth muscle contraction 1.07� 10�07 2.05� 10�05

hsa04670:Leukocyte transendothelial migration 1.17� 10�07 2.24� 10�05

hsa05218:Melanoma 1.30� 10�07 2.48� 10�05

hsa04722:Neurotrophin signaling pathway 3.39� 10�07 6.47� 10�05

hsa04520:Adherens junction 5.97� 10�07 1.14� 10�04

hsa05213:Endometrial cancer 1.32� 10�06 2.51� 10�04

hsa05214:Glioma 1.67� 10�06 3.19� 10�04

hsa04912:GnRH signaling pathway 2.80� 10�06 5.34� 10�04

Figure 2. The distribution of the number of causal SNPs underlying
the discriminative modules. Module-level eQTL mapping was per-
formed with the SPLS method. A module of transcripts is considered
as a multivariate response and is jointly analyzed by using multiple
SNPs typed within 1Mb of the transcriptional start or stop site of all
module members.
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connections. We selected 20 discriminative modules con-
taining at least 2 genes on the 2 major chains of the signal
cascade in the focal adhesion map involved in actin regu-
lation and phosphatidylinositol signaling. Using these
20 discriminative modules, which are involved with
the 147 genes and the 241 corresponding eQTLs, we
attempted to reconstruct the main frame of the pathway.
As described in ‘Materials and Methods’ section, the

directionality of a pair of genes can be evaluated more
than once in multiple subnetworks and the edge orienta-
tion can be intuitively decided based on the major direc-
tion of the corresponding pair of genes (black and orange
edges in Figure 4). Three gene families were overly repre-
sented in the map, and genes belonging to the same family
mostly function in the same direction and on the same
targets. Hence, these genes were combined into the same
node (Figure 4). The three gene families include genes
encoding ECM macromolecules and a/b integrins. The
relative counts in the causation matrix were combined to
infer the major directions. As Figure 4 shows, the focal
adhesion pathway inferred by the major direction consists
of 70 genes and 79 causal relationships that overlap the
KEGG records. Among the 79 network edges, the causal
inferences of 61 edges agree with the KEGG map, whereas
the remaining 18 edges are inverted. The concordance rate
is 77.21%. Because this study was focused on the causality
inference, it does not consider the links documented in the
KEGG database but not in our prediction. This is because
the links in the KEGG database are comprehensive
records, whereas certain regulations only function under
specific conditions. We did not consider the links that were

present in our inference but were not included in the
KEGG collection because some of our inferences
matched indirect links in KEGG and some inferences
reflected potential novel regulations about which no
concrete information was available. The results presented
below indicate that the total number of links detected does
not lead to potential bias of causality inference.

Performing the random-field ranking procedure, which
was motivated by social network inference, generated the
focal adhesion pathway that is denoted as black and blue
edges in Figure 4. The edge orientation was determined
using the random-field ranking coordinates of both genes.
Of these edges, 69 edges were consistent with the KEGG
map and the directions of 14 edges were inverted. The
concordance rate is 83%, which is higher than the orien-
tation deduced from major directions. The improvement
over the simple decision of major directionality stems
from the use information on indirect connections among
common interplay partners, especially when neither of the
two regulation directions inferred for a pair of genes dom-
inates the other. Consequently, the edge orientations
that cannot be restored based on the decision of major
direction may be recovered by random-field ranking.
For example, consider the link between BCAR1 and
PRKCA. BCAR1 is a scaffolding and adaptor protein
that functions in converging signals and determining
cellular responses (66). BCAR1 becomes tyrosine
phosphorylated in response to integrin engagement and
activation of PRKCA, a family of serine- and threonine-
specific protein kinases (67,68). The direction of the phos-
phorylation link from PRKCA to BCAR1 cannot be

Figure 3. Focal adhesion linkage network. The circles enclose genes of the same module. The dotted lines are causal inferences that connect genes
(blue squares) in the focal adhesion signaling pathway. Green arrows connect eQTLs (red squares) with significantly associated modules. The red
solid edges connect eQTLs and their nearby genes. The locus rs11902171 physically links to ITGB3 and rs12955607 physically links to LAMA3. Both
of these loci are related to lymph node metastasis in OSCC. The results also show that rs1113640, which physically links to the CAM encoded by
COL11A1, is another eQTL hotspot underlying focal adhesion signaling.
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determined based on the major direction but can be
recovered using the proposed random-field ranking
strategy. Phosphorylation of BCAR1 in the focal
adhesion pathway may contribute to cell adhesion, migra-
tion, oncogenic transformation and metastasis. This is
because phosphorylated BCAR1 provides binding sites
for the adaptor protein CRK, and the BCAR1/CRK
complex induces cytoskeletal remodeling and promotes
cell migration (69). Moreover, among the 18 inverted
edges inferred based on the major direction, nine edges
were corrected when random-field ranking was adopted
(Figure 4). Some of the reversed instances that are
known to play a part in amendatory integrin signaling
flow are the following. Integrins are cell surface receptors
that drive the focal adhesion pathway. The a-family integ-
rins, ITGA, recognize the sequence R-G-D in a wide array
of ligands including VTN, as corrected in Figure 4 (70,71).
The a-family integrins also stimulate the downstream
tyrosine kinase PTK2 and trigger BCAR1/CRK complex
formation (72,73). The causal directions of this family
were inferred conversely based on the major direction
decision (dotted orange lines in Figure 4) and further cor-
rected using the random-field ranking strategy (solid blue

lines in Figure 4). The edges from VAV2 to RHOA and
from ROCK2 to MYL10 are two similar examples. VAV2
encodes a guanine nucleotide exchange factor that cata-
lyzes GDP/GTP exchange on RHOA GTPase. The
ROCK2 kinase phosphorylates the myosin light chain
encoded byMYL10 to organize actin in the focal adhesion
pathway. The nine edges corrected using random-field
ranking (Figure 4) are primarily involved in cell
adhesion and actin organization, which induce spreading
and migration in tumor metastasis.
The remaining reversed links could be either modeling

errors, the presence of unobserved deregulated signals or
alternative regulated pathways in OSCC nodal metastasis
because gene activities are highly dynamic under various
conditions. Among the 14 inverted relations (blue dotted
lines in Figure 4), 12 were supported by previous studies
(Supplementary Table S1), and some of these are the
result of feedback loops or alternative pathways that
have been documented in the literature but not curated
in the KEGG database or in our molecular interaction
data. For example, the edge from ILK to PI3K kinase is
inverted likely because ILK activates Caspase-8 in an
adhesion-dependent manner, and Caspase-8 further

Figure 4. The combined focal adhesion pathway inferred based on the major direction and by using the random-field ranking strategy. Based on the
20 modules and their driving eQTLs, a focal adhesion network was reconstructed. The black edges were commonly identified based on the major
direction decision and by using random-field ranking. The orange edges were predicted only by the major direction. The blue edges were constructed
only in the random-field ranking procedure. Compared with the KEGG map, the solid and the dotted edges denote consistent and inverted
orientations, respectively. Based on the major direction decision, the concordance rate was 77.21%. When multiple local causality networks were
assembled by the random-field ranking procedure and the edge was oriented based on the global relative ranks of the corresponding pair of genes,
the concordance rate was 83%.
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activates PI3K kinase to regulate cell adhesion and
motility (Figure 5). Based on the high concordance rate
obtained in this study, we expect there to be interesting
novel relations worth exploring further.
The proposed framework attempts to identify represen-

tative eQTLs that regulate the expression patterns of dis-
criminative modules. Although early studies indicated that
including eQTLs was advantageous for network analysis,
network constructions with and without eQTLs have not
been compared on a large scale. To examine whether the
information from eQTL mapping can facilitate causal re-
lationship inference, we reconstructed the focal adhesion
network following the same strategy described above but
using only expression data. The concordance rate was
only 56.75%, as expected for this type of analysis. More
reversed associations occurred than before without the aid
of SNPs to anchor the orientation. This result suggests
that the driving eQTLs are critical determinants and
effective anchors for orienting causal relationships
(Supplementary Table S2).
To further evaluate the performance of our novel

framework, we compared it with several existing alterna-
tive methods of causal network inference whose packages
were available, including NEO (2), PC algorithm (74),
QDG (5) and QTLnet (4). We tested these methods in
the reconstruction of the focal adhesion signaling
pathway with the 147 genes identified in the oral cancer
data. With QDG and PC algorithm, multiple eQTLs are
assumed to have been determined previously. With NEO,
eQTL can be manually assigned or automatically selected
before network edge orientation. For objective compari-
son, we input the same set of eQTLs identified using SPLS
regression in all methods except for QTLnet; this is
because, with the QTLnet method, the associated eQTL
and causal network must be inferred simultaneously. As

described earlier, we measured the percentage of network
edges that were concordant with the experimentally con-
firmed pathways in the KEGG database. Table 3 lists the
concordance rate of these methods. The QTLnet does not
scale well >20 genes because the MCMC approach is used
in this method. As to NEO, it yielded a concordance rate
of 0.701, which compares favorably with those of the
QDG and PC algorithm methods. Using the cancer
eQTL data, we demonstrated that our method based on
subnetwork assembly yielded a higher concordance rate
(0.83) than the other algorithms tested. The network
topology inferred by the proposed method is thus more
consistent with the validated cancer pathways.

Clinical application of the causal gene network in lymph
node metastasis

The proposed method can reconstruct most parts of the
most-enriched pathway (i.e. focal adhesion signaling).
This network representation describes the information
flow of the cellular process and can be used to develop
novel hypotheses related to the regulatory mechanisms
governing the phenotype of interest. Thus, to identify
other pathways that are also activated, we reconstructed
the causal network based on the 19 modules that were
identified as most significant for distinguishing lymph
node metastatic status by applying a stringent P< 0.005.
Our results indicate that several parts of the causal
network overlap with well-known pathways in the
KEGG database (Figure 6). The novel RXRB-causal
network (yellow in Figure 6) exhibited a unique phenom-
enon: the network, which partially appeared on the
KEGG PPAR signaling map, could only be reconstructed
using data of patients diagnosed as node-negative, but the
network collapsed when data of node-positive patients
alone were used. We postulate that the RXRB-causal
network might be highly dysregulated under the condition
of nodal metastasis and thus no longer coordinated effect-
ively. Accordingly, we next tested whether the newly
identified RXRB-causal network could be a novel signa-
ture associated with OSCC nodal status. Among the 13
genes in the inferred RXRB-causal network, stepwise
logistic regression identified a six-gene model (MDH2,
RXRB, FABP1, ACADM, APOA5 and PPARG) as the
most predictive model of lymph node metastasis. The per-
formance of the six-gene model was assessed using the
receiver operator characteristic, which showed an area
under the curve of 0.925 (Supplementary Figure S2).
Thus, this molecular signature is potentially a novel indi-
cator of nodal metastasis in OSCC.

We also investigated the effects of the RXRB-causal
network on clinical outcomes by using multivariate Cox

Figure 5. Cell migration is a critical process in the tumor invasion-
metastasis cascade. Phosphatidylinositol 3-kinase (PI3K) is an import-
ant component of the cell migration apparatus. When integrin is
activated through fibronectin binding, integrin-linked kinase (ILK)
can activate Caspase-8. Caspase-8 interacts with the p85 regulatory
subunit of PI3K, and p85 further binds to the catalytic subunit p110
(PIK3CB) of PI3K, thereby promoting cell migration.

Table 3. Comparison of the methods for the causal network inference

Subnetwork
assembly

NEO PC
algorithm

QDG QTLnet

Concordance rate 0.83 0.70 0.62 0.66 NAa

aThe QTLnet cannot work on the number of nodes in the cancer data.
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regression analysis. The results indicate that 8 out of the
13 genes in this network are significantly associated with
increased risks of neck relapse, distant metastasis and
poor disease-free, disease-specific and overall survival
(Table 4). The aberrant RXRB-causal network not only
occurs in patients with nodal metastasis, but also leads to
a poor prognosis in OSCC. The expression level of the hub
gene RXRB is significantly associated with all clinical
outcomes listed, and its hazard ratios are relatively high.
This is because mutations of hub genes have been
demonstrated to alter the network dynamics of cancer

cells (24). Thus, RXRB is likely to play a role in organizing
the communication and functions of this causal network.
Consequently, the downstream effectors of RXRB also
exhibit detrimental effects on tumor relapse and poor
survival in OSCC.

DISCUSSION

In this study, we developed a four-step method with
reduced computational load to reconstruct causal gene

Figure 6. The causal gene network inferred from top discriminative modules at a significance level of 0.005. The major parts of the causal network
that overlap with the KEGG maps are indicated. The network with green nodes involves metabolic pathways. The network with pink nodes provides
a partial interface of the FAK signaling pathway, which communicates with the regulation of actin cytoskeleton and the MAPK signaling pathway.
The network with yellow nodes mostly connected by dotted lines partially overlaps with the PPAR singling pathway, and the network is centered on
RXRB. This is the first study to suggest that the RXRB-causal network is involved in lymph node metastasis.

Table 4. Cox regression analysis of different time-to-event clinical traits with the RXRB-causal network

Neck relapse Distant metastases Disease-free survival Disease-specific survival Overall survival

Hazard ratio P Hazard ratio P Hazard ratio P Hazard ratio P Hazard ratio P

MDH2 7.328 0.039
RXRB 16.539 0.027 61.028 0.005 20.007 0.003 24.037 0.003 14.978 0.005
APOA1 0.037 0.001 0.016 0.001 0.12 0.023 0.022 0.00004 0.029 0.000025
AQP7 12.147 0.003 35.424 0.003 12.183 0.000175 6.654 0.004 10.185 0.000186
ACADM 0.289 0.026 0.319 0.01 0.369 0.053 0.411 0.053
ACSL1 0.187 0.002 0.463 0.04 0.436 0.013
APOA5 0.143 0.059
ACSL6 0.217 0.058
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network for a complex phenotype. Because of the high-
dimensional nature of genomic data, we preselected a
moderate number of phenotypically motivated variables
using phenotype-specific modules and causal eQTLs.
Our hybrid scoring function is more desirable than con-
ventional module identification because genes in a molecu-
lar interactome have previously been suggested to be of
two types (24,75). Genes of one type encode static protein
complexes, in which gene products interact with each
other concurrently. Thus, these genes are overexpressed
or downregulated altogether under distinct conditions
and thus exhibit highly correlated coexpression patterns
across diverse cellular states. Genes of the second type act
as intermediate communicators that convey signals
between distinct protein complexes or pathways under
distinct conditions. Thus, genes of this type interact with
distinct partners under dissimilar conditions and display
condition-specific correlation structures. Therefore, the
hybrid scoring method considers not only the general ex-
pression correlation for a pair of interacting molecules,
but also the changes in their coexpression patterns
between conditions. Based on the human interactome,
the module-based strategy can identify genes that are dif-
ferentially expressed with less-significant P values and are
essential for forming a protein complex or organizing the
interconnectivity of other responsive genes. The integrins
in the focal adhesion pathway and PPARG in the PPAR
signaling pathway are two such examples.
The eQTL mapping process provides a causal experi-

mental system in which genotype drives expression vari-
ations of the phenotype-associated modules. Recently,
regulatory networks have been built by integrating
eQTLs. An inherent problem with the increasing number
of nodes is the exponential growth of the search space.
The results of this study demonstrate that constructing
multiple small local subnetworks in parallel is an efficient
and effective method for assembling a full-scale causal
network. In this novel framework, the local subnetwork
inference is performed on each pairwise module rather
than on individual modules. In this manner, the direction-
ality of most gene pairs can be evaluated a sufficient
number of times in the context of distinct combinations
of modules. The repeated testing of the causal relationship
between two genes in the context of distinct neighbor-
hoods can also avoid spurious association because
random association will not be repeated at a high rate.
This is the first study to apply the concept of dominance

ranking from animal social network analysis to assemble
multiple local gene networks. The inference of global
causal interrelationships from local causality tests and
the deduction of transitive causalities between any two
genes connected by a path are central to this process.
The main advantage of the proposed framework is that
it decreases computational complexity by excluding
phenotype-irrelevant variables and avoiding a search
over the entire network. Our results also indicate that
integrating eQTLs hold further promise for inferring
causal relationships.
The phenotype-associated causal gene network provides

a potential basis for understanding the driving mechan-
isms of complex diseases and identifying new targets to

combat those diseases. In this study, we used the
proposed multistep procedure to examine lymph node me-
tastasis in OSCC. Applying the proposed method, a major
part of the focal adhesion signaling network was recon-
structed using tumor samples. The result indicates that
most of the causal relationships within a pathway were
retained in the cancer tissue. The inconsistent edges in
the network probably arise at least partly from disturbed
information flows, rather than just from modeling errors.
The disturbed information flow may imply an unexpected
complexity generated in the causal network by certain un-
observed signals; however, it may also implicate novel al-
ternative modification pathways that affect network
connectivity and directionality, such as DNA methylation
or protein modification. This study provides a foundation
for future investigations on disturbed information flows in
cancer progression, growth and metastasis.

The findings presented herein reveal a novel gene
network, the RXRB-causal network, for lymph node me-
tastasis in OSCC. The dynamic structure of this causal
network was disorganized in the node-positive group,
and thus the network could not be reconstructed using
the data of node-positive patients alone. Conversely, the
network integrity and interconnectivity were maintained
in the node-negative group. In this network, RXRB is up-
stream of almost all the remaining genes. This topology
suggests a driving role of RXRB in regulating other tran-
scripts. RXRB encodes a type of nuclear receptor that is a
ligand-activated transcription factor. The RXRB protein
can activate transcription by functioning as a homodimer
or serve as a heterodimerization partner for other Type 2
nuclear receptors, such as the peroxisome proliferator-
activated receptors (PPARG) in the RXRB-causal
network. Thus, RXRB functions as a causal regulator of
multiple signaling pathways that range from cell prolifer-
ation to lipid metabolism (76). The well-known process of
retinoid binding to RXRB leads to the regulation of cell
growth, differentiation, apoptosis and proliferation (77).
RXRB immunoreactivity and abnormal expression of
RXRB mRNA have been disclosed to be associated
with the status of lymph node metastasis in esophageal
squamous cell carcinoma (78), and they may also be
related to other carcinoma progressions (76). We speculate
that the inferred RXRB-causal network mediates, at least
in part, the metastasis to cervical lymph nodes in OSCC.
The information flows in the network may have been
highly perturbed in the nodal-positive samples. Thus, the
modulization of the RXRB-causal network may have been
destroyed in the node-positive group because of a loss of
coordinated expression patterns. Accordingly, the RXRB-
causal network likely plays critical roles in inhibiting
lymph node spreading in OSCC. To the best of our know-
ledge, there are no reports on the clinical significance of
the RXRB-related network in OSCC. However, the results
of this study demonstrate the ability of a six-gene model to
predict OSCC nodal metastasis. Clinicopathological
factors, such as tumor size and location, are not strongly
predictive of lymph node metastasis in intermediate-risk
OSCC, and �70% of clinically node-negative patients
undergo unnecessary surgical resection of the neck
lymph nodes. An ongoing challenge is to reduce
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unnecessary neck surgery in clinically node-negative
patients. Because little is known about the genetic bio-
markers of occult metastasis, the genes in the RXRB-
causal network can potentially be used to detect occult
nodal metastasis among clinically node-negative patients.
Thus, further investigating the prediction model in larger
studies might improve current clinical decision-making.

The results of this study also demonstrate that expres-
sion changes in the genes of the inferred RXRB-causal
network are significantly associated with increased
risks of tumor relapse, distant metastases and poor
survival outcomes. Among these genes, the key driver,
RXRB, exhibits the strongest effect on poor prognosis.
This novel molecular profiling may potentially change
treatment modalities or elicit a shift from conservative
to more aggressive approaches for treating high-risk
patients. Our findings suggest that the detailed functions
of the RXRB-causal network in tumor metastasis should
be investigated further. Identifying selective synthetic
ligands for the RXRB driver might lead to the develop-
ment of a novel therapeutic control of dysregulated
pathways in OSCC.

In conclusion, casual gene network inference is an
effective approach for understanding complex disease
phenotypes and identifying potential key drivers.
Changes in the network modularity could be a defining
feature for distinct disease statuses. Conventional hypoth-
esis testing is time-consuming and is limited to a few
causal relationships, whereas the proposed method facili-
tates the generation of new hypotheses based on genomic
eQTLs and expression data. An in-depth clarification of
the causal interrelationships not only helps prioritize the
potential hypotheses, but also aids in the development of
novel therapeutic strategies. Measuring the changes in a
causal network is likely to offer profound insight into the
dysfunctional regulatory systems and improve the predict-
ive value of traditional clinical indicators.
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