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Abstract
Background:  The microbial symbionts of macrofungal fruiting body have been shown to play momentous roles 
in host growth, development, and secondary metabolism. Nevertheless, there is no report on the fungal diversity 
of Sanghuangporus, a medicinal and edible homologous macrofungus as “forest gold”, which has good effects 
on antioxidation, boosting immunity and curing stomachache. Here, the diversity and functional group of fungi 
associated with the fruiting body of the most widely applied S. vaninii were characterized by high-throughput 
sequencing and FUNGuild tool for the first time.

Results:  Total 11 phyla, 34 classes, 84 orders, 186 families, and 328 genera were identified in the fruiting body, 
and our results revealed that the fungal community was dominated by the host fungal taxonomy with absolute 
superiority (more than 70%), namely, Basidiomycota, Agaricomycetes, Hymenochaetales, Hymenochaetaceae, 
and genus of Phellinus corrected to Sanghuangporus. Simultaneously, the reads allocated into non-host fungal 
operational taxonomic units were largely dominated by Ascomycota, Sordariomycetes, Sordariales, Mortierellaceae, 
and Mortierella. Furthermore, the endophytic fungi were assigned into three trophic modes of “saprotroph” (53.2%), 
“symbiotroph” (32.2%), and “pathotroph” (14.1%), in which the category of “plant pathogen” was highest enriched with 
relative abundance of 91.8%, indicating that the endophytic fungi may have the potential to adjust the growth and 
metabolism of host S. vaninii.

Conclusion:  Altogether, this report firstly provided new findings that can be inspiring for further in-depth studies to 
exploit bioactive microbial resources for increased production of Sanghuangporus via coculture, as well as to explore 
the relationship between macrofungi and their associated endophytes.
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Introduction
Mushroom-forming macrofungi are momentous natural 
resources of food and medicine in the market owing to 
the various and affluent metabolites [1–3], among which 
the famous “Sanghuang” has been used in Traditional 
Chinese Medicine (TCM) for the treatment of stom-
achache, hepatopathy and gynecological disorders for 
the past two centuries [4]. Unfortunately, “Sanghuang” 
used to be incorrectly called Phellinus linteus, Inonotus 
sanghuang, P. baumii, and P. igniarius for many years. 
“Sanghuang” and its similar species were classified into 
Basidiomycota, Agaricomycetes, Hymenochaetales, 
Hymenochaetaceae, and a new genus of “Sanghuangpo-
rus Sheng H. Wu, L.W. Zhou & Y.C. Dai” by multigene 
fragment-based phylogenetic analysis until 2015 [5]. 
Simultaneously, 14 species of Sanghuangporus fungi 
exist throughout the world, in which S. vaninii can be 
widely artificially cultivated and be also far more popu-
lar with customers in China [6, 7]. Given the insufficiency 
of excellent strains, long growth cycle, dim formation 
mechanism, and over exploitation of fruiting body [8], 
the production of Sanghuangporus consequently still 
could not meet the requirements of the market.

Owing to the abundant bioactive metabolites including 
phenolic, flavonoid, polysaccharide, etc. and their con-
spicuous pharmacological activities such as antitumor, 
antioxidant, anti-inflammatory, and antimicrobe abilities 
[9–12], the fungus Sanghuangporus of “forest gold” has 
attracted the extensive attention of researchers. In addi-
tion, it was found that the contents of active compounds 
and their biological activities in artificial cultivated fruit-
ing bodies of Sanghuangporus were higher and stronger 
than those in wild ones [13, 14]. Therefore, several strate-
gies were applied into the mycelium cultures or fruiting 
body cultivation to improve the efficiency and quality of 
Sanghuangporus production, including mutation breed-
ing [15], the optimization of medium composition [16], 
the improvement of cultural condition [17], and the 
addition of exogenous fungal elicitor [18]. It was worth 
mentioning that the growth and development of both 
wild and cultivated macrofungal fruiting bodies were in 
association with various endophytic microorganisms, in 
which the community structures and roles of bacteria 
inhabiting in fruiting bodies have been widely explored 
and reported. As early as 1991, it was observed that 
Pseudomonas putida isolated from the fruiting body of 
Agaricus bisporus could stimulate the extension of host 
mycelia but restrain the hyphal branching frequency 
[19]. In recent years, Oh et al. (2018) reported the iso-
lates Dietzia, Ewingella, Pseudomonas, Paenibacillus and 
Rodococcus were able to promote the growth of host pine 
mushroom (Tricholoma matsutake), whereas the remain-
ing bacteria including Mycetocola and Stenotrophomonas 
had the negative impacts on host growth irrelevant to 

their various enzyme activities such as chitinase, cellu-
lase, and protease [20]. Our previous research revealed 
that Bacillus and Pseudomonas were the predominant 
taxa of host Shiraia fruiting body, in which the Pseudo-
monas isolates could stimulate the production of pho-
tosensitive drug (hypocrellin A) extracted from Shiraia 
[21]. In addition, the morphogenesis of fruiting bodies 
of mushroom was actually accompanied by the existence 
of a variety of neglected fungicolous fungi, which were 
reported for the first time in Japan [22]. Afterward, sev-
eral truffle-inhabiting fungi including filamentous fungi 
and yeasts isolated from the fruiting bodies such as Tuber 
melanosporum, T. magnatum, etc., were able to secret 
volatile organic compounds or to regulate mycorrhizal 
synthesis [23–25], but far less is known about the diver-
sity and richness of endophytic fungi associated with 
mushroom. Only in recent years, studies have shown that 
the phyla of Basidiomycota, Ascomycota, and Mucoro-
mycota were detected besides host fungus T. aestivum 
by using the Illumina MiSeq method [25]. Maurice et al. 
(2021) reported that the non-host ITS2 reads of endo-
phytic fungi inhabiting in the 176 fungal sporocarps col-
lected within a same forest were largely dominated by 
Ascomycota by high-throughput sequencing [26]. Nev-
ertheless, the presence and potential role of fungi asso-
ciated with Sanghuangporus fruiting body also remain 
unknown.

Against this background, we herewith wish to investi-
gate the fungal community structure of cultivated fruit-
ing body of the most popular S. vaninii by means of 
high-throughput sequencing, which has become a pow-
erful means to provide more rapid and distinguishable 
analysis on the microbial communities including pre-
dominant groups, rare clusters, and even some unknown 
species compared with the culture-dependent method 
[21, 24, 26]. For instance, our previous experimental data 
displayed Bacillus and Pseudomonas with higher fre-
quency of occurrence based on both culture-dependent 
and next-generation sequencing approaches, whereas 
other members of Paenibacillus and Sphingomonas 
were common in Illumina sequences but scarce in isola-
tion cultures [21]. To our best knowledge, this is the first 
attempt of investigation on the diversity of fungi associ-
ated with Sanghuangporus fruiting body, contributing 
to a better understanding of the diversity and functional 
attribute of fungicolous fungi.

Materials and methods
Sampling and DNA extraction
The fruiting bodies of S. vaninii were collected from the 
bag-cultivated surface at their mature stage from Septem-
ber to October 2021, in Mahe Industrial Park of Edible 
Fungi of Yulin (Fig. 1), China and picked from three plots 
(approximately 50 bags/plot). Each set of samples (SH1, 
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SH2, and SH3) contained 10 fruiting bodies. All macro-
fungal samples were promptly deposited in microbe-free 
sacks and transferred to the laboratory for subsequent 
analysis.

Fresh fruiting bodies of S. vaninii were sterilized 
according to our previous report with slight modifica-
tion [21]. In short, the fruiting bodies were sterilized by 
immersion in 0.1% HgCl2 (w/v) for 1 min and 75% ethanol 
for 30 s, and then washed with aseptic water for 5 times 
and dried with sterile tissue. In order to test the efficiency 
of fruiting body surface sterilization, an essential control 
experiment was set up by coating sterile distilled H2O 
(200 uL) derived from the last step of surface sterilization 
on fungal isolation media in common use, such as potato 
dextrose agar and Martin medium. No microorganism 
growth was discovered on the medium plates after 8 
days of incubation at 28-30oC, demonstrating that above 
sterilization means was successful in killing or at least 
inhibiting the growth of the epiphytic or environmental 
microbes [27–29]. After that, 90 small pieces (approxi-
mately 3 × 1 × 1 cm each) as a group, were evenly cut from 
the ten fruiting bodies of each sample (SH1, SH2, and 
SH3) by sterile scissors. The cutting pieces of above three 
groups were separately ground into powder with liquid 
nitrogen by sterilized 12-cm mortar and pestle, and then 
placed on ice for standby. Then, the total genomic DNA 
of the associated fungi were extracted from above pow-
ders (200  mg for each group) of fruiting body by using 
TIANamp Plant Genomic DNA Kit (Tiangen-Biotech, 
Beijing, China) according to the manufacturer’s protocol. 

The high qualities including the integrity of electropho-
resis bands, and the purity (OD260/OD280 = 1.8-2.0) and 
concentration (20-30 mg/100 mg sample) of DNA speci-
mens were measured by using Agilent 2100 Bioanalyzer 
(Agilent Technologies, Santa Clara, CA, United States) 
and then sealed at -20oC.

Polymerase chain reaction (PCR) amplification and deep 
sequencing
The fungal-specific primers ITS1F (5’-CTTGGT-
CATTTAGAGGAAGTAA-3’) and ITS2R (5’-GCTGC-
GTTCTTCATCGATGC-3’) were used to amplify the 
ITS1 region of ITS rDNA gene [30]. The PCR reactions 
were carried out in a final volume of 50 µL, comprising 
100 ng of template DNA, 25 µL of Phusion Hot start flex 
2× Master Mix, and 2.5 µL of 10 µmol L-1 each forward 
and reverse primers (ITS1F/ITS2R), made up to the final 
volume with double distilled water (dd H2O). The same 
volume of ddH2O instead of template DNA was added to 
above PCR system as a negative control group. The PCR 
reaction of ITS1 rDNA was implemented under the fol-
lowing procedures reported by Thijs et al. (2017) [31] 
with a minor modification: 3 min at 94oC, followed by 25 
cycles of 60 s at 95oC, 60 s at 50oC, and 60 s at 72oC, and 
then a final 7  min extension step at 72oC was executed 
using T-100 thermal cycler (Bio-Rad, Hercules, CA, 
United States).

Above PCR products were subsequently corroborated 
by 2% (w/v) agarose gel. The DNA bands with the correct 
size were excised and purified using AMPure XT beads 

Fig. 1  The morphology of S. vaninii fruiting bodies. a Industrialized cultivation of fruiting bodies in the Mahe Industrial Park of Edible Fungi of Yulin. b The 
fruiting body on the artificial substrates. c Collected fruiting bodies
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(Beckman Coulter Genomics, Danvers, MA, United 
States), whose correct size was about 500 base pairs (bp) 
equaled to the PCR products (approximately 400  bp) 
of ITS plus the sequencing connector (approximately 
100  bp) of gel recovered products. After purification, 
the PCR products of ITS1 rDNA regions were quantified 
using Qubit system (Invitrogen, USA). The libraries were 
then assessed by Agilent 2100 Bioanalyzer and sequenced 
by high-throughput Illumina NovaSeq PE250 platform 
(Illumina, San Diego, CA, United States) [32]. At present, 
the Illumina sequencing raw data of endophytic fungi of 
S. vaninii fruiting body were submitted into the National 
Center for Biotechnology Information database (NCBI, 
https://www.ncbi.nlm.nih.gov/genbank/) with the SRA 
accession number of PRJNA820174.

Bioinformatic processing and analysis of the sequencing 
data
The resulting 239,569 raw sequences were merged using 
the method reported by Zhang et al. (2014) [33], fil-
tered of quality using Trimmomatic (version 0.33) [34], 
removed of forward and reverse primers using Cutadapt 
(version 1.9.1) [35], spliced of paired-end (PE) reads with 
FLASH (version 1.2.11) [36], and then removed of chi-
meras using UCHIME (version 8.1) [37] to obtain high-
quality reads. Then, the clean reads were demodulated 
by the aid of DADA2 to obtain signature sequences [38]. 
The high-quality sequences were clustered into opera-
tional taxonomic units (OTUs) defined at 97% similarity 
using UPARSE pipeline [39]. Compared with SILVA data-
base (https://www.arb-silva.de/), all OTUs were sorted 
out by using the plug feature-classifier of QIIME2 [40], 
which was also applied to analyze the rarefaction curve 
and alpha diversity of the samples, such as ACE, Chao1, 
and Simpson indices, etc. In addition, the Fungi Func-
tional Guild (FUNGuild, http://www.stbates.org/guilds/
app.php) was applied to identify the functional groups 
of endophytic fungal community [41]. In brief, all fungal 
OTUs at genus level (865, Supplementary Table S1) were 
submitted into FUNGuild and then widely divided into 
three trophic modes based on the Confidence of highly 
probable and probable assigned according to the pri-
mary research literatures or authoritative websites, which 
reflected the likelihood that a taxon belongs to a given 
guild [41].

Statistical analysis
The calculation and comparative analysis of alpha diver-
sity (OTU richness and index including ACE, Chao1 and 
Simpson) between three groups of samples were carried 
out by QIME2 (version 2020.06), and then the drawing 
was accomplished using R package (version 3.5.2). The 
calculation formula of Coverage was as follows: C = 1 
- (n1/N), where C represents the Good’s coverage, n1 

represents the number of OTUs with only one sequence, 
and N represents the total number of sequences in the 
sample draw.

Results
Metadata and sequencing statistics of ITS rDNA of S. vaninii 
fruiting body
In the industrialized artificial cultivation of S. vaninii 
(Fig.  1a), the fruiting bodies in the mature stage pre-
sented a bright yellow surrounding the surface of culti-
vated bags containing mulberry sawdust as raw material 
matrix (Fig. 1b). The fresh fruiting body was hard fleshy 
and compact with convex in the middle region, and the 
lignification degree of the interior was deeper than that 
of outside (Fig. 1c). Moreover, the average length of col-
lected fruiting body was about 12-15 cm, the width was 
4-6 cm, and the height was 2-4 cm with a dumbbell-like 
shape (Fig. 1c).

First and foremost, the banding-free lane (CK in Fig. 2) 
of negative control demonstrated that the ITS sequences 
amplified by PCR stemmed from the Sanghuangporus 
samples rather than the pollution of laboratory environ-
ment or reagents. After the electrophoretic gel running 
(Fig.  2), the bioinformatic pipelines detected 238,410 
clean reads were assigned to 865 OTUs (Table  1). And, 
the clean reads possessed an average length (AvgLen) 
of 346 bp, GC content of 48.0% and Q20 value of 99.4% 
(Table  1), indicating the high quality and accuracy of 
sequencing data in this research. It was noted that a large 
number of ITS rDNA reads were concentrated in the 
range of 380-389 bp (71.1%), even though some shorter 
reads (190-369 bp) were widely distributed (Fig. 3).

Community structures of fungi associated with S. vaninii 
fruiting body
As shown in Table 2 and Supplementary Table S1, the 865 
fungal OTUs belonged to 11 phyla, 34 classes, 84 orders, 
186 families, and 328 genera. Our experimental specimen 
of S. vaninii itself belonged to the phylum of Basidiomy-
cota (78.0%), class of Agaricomycetes (76.8%), order of 
Hymenochaetales (71.8%), and family of Hymenochaeta-
ceae (71.7%), were indeed dominant with absolute supe-
riority of relative abundances in community structure 
(Fig. 4a-d).

In addition, there were two main phyla in the OTUs 
including Ascomycota (14.8%), Chytridiomycota (3.1%), 
and some other groups with a small percentage (< 3.0%, 
Fig. 4a). There were two main classes including Sordari-
omycetes (5.9%), Dothideomycetes (2.8%), and some 
small proportion (< 2.0%) and unidentified ones (Fig. 4b). 
There were eight main orders from Helotiales with a rela-
tive abundance of 1.4% to Sordariales with 2.0% shown 
in Fig. 4c. There were four main families including Mor-
tierellaceae (1.9%), Chytridiaceae (1.8%), Cladosporiaceae 

https://www.ncbi.nlm.nih.gov/genbank/
https://www.arb-silva.de/
http://www.stbates.org/guilds/app.php
http://www.stbates.org/guilds/app.php
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(1.6%), 1.2% Chaetomiaceae, and other small-percentage 
ones (< 1.0%, Fig. 4d). Among these fungi associated with 
the fruiting bodies, the genus of Phellinus (corrected 
to Sanghuangporus in 2015 by Zhou et al. [5]) was the 
most predominant fungi (71.7%), followed by Mortier-
ella (1.9%), Phlyctochytrium (1.8%), Cladosporium (1.6%), 
Fusarium (0.7%), and Rhizophlyctis (0.6%) (Fig. 4e).

Richness and diversity indices of associated fungi
As shown in Fig.  5, the rarefaction curve of all samples 
(SH1, SH2, and SH3) inclined to attain saturation, indi-
cating that the data volume of sequences was sufficient 
in this analytical experiment. The values of richness 
indices including ACE and Chao1 representing species 
abundance, Simpson and Shannon representing species 
diversity, and Good’s Coverage representing the propor-
tion of the detected species covering the actual ones are 
all presented in Table 3, demonstrating that the sequenc-
ing results could reflect the true diversity of fungi derived 
from all samples of S. vaninii.

Fungi functional groups
A total of 451 OTUs (52.1%) can be divided into tro-
phic modes with “pathotroph”, “saprotroph” and “sym-
biotroph”, in which “saprotroph” was highest enriched 
with relative abundance of 53.2% (Supplementary Table 
S2). On the basis of Confidence of highly probable, the 
25 genera of endophytic fungi with the highest abun-
dance (Supplementary Table S3), namely Top25, were 
then selected and visualized with trophic mode as hori-
zontal ordinate and relative abundance as longitudinal 
coordinate (Fig. 6). And specifically, the most dominant 

Table 1  Sequence and diversity statistics of fungal ITS1 rDNA 
genes obtained from S. vaninii fruiting body
Sample name Clean 

reads a
OTU b AvgLen 

(bp) c
GC (%) d Q20 

(%) e

SH1 79,675 680 351 48.1 99.3

SH2 79,467 715 339 47.8 99.4

SH3 79,268 663 348 48.0 99.4

Total/Avg 238,410 865 346 48.0 99.4
a The number of total reads that passed quality control
b Total operational taxonomic unit
c The average length of sequences
d The percentage of G and C in all bases
e The percentage of total number of bases where the Phred score is greater than 
20 which indicates base call accuracy

Fig. 2  The electrophoretogram of PCR products of ITS rDNA extracted from the fruiting bodies of S. vaninii. M indicates the marker (DNA Ladder). CK 
indicates the H2O-treated group as negative control. SH1-3 indicate the experimental samples
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Phellinus (96.9%), followed by Phlyctochytrium, and other non-dominant fungi including Botryotinia, 

Table 2  The OTU taxonomy of fungal community composition of S. vaninii fruiting body
Sample name Kindom Phylum Class Order Family Genus
SH1 1 11 32 77 170 283

SH2 1 10 30 80 168 291

SH3 1 11 33 77 168 277

Total 1 11 34 84 186 328

Fig. 4  Relative abundance of fungal OTUs at a phylum, b class, c order, d family and e genus levels in S. vaninii fruiting body, respectively

 

Fig. 3  The length distribution of ITS rDNA sequences of fungi associated with S. vaninii fruiting body
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Plectosphaerella, and Aspergillus were only related to 
“pathotroph”. The dominated Rhizophlyctis and other 
non-dominant fungi including Lulwoana, Trichocladium, 
Polyporus, Schizothecium, Calycina, Submersisphae-
ria, Archaeorhizomyces, Botryotrichum, Cuphophyllus, 
Lepista, and Humicola were only related to “saprotroph”. 
Some non-dominant fungi including Russula, Cortina-
rius, Lactarius, Tomentella, Laccaria, Cadophora, and 
Leptodontidium were only related to “symbiotroph” 
(Fig.  6). It was also found that some unclassified fungi 
were matched into both “pathotroph” and “saprotroph” 
(Supplementary Table S3). More detailed information of 
trophic modes revealed that the highest abundance of 
subcategories was ‘plant pathogen’ (91.8%), followed by 
‘undefined saprotroph’ (6.2%), ‘ectomycorrhizal’ (1.1%), 
‘wood saprotroph’ (0.4%), ‘undefined root endophytes’ 
(0.3%), and ‘animal pathogen’ (0.26%) (Fig. 7 and Supple-
mentary Table S4).

Discussion
It has been demonstrated that macrofungal fruiting bod-
ies could harbor a broad spectrum of microbes, espe-
cially the bacterial diversity and physiological role on 
host fungi were widely explored and reported in many 
researches [42, 43]. For instance, it was found that a vari-
ety of culturable bacteria were isolated from the fruit-
ing bodies of Suillus grevillei, among which the isolates 
Pseudomonas sp. could remarkably promote the growth 
of host mycelia, whereas Streptomyces sp. possessed an 
inhibitory effect [44]. Xiang et al. (2017) revealed that 
two bacterial isolates, DJ35 and DY22 of Pseudomonas sp. 
from the A. bisporus fruiting body, promoted their host 
growth by the secretion of cellulase and indole-3-acetic 
acid [28]. Xu et al. (2021) reported that the metabolites 
of endophytic bacteria derived from mature fruiting bod-
ies, especially strain Ld3 could ameliorate the quality of 
host Lyophyllum decastes by enhancing the non-volatile 
taste components including amino acid, protein, soluble 
sugar, etc. of host hyphae [45]. In our previous research, 
an associated bacterium named P. fulva SB1 from Shiraia 
fruiting body was found to provoke the yields of intracel-
lular biosynthesis and extracellular excretion of medici-
nal perylenequinonoids of the host fungus [46]. In terms 
of endophytic fungi, the reports for them inhabiting in 
the soil or root systems of plant parasitized or infected 
by macrofungi were sufficient [47–49], but less informa-
tion was regarding the fungal community associated with 
macrofungal fruiting bodies. In like wise, the community 

Table 3  Richness estimators and diversity indices at a 97% 
identity threshold
Sample 
name

ACE Chao 1 Simpson Shannon Good’s 
Cover-
age

SH1 687.8039 695.037 0.7057 3.4793 0.9996

SH2 720.2198 723.077 0.7759 4.2462 0.9997

SH3 665.9282 666.500 0.7228 3.6365 0.9998

Fig. 5  Rarefaction curve of detected OTUs of ITS rDNA at 3% dissimilarity level in S. vaninii fruiting body
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of associated fungi and their physiological roles in the 
fruiting bodies of Sanghuangporus were also still ignored.

To our best knowledge, this is the first report to present 
the fungal community and function in Sanghuangporu 
fruiting body by using a more advantageous culture-inde-
pendent method of Illumina NovaSeq sequencing. The 
sequencing results furnished us with a more comprehen-
sive data (865 OTUs) of the fungal diversity in S. vaninii 
fruiting body. As we expected, a large number of the ITS1 
reads corresponded to the host fungal taxonomy (Fig. 4) 
[5], indicating an accurate sequencing analysis in this 
research. Most of the endophytic fungi belonged to the 
Ascomycota (14.8%) and Sordariomycetes (6.0%) (Fig. 4a, 
b), which was partly consistent with the results reported 
by Maurice et al. (2021) in forest fungal sporocarps [26]. 
Among the fungi, the order of Mortierellales was always 
related to long-lived fungal sporocarps, whereas Agari-
cales was related to short-lived ones [26, 50], indicating 
the detected endophytic fungi may be involved in the 
regulation of growth cycle of the host S. vaninii. Clado-
sporiales, Eurotiales, Helotiales or Hypocreales as the 
most abundant orders were either isolated or sequenced 
in several fungal sporocarps and xylarialean fruiting bod-
ies [26, 51]. It was mentioned that the phylum of Sordari-
omycetes and the family of Chaetomiaceae were usually 
found in the compost of cultured mushroom [52], indi-
cating some endophytic fungi may stem from the culti-
vation substrate of S. vaninii. The relative abundances 
of non-host ITS1 reads were dominated by five genera 

including Mortierella, Cladosporium, Fusarium, etc. 
(Fig. 4e), which were usually isolated and identified from 
the mushroom or macrofungal fruiting body but lack of 
reports as the members of fungal community [49, 53]. 
Hence, we hope that fungal community report of Sang-
huangporus fruiting body can provide researchers a hint 
to pay attention to the endophytic fungi when cultivating 
a valuable macrofungi on a large scale.

Our research attempted to address the potential func-
tion of endophytic fungi in cultivated Sanghuangpo-
rus for the first time (Figs.  6 and 7 and Supplementary 
Table S2-S4). It was supposed that the most dominated 
Phellinus (corrected to Sanghuangporus) of the host 
fungi could make full use of the surrounding nutrition by 
decomposing the cultural substrate or attacking their tree 
hosts such as Moru and Populus [54, 55] for the massive 
growth of the fruiting body, because the genus of the host 
fungi was only annotated to the ‘plant pathotroph’ (Fig. 7 
and Supplementary Table S4). Meanwhile, the non-host 
fungi were classified into the “pathotroph” type such as 
Phlyctochytrium, Botryotinia, Aspergillus, etc. (Fig.  6 
and Supplementary Table S3), which could uptake nutri-
tion by attacking host cells so they are expected to have 
adverse impacts on other members of the fungal com-
munity structure [56]. In addition, the “saprotroph” mode 
possessed the highest proportion (53.2%) of endophytic 
fungi, indicating Rhizophlyctis, Trichocladium, Botryot-
richum, etc. (Fig.  6 and Supplementary Table S3) could 
obtain nutrition by degrading dead cells of the host fungi 

Fig. 6  Trophic modes annotation of associated fungi of S. vaninii fruiting body at genus level
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[57]. It was noteworthy that the second highest propor-
tion (32.2%) of “symbiotroph” group of endophytic fungi 
including Russula, Tomentella, Cadophora, etc. were 
identified in fungal community structure (Fig.  6 and 
Supplementary Table S3), which may be involved in the 
growth, development, metabolism, and quality of hosts 
[58, 59] as well as bring a feasible idea for the increased 
production of Sanghuangporus via a coculture strategy 
of associated microbes with host fungus. As reported 
by Yurkov et al. (2012) [60], the Basidiomycetous yeast 
strains isolated from Paxillus and Xercomus fruiting bod-
ies were able to secret some volatile compounds influ-
encing the growth and development of mycoparasitic 
fungus. And our previous study demonstrated that the 
endophytic P. fulva could induce mass sporulation and 
photosensitizer production of host fruiting bodies of Shi-
raia [46].

Conclusion
In summary, due to the microbes have important influ-
ences on the growth, development and active metabolite 
biosynthesis of hosts, we successfully analyzed and char-
acterized the community composition and trophic mode 
diversity of fungi associated with the fruiting body of S. 
vaninii for the first time by high-throughput sequencing 
technique in this paper. Although the specific impacts 
and mechanisms of endophytic non-host fungi on the 
growth and metabolism of host-fungus S. vaninii need 
further investigation, the present work provided funda-
mental data for the active microbial excavation of asso-
ciated sources. Since microbe’ co-culture inspired by the 
natural microbial community structure is becoming one 
of “One Strain, Many Compounds (OSMAC)” strategies 
to enhance chemodiversity [61, 62], we believe that the 
production and quality of macrofungus and its active 
metabolite in a large-scale culture of Sanghuangporus 
may be improved tremendously by its non-host endo-
phytes in the future.

Fig. 7  Trophic modes and their guilds groups of fungi associated with S. vaninii fruiting body at genus level
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