
1 October 2019 | Volume 10 | Article 1192

REVIEW

doi: 10.3389/fphar.2019.01192
published: 08 October 2019

Frontiers in Pharmacology | www.frontiersin.org

Edited by: 
Matthew Griffin,  

National University of Ireland Galway,  
Ireland

Reviewed by: 
Rohan Samarakoon,  

Albany Medical College,  
 United States 

Bairbre Mcnicholas,  
Saolta University Health Care Group, 

Ireland

*Correspondence: 
Roberto Zatz 

roberto.zatz@gmail.com 
Niels Olsen Saraiva Câmara 

niels@icb.usp.br

†These authors have contributed 
equally to this work

Specialty section: 
This article was submitted to  

Renal Pharmacology,  
a section of the journal  

Frontiers in Pharmacology

Received: 01 February 2019
Accepted: 17 September 2019

Published: 08 October 2019

Citation: 
Andrade-Oliveira V, Foresto-

Neto O, Watanabe IKM, Zatz R and 
Câmara NOS (2019) Inflammation in 

Renal Diseases: New and  
Old Players.  

Front. Pharmacol. 10:1192.  
doi: 10.3389/fphar.2019.01192

Inflammation in Renal Diseases: New 
and Old Players
Vinicius Andrade-Oliveira 1,2†, Orestes Foresto-Neto 3†, Ingrid Kazue Mizuno Watanabe 2,4†, 
Roberto Zatz 3* and Niels Olsen Saraiva Câmara 2,3,4*

1 Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil, 2 Laboratory of 
Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São 
Paulo, Brazil, 3 Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, 
Brazil, 4 Nephrology Division, Federal University of São Paulo, São Paulo, Brazil

Inflammation, a process intimately linked to renal disease, can be defined as a complex 
network of interactions between renal parenchymal cells and resident immune cells, such 
as macrophages and dendritic cells, coupled with recruitment of circulating monocytes, 
lymphocytes, and neutrophils. Once stimulated, these cells activate specialized structures 
such as Toll-like receptor and Nod-like receptor (NLR). By detecting danger-associated 
molecules, these receptors can set in motion major innate immunity pathways such as 
nuclear factor ĸB (NF-ĸB) and NLRP3 inflammasome, causing metabolic reprogramming 
and phenotype changes of immune and parenchymal cells and triggering the secretion 
of a number of inflammatory mediators that can cause irreversible tissue damage and 
functional loss. Growing evidence suggests that this response can be deeply impacted 
by the crosstalk between the kidneys and other organs, such as the gut. Changes in 
the composition and/or metabolite production of the gut microbiota can influence 
inflammation, oxidative stress, and fibrosis, thus offering opportunities to positively 
manipulate the composition and/or functionality of gut microbiota and, consequentially, 
ameliorate deleterious consequences of renal diseases. In this review, we summarize the 
most recent evidence that renal inflammation can be ameliorated by interfering with the gut 
microbiota through the administration of probiotics, prebiotics, and postbiotics. In addition 
to these innovative approaches, we address the recent discovery of new targets for drugs 
long in use in clinical practice. Angiotensin II receptor antagonists, NF-ĸB inhibitors, 
thiazide diuretics, and antimetabolic drugs can reduce renal macrophage infiltration and 
slow down the progression of renal disease by mechanisms independent of those usually 
attributed to these compounds. Allopurinol, an inhibitor of uric acid production, has been 
shown to decrease renal inflammation by limiting activation of the NLRP3 inflammasome. 
So far, these protective effects have been shown in experimental studies only. Clinical 
studies will establish whether these novel strategies can be incorporated into the arsenal 
of treatments intended to prevent the progression of human disease.
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INTRODUCTION

Acute kidney injury (AKI) and chronic kidney disease (CKD) are 
highly prevalent conditions associated with significant levels of 
morbidity and mortality. According to the US Renal Data System, 
about 30 millions of Americans were afflicted with CKD in 2017, 
a prevalence of almost 15% (Saran et al., 2017; Saran et al., 2018). 
As to AKI, recent evidence indicates that it affects almost 60% of 
intensive care unit (ICU) patients, whereas its severity is directly 
related to mortality (Hoste et al., 2015).

Although the mechanisms underlying CKD and AKI are quite 
distinct, clinical evidence suggests that the two conditions are 
inextricably interconnected (Chawla et al., 2014). Inflammation, 
a process aimed in principle at detecting and fighting harmful 
pathogens, is a major pathogenic mechanism for both CKD and 
AKI. Both resident and circulating immune cells can interact 
with parenchymal renal cells to trigger an inflammatory response 
when subjected to stress, causing irreversible tissue damage 
and eventuating in organ failure (Singbartl et al., 2019). Thus, 
targeting inflammation constitutes a rational strategy in the 
management of both CKD and AKI.

KIDNEY RESIDENT IMMUNE CELLS

The kidney harbors a variety of resident immune cells, which 
play an important role in the maintenance of tissue homeostasis. 
Dendritic cells (DCs), macrophages, regulatory T cells (Tregs), 
CD8, and NK lymphocytes, among other cell types, are in close 
contact with parenchymal cells (Kurts et al., 2013; Stamatiades 
et al., 2016) (Figure 1, left side). Once activated by external 
(for instance, microbial antigens) or by internal events, these 
cells produce inflammatory mediators that can initiate kidney 
disease and, concomitantly, trigger a regulatory response aimed 
at curbing inflammation, repairing tissue damage, and restoring 
homeostasis. For instance, microbial products and alarmins can 
bind to innate immune receptors on the surface of DC, leading 
these cells to secrete a number of chemokines and cytokines 
(Dong et al., 2007; Tittel et al., 2011) and to migrate to draining 
lymph nodes, where they can amplify the immune response by 
activating T lymphocytes (TH1 CD4+ and cytotoxic cells). At 
the same time, DCs can limit inflammation by stimulating the 
production of interleukin 10 (IL-10) by Treg lymphocytes (Kinsey 
et al., 2009; Monteiro et al., 2009). Another clear example of this 
dichotomous activity is given by macrophages, which, by sensing 
alarmins through innate immune receptors, can initiate/enhance 
inflammation via the M1 subset and, simultaneously, exert an 
anti-inflammatory effect via the M2 subset (Nelson et al., 2012; 
Braga et al., 2017a) (Figure 1, right side).

INFLAMMATION IN AKI

Role of Toll-Like Receptor– and Nod-Like 
Receptor–Dependent Pathways
Ischemia–reperfusion injury (IRI) is a major cause of AKI in ICU 
patients (Hoste et al., 2015). Transcriptome analysis in whole 
tissue as well as cell-specific analysis using Cre/Lox techniques 

revealed that IRI is associated with a myriad of events ranging 
from organelle stress to activation of complex intracellular 
pathways (Correa-Costa et al., 2012; Liu et al., 2014). One of the 
earliest events in the development of IRI is sterile (nonmicrobial) 
activation of innate immune receptors such as TLRs (Toll-like 
receptors) and NLRs (Nod-like receptors). These structures, 
expressed in renal parenchymal cells as well as in resident 
immune cells, can recognize pathogen-associated molecular 
patterns (PAMPs) and damage-associated molecular patterns 
(DAMPs). Activation of these receptors triggers a number of 
intracellular pathways such as c-Jun N-terminal kinases (JNK), 
mitogen-activated protein kinase (MAPK), and nuclear factor 
kB (NF-ĸB), culminating with the secretion of proinflammatory 
cytokines and chemokines (Wang and Zhang, 2017). Much of the 
current knowledge about the role of these receptors in AKI came 
from studies of knockout (KO) mice. Lack of TLR4 and/or TLR2, 
as well as of their adaptor molecule, myeloid differentiation factor 
88 (MyD88), prevented the development of kidney injury in mice 
undergoing IRI (Leemans et al., 2005; Shigeoka et al., 2007; Wu 
et al., 2007). Available evidence indicates that activation of these 
receptors and the development of downstream inflammatory 
events follow the binding of alarmins released after cell injury 
and/or death (Rosin and Okusa, 2011; Allam et al., 2012). 
Accordingly, upregulation and blockage of one of these alarmins, 
high-mobility group box 1, was associated with aggravation and 
lessening of renal injury, respectively (Wu et al., 2010; Chen et al., 
2017). A similar mechanism seems to be operative in murine 
models of sterile (cisplatin toxicity) and nonsterile (sepsis) AKI 
(Castoldi et al., 2012; Andrade-Silva et al., 2018). Castoldi et al. 
(Castoldi et al., 2012) showed that lack of TLR4, TLR2, and MyD88 
limited renal damage in a sepsis model, mainly by decreasing the 
recruitment of neutrophils. In mice with cisplatin-induced AKI, 
we showed evidence that the presence of TLR4 is needed for the 
development of renal damage (Andrade-Silva et  al., 2018), an 
action that can be mediated by p38 MAPK pathways (Zhang et al., 
2008). Additional evidence of participation of these receptors is 
provided by deceased-donor renal grafts, in which the inevitable 
IRI is associated with increased expression of TLR4 (Kruger et 
al., 2009; Andrade-Oliveira et al., 2012). Conversely, a mutation 
in the tlr4 gene decreases the signaling through TLR4 receptor, 
which may attenuate the response of kidney grafts to alarmins, 
hence limiting cytokine production, inflammation, and eventual 
organ failure (Nogueira et al., 2010).

Inflammation initiated in the kidneys can lead to the release 
of cytokines and chemokines to the circulation, resulting in 
dysfunction of distant organs such as heart and lungs (Kramer 
et  al., 1999; Campanholle et al., 2010; Rostron et al., 2010; 
Trentin-Sonoda et al., 2015). Thus, activation of renal TLR4 sets 
off an important signaling pathway that acts both locally and 
at remote organs, contributing to build up a state of systemic 
inflammation that considerably aggravates the clinical scenario. 
TLR4 blockade or inactivation constitutes a promising target for 
the prevention or mitigation of AKI.

Whereas TLRs can be located on the surface of cells and 
endosomes, NLRs are equally complex intracellular sensors 
that are expressed throughout the kidney and have been 
associated with several models of AKI. On the basis of their 
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structure, NLRs are subdivided into three subgroups, namely, 
NOD1 and NOD2 or NLRP (Latz et al., 2013). Activation of 
NOD1/NOD2 sets in motion the NF-ĸB and MAPK cascades 
(Carneiro et al., 2008), whereas that of NLRP leads to cleavage 
of IL-1β and IL-18 (Wen et al., 2013). Shigeoka et al. (Shigeoka 
et al., 2010a) showed that, when subjected to renal ischemia, 
NOD2 KO and NOD1/NOD2 double KO mice develop less 
renal inflammation and tubular cell apoptosis than wild mice, 
being thus protected from IRI. Similar protection against 
tubular cell death and renal functional loss was observed 
in NLRP3 KO mice subjected to renal ischemia (Iyer et al., 
2009; Shigeoka et al., 2010b; Kim et al., 2013). Together, these 
studies lend support to the notion that the NLRP3 pathway 
plays a key role in the pathogenesis of inflammation and cell 
death in IRI-associated AKI. The participation of NLRP3 may 
be less prominent in other modalities of AKI, since NLRP3 
KO mice were not protected against kidney damage induced 
by cisplatin (Kim et al., 2013).

Immune Cells in AKI
Monocytes and Macrophages
In mice, circulating monocytes can be subdivided into 
inflammatory (Cx3CR1low, CCR2+, and Ly6Chigh) and resident 
(Cx3CR1high, CCR2neg, and Ly6Clow) cells (Geissmann et al., 2003). 
Ly6Chigh monocytes protect the kidney from damage induced 
by sepsis, presumably by sensing and orchestrating a response 
against bacterial proliferation. Ly6Clow monocytes are located 
at the perivascular space. Their interaction with endothelial 
cells decreases intercellular adhesion molecule 1 expression, 
thus preventing neutrophil infiltration and inflammation in IRI 
(Karasawa et al., 2015).

Macrophage depletion in rats protects kidney function from 
IRI injury (Jo et al., 2006), whereas blockade of the migration 
inhibitory factor was shown to inhibit macrophage infiltration 
and to ameliorate inflammation in cisplatin-induced AKI (Li 
et al., 2018). These findings suggest that macrophages exert a 
central pathogenic role in this setting. However, others reported 

FIGURE 1 | Inflammation in acute kidney diseases. Under physiologic conditions, endothelial, epithelial, and immune cells (around parenchymal structures and/
or vessels) interact harmonically within the kidney (left side). Upon an insult by bacteria or bacterial products, drug toxicity, or following nonsterile stimulation, 
epithelial and endothelial cells undergo necrosis or apoptosis, releasing products that can activate Toll-like receptors (TLR), NOD-like receptors (NLR), and NLPR3 
inflammasome in immune and kidney cells. This activation leads to the production of chemokines and proinflammatory cytokines, which recruit monocytes and 
neutrophils to the organ. Concomitantly, resident immune cells (mainly dendritic cells) get activated and induce the proliferation of T cells (TH1, TH17, and CD8 
cytotoxic cells), which in turn produce cytokines, exacerbating the inflammation process (right). 
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opposite results (Lu et al., 2008). The reason for this discrepancy 
is unclear but may be related to the existence of two different 
macrophage populations. As pointed out earlier, monocytes can 
differentiate into M1 or M2 macrophages, which are induced 
by distinct factors and acquire distinct functions (Wang et al., 
2014). M1 macrophages appear early in the course of kidney 
IRI, suggesting that they contribute to initial injury, whereas 
the presence of M2 macrophages is predominantly seen at 
later phases, presumably as part of a repair process (Lee et al., 
2011). Interestingly, transference of M1 macrophages into 
macrophage-depleted mice subjected to IRI rescued the adverse 
phenotype observed in control animals (Lee et al., 2011). Thus, 
macrophages, mainly M1, play an important pathogenic role at 
the onset of AKI. The existence of other macrophage subsets, 
their plasticity, and their role in AKI models are currently the 
object of intense investigation.

Neutrophils
Renal infiltration by neutrophils can be detected as early as 2 h 
after IRI, remaining elevated up to 72 h after the insult (Awad 
et al., 2009). Upon reaching the renal parenchyma, neutrophils 
are exposed to DAMPs and PAMPs, leading to activation of TLRs 
and NLRs (Castoldi et al., 2012; Deng et al., 2017) and to the 
secretion of a number of inflammatory factors such as proteases, 
reactive oxygen species (ROS), and lytic enzymes (Leliefeld et al., 
2016). These compounds interact with the vascular endothelium, 
leading to vessel tumefaction and, consequently, impairing blood 
flow (Jerke et al., 2015). Accordingly, neutrophil depletion exerts 
a protective effect in several AKI models (Thornton et al., 1989; 
Castoldi et al., 2012). Recently, Raup-Konsavage et al. (Raup-
Konsavage et al., 2018) showed that the formation of neutrophil 
extracellular traps (NETs), which are instrumental for neutrophils 
to kill microorganisms (Brinkmann et al., 2004), could be one of 
the mechanisms by which these cells cause tissue damage during 
AKI. They showed that mice KO for PAD4, an enzyme involved 
in NET formation, exhibited partial preservation of kidney 
function after IRI (Raup-Konsavage et al., 2018). However, it 
must be stressed that these harmful effects constitute collateral 
damage and that, since the primary function of neutrophils is to 
fight infection, their absence can be detrimental. In the model of 
sepsis by cecal ligation and puncture, Hoesel et al. (Hoesel et al., 
2005) showed that neutrophil depletion at the onset of sepsis 
can impair survival due to loss of antibacterial power and that 
a protective effect is achieved only when neutrophil depletion is 
performed at a later phase.

Since neutrophils appear so early in AKI, neutrophil-related 
proteins such as neutrophil gelatinase-associated lipocalin can be 
used as biomarkers of kidney damage and potential predictors 
of renal dysfunction and survival, as for instance in critically 
ill patients and in recipients of renal grafts (Parikh et al., 2006; 
Valette et al., 2013).

Dendritic Cells
DCs are mononuclear phagocytes that, as resident cells in 
several organs, perform a variety of functions, acting as a bridge 
between innate and adaptive immunity. In the kidneys, DCs 
heterogeneous population, exerting several functions, such as 

antigen-presenting, T-cell stimulation, and production of anti-
inflammatory IL-10, (Kawakami et al., 2013). Kidney DCs are 
located between tubules and peritubular capillaries, allowing 
them to interact with effector cells as well as with endothelial 
and epithelial cells (Lemley and Kriz, 1991). During AKI, 
kidney DCs are activated by binding of TLRs and NLRs to cell 
debris and other DAMPs, thus increasing the expression of 
costimulatory molecules and proinflammatory cytokines such as 
tumor necrosis factor α (TNF-α) and antigen presentation to T 
cells in draining lymph nodes (Dong et al., 2007; Snelgrove et al., 
2017), thus contributing to T-cell–mediated inflammation. By 
contrast, renal infiltration by neutrophils and monocytes, as well 
as tubular injury, was worsened in DC-depleted mice undergoing 
cisplatin-induced AKI compared to control animals (Tadagavadi 
and Reeves, 2010), suggesting that, in this setting, the presence 
of DCs may exert renoprotective rather than deleterious effects. 
The reason for this unexpected effect is unclear and may be 
related to a modulatory effect of DCs on the inflammatory 
response (Tadagavadi and Reeves, 2010). Alternatively, since 
DCs constitute a heterogeneous population, it is conceivable that, 
depending on the context, one or more subtypes exert a crucial 
anti-inflammatory function. Another possibility would be that 
monocytes and neutrophils simply occupied the niche left by the 
missing DCs and necrotic tubular cells. These hypotheses are 
currently speculative and need further investigation to be tested.

T Cells
Several lines of evidence indicate that the adaptive immune 
response is also involved in the pathogenesis of AKI. Animals 
lacking CD4+ and CD8+ T cells are protected from IRI-induced 
AKI (Rabb et al., 2000; Deng et al., 2017), an effect associated with 
reduced neutrophil infiltration. CD4+ T cells can differentiate 
into different subsets—effector T-helper (TH) TH1/TH2/TH17 or 
Tregs, according to the microenvironment, to the expression 
of costimulatory molecules, to the presence of cytokines, and, 
as recently demonstrated, to variations in cell metabolism 
(Parish and Kaech, 2009; Zhu et al., 2010; MacIver et al., 2013). 
Evaluation of specific subtypes of CD4+ T cells in IRI-induced 
AKI indicates that TH1 cells tend to worsen kidney damage, 
since mice KO for IL-12, a cytokine known to induce TH1 cells, 
are protected from IRI, whereas in mice KO for IL-4, cytokine 
known to induce TH2 cells, kidney damage is exacerbated 
(Marques et al., 2006; de Paiva et al., 2009). Moreover, T-cell–
specific deletion of STAT-3, a transcription factor associated with 
TH17 differentiation, was renoprotective in animals subjected to 
IRI (Lee et al., 2018). IL-17 production by TH17 cells is known 
to increase the recruitment of neutrophils. Accordingly, IL-17 
KO mice undergoing sepsis exhibited limited renal recruitment 
of neutrophils, associated with reduced apoptosis and less 
severe AKI. Consistent with these findings, higher IL-17 levels 
have been associated with worse outcomes in septic patients 
(Maravitsa et al., 2016). Thus, IL-17 and TH17 cells are likely 
to exert a prominent role in kidney injury during sepsis. Tregs 
have also received considerable attention in the context of 
AKI. Kinsey et al. (Kinsey et al., 2009) showed that depletion 
of Tregs worsened kidney damage during IRI-induced AKI by 
enhancing renal infiltration of macrophages and neutrophils and 
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by augmenting the local levels of proinflammatory cytokines. 
Likewise, exacerbated kidney injury and impaired renal function 
after Tregs depletion were reported by Monteiro et al. (Monteiro 
et al., 2009). The renoprotective role of Treg was also shown in 
cisplatin-induced AKI (Lee et al., 2010). Recently, an interesting 
population of T cells double negative for CD4 and CD8 was 
described, which may represent yet another physiologic anti-
inflammatory mechanism. These cells can be detected early in 
the course of AKI, playing a renoprotective role in an IL-10–
dependent manner (Martina et al., 2016).

INFLAMMATION IN CKD

The mechanisms underlying the progression of CKD involve 
a complex interaction between hemodynamic, immunologic, 
metabolic, and inflammatory events (Zoccali et al., 2017). 
The development of inflammation, previously associated with 
immune dysfunction only, is currently considered a fundamental 
component of the pathogenesis of even non–immune-mediated 
CKD (Floege et al., 1992). Activation of DCs was shown to 
enhance the activity of CD8+ T cells, thus promoting glomerular 
injury in two different experimental models of progressive renal 
disease (Heymann et al., 2009; Cao et al., 2016). Accordingly, 
inhibition of DC activation or of their interaction with CD8+ 
T cells preserved kidney function and decreased inflammation 
and fibrosis in adriamycin glomerulopathy (Wang et al., 2018). 
Other subtypes of T cells, especially TH2, may also contribute 
to renal damage. Liu et al. (2012) showed massive infiltration 
by CD4+ T lymphocytes in advanced human immunoglobulin 
A nephropathy and that depletion of CD4+ T lymphocytes 
prevented renal fibrosis in UUO (unilateral ureteral obstruction) 
mice. They also showed that the TH2/TH1 ratio increased 
progressively after UUO and that TH2-reconstituted mice were 
more prone to develop renal fibrosis than TH1-reconstituted 
animals. Likewise, Braga et al. (2012) observed an increase 
in TH2-related cytokines 7 days after UUO in mice, as well as 
an accumulation of M2 macrophages in an MyD88 pathway–
dependent manner.

The role of macrophages and that of its subtypes M1 and 
M2 have been extensively investigated in different models of 
CKD. Given their properties, the notion has been established 
that, in various organs and experimental models of disease, M1 
macrophages act in early phases of inflammation and, as this 
process evolves, M2 macrophages eventually predominate to 
promote repairing and fibrosis (Wynn and Barron, 2010). In 
UUO mice, Braga et al. (2016) observed that infiltration by M1 
macrophages occurs early in the course of the inflammatory 
process, whereas M2 macrophages accumulate only at more 
advanced phases, suggesting that these cells possess a resolutive, 
rather than profibrotic, phenotype. While this relationship 
between M2 macrophages and fibrosis development seems to 
be clear, a study using CRE-lox techniques to deplete IL-4Rα 
in lysozyme+ cells (macrophages and neutrophils), therefore 
preventing macrophages from interacting with IL-4 and 
IL-13—two type 2 cytokines responsible for macrophage M2 
polarization —showed that, in such context, mice developed an 

extremely severe, and often fatal, TH1-associated inflammatory 
response to schistosomal infestation, whereas the reaction 
against a form of murine strongyloidiasis was adequate 
(Herbert et al., 2004). These findings suggest that, at least in 
some forms of inflammation, the M2 phenotype is essential not 
only for tissue repair but also to prevent excessive inflammation 
and organ damage. Together, these findings indicate that the 
recruitment and differentiation of macrophages are crucial 
to all phases of renal injury, from triggering tissue injury to 
tissue repair. Any disturbance of this delicate equilibrium and/
or the persistence of tissue insults will tip the balance in favor 
of macrophages directly involved in the development of renal 
inflammation (Correa-Costa et al., 2014; Amano et al., 2018; 
Braga et al., 2018)(Figure 2).

The mechanisms leading from the initial insult to the development 
of inflammation and consequent renal fibrosis are incompletely 
understood and may involve, among others, mechanical stress 
to the glomerular walls due to intracapillary hypertension and/
or tuft hypertrophy, direct chemical aggression to podocytes and 
other glomerular barrier elements, exposure of tubular cells to high 
protein concentrations in situations of intense proteinuria, and the 
participation of the renin–angiotensin–aldosterone system (RAAS) 
and of numerous cytokines, chemokines and growth factors. In 
recent years, the concept has been established that activation of 
innate immunity pathways, particularly that of the NF-ĸB system 
and of the NLPR3 inflammasome, is an important link between early 
events such as glomerular hypertension and advanced phenomena 
such as the development of renal fibrosis. This pathogenic association 
has been shown in several CKD models.

The expression of NLRP3, TLRs, and biglycan was shown to 
increase in mice subjected to UUO (Leemans et al., 2009; Pulskens 
et  al., 2010; Braga et al., 2012; Pulskens et al., 2014). Conversely, 
MyD88 KO mice exhibited less fibrosis after UUO (Braga et al., 2012). 
TLR2 and TLR4, as well as the NLRP3 inflammasome, seem to be 
activated during the development of tubulointerstitial inflammation 
in mice receiving dietary adenine overload, which were protected 
from renal fibrosis when genes coding for these molecules were 
deleted (Correa-Costa et al., 2011). Accordingly, NLRP3 activation 
was associated with increased inflammation in a rat model of heavy 
proteinuria (Faustino et al., 2018). Recent data suggest that activation 
of these pathways persists throughout the development of CKD. In 
the 5/6 renal ablation model (Nx), the expression of innate immune-
related molecules was highly expressed as early as 15 days and, for at 
least 60 days, after renal ablation (Fanelli et al., 2017).

The NF-ĸB cascade is another major intracellular pathway for 
the development of inflammation. In canonical NF-ĸB activation, 
the IkB kinase (IKK) degrades the inhibitory protein IkB, allowing 
heterodimers (e.g., p50/p65) to translocate from the cytosol to the 
nucleus, where they bind to the DNA and promote the transcription 
of a number of genes that code for proinflammatory mediators 
(Henkel et al., 1993). Evidence that the NF-ĸB system is involved 
in the development of renal inflammation and injury has been 
described in a variety of clinical and experimental renal diseases, 
such as diabetic kidney disease (Lee et al., 2004; Verzola et al., 
2014), 5/6 renal ablation (Fujihara et al., 2007a; Fanelli et al., 2017), 
adenine overload (Correa-Costa et al., 2011; Okabe et al., 2013), and 
adriamycin nephropathy (Faustino et al., 2018).
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Although diabetic nephropathy, hypertensive nephrosclerosis, 
and primary glomerulopathies are currently considered the main 
cause of end-stage renal disease (ESRD) (Saran et al., 2017), growing 
evidence indicates that AKI-associated renal inflammation may 
persist even after acute injury is overcome and renal function 
restored, giving rise to slowly progressive renal fibrosis (Liano et al., 
2007; Venkatachalam et al., 2010; Chawla and Kimmel, 2012).

As a whole, these observations indicate that AKI and CKD share 
a number of inflammatory pathways whereby TLRs and NLRs are 
activated, along with immune cells such as macrophages, DCs, 
and lymphocytes. The exact mechanisms by which these cells and 
receptors are stimulated and the full consequences of their activation 
are currently under intense investigation, which is expected to 

provide novel therapeutic strategies for these diseases. In recent years, 
evidence has accumulated that the gut microbiota composition may 
be different in those two different diseases, and may trigger and/or 
amplify the inflammatory response in the kidney.

THE MUTUALISTIC RELATIONSHIP 
BETWEEN MICROBES AND HUMAN 
BODY

The human body harbors complex communities of commensal 
microbes, including bacteria, archaea, fungi, viruses, and 
protozoa. The gastrointestinal tract is one of the largest interfaces 

FIGURE 2 | Actors in the transition from acute kidney injury (AKI) to chronic kidney disease (CKD). Inflammation is a common link between AKI and CKD, and increased 
expression and/or activation of TLR, NLRP3 inflammasome, and NF-ĸB are present in both scenarios. The composition of the immune cell population depends on the 
context. In AKI, a large number of TH1/TH17 lymphocytes and neutrophils concentrate around parenchymal structures and/or vessels, whereas in CKD TH2 lymphocytes 
and M2 macrophages predominate. M1 macrophages, dendritic cells, and CD8+ T cells are seen in both processes. In CKD, epithelial– and/or endothelial–mesenchymal 
transition, with fibroblast proliferation, may contribute substantially to the development of inflammation and fibrosis. Gut microbiota composition, along with its subproducts, 
can have an important role in both AKI and CKD. Short-chain fatty acid (SCFA) can inhibit inflammation in different models of AKI, whereas in CKD there is a reciprocal 
relationship, with gut microbiota modulating the development of CKD, and, conversely, uremic toxins (e.g., p-cresol and indol) promoting changes in the composition of 
gut microbiota. Repurposed drugs and compounds that limit lymphocyte proliferation, M1 infiltration, and specific inflammatory pathways can exert renoprotective and 
anti-inflammatory effects. Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers inhibit the NF-ĸB system, whereas the experimental compounds 
pyrrolidine dithiocarbamate and parthenolide provide more specific inhibition. Allopurinol reduces activation of the NLRP3 inflammasome.
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between the human body (host) and the environment. The 
composition and activity of gut microbiota start before birth 
(Jimenez et al., 2005; Jimenez et al., 2008; Aagaard et al., 2014) 
and are influenced by a variety of factors, including birth mode 
(Dominguez-Bello et al., 2010), breastfeeding (Martin et al., 
2012), age (Yatsunenko et al., 2012), geography (Yatsunenko 
et  al., 2012), sanitation (Gao et al., 2017), use of antibiotics 
(Perez-Cobas et al., 2013), and exercising (Clarke et al., 2014).

Throughout the past century, evidence was amassed that 
microbe–host interactions modulate a large number of vital 
functions in the healthy human body, including host metabolism 
(Nicholson et al., 2012) and immunity (Rooks and Garrett, 
2016), as well as cardiovascular and brain functions. In this 
mutualistic relationship, the intestine provides a very favorable 
environment for microbes, with free access to nutrients and 
controlled temperature. The gut microbiota, on the other hand, 
is intrinsically involved in the morphogenesis and physiology of 
the immune system, protecting the host from potential pathogens 
and regulating metabolism and nutrition. Additionally, the 
microbial metabolism utilizes enzymes that are not encoded 
by the human genome and generates several biologic products 
essential to the host’s health, such as bile acids, choline, vitamins, 
and short-chain fatty acids (SCFAs) (Rowland et al., 2018).

SCFAs are the main end products of dietary carbohydrate 
metabolized by the gut microbiota and made available to the 
host. The three most abundant SCFAs, acetate, propionate, and 
butyrate, participate in several host vital functions. Besides being 
used as energy source by colonocytes, SCFAs play a key role in 
the maintenance of intestinal barrier integrity. Butyrate seems 
to regulate the expression of claudin-1 and the redistribution of 
zona occludens-1 and occludin, which are essential components 
of the tight junction assembly (Wang H et al., 2012). SCFAs 
have also extraintestinal actions, including appetite regulation 
(Frost et al., 2014), glucose and lipid metabolism (den Besten 
et al., 2015; Soty et al., 2015), and immune regulation (Rooks 
and Garrett, 2016), as shown by recent studies. Exposure of 
neutrophils and peripheral blood mononuclear cells to SCFAs 
attenuated the activation of NF-ĸB and inhibited the production 
of proinflammatory cytokines (Usami et al., 2008; Vinolo et al., 
2011; Chang et al., 2014). SCFAs also modulate the activity of 
Tregs, conferring protection conditions of sustained activation 
of immune system (Smith et al., 2013; Thorburn et al., 2015). 
These functions rely on the ability of SCFAs to inhibit histone 
deacetylases and their actions through a group of G protein–
coupled receptors, which are able to respond to short-, medium-, 
or long-chain free fatty acids (Hara et al., 2013). This group 
includes GPR41 (FFAR3), GPR43 (FFAR2), and GPR109a 
(HCAR2), which are responsible for the action of SCFAs in 
a dose-dependent manner (Brown et al., 2003) and have been 
described in several cell types, such as adipocytes (Ge et al., 2008; 
Wanders et al., 2012), neurons (Kimura et al., 2011), immune 
cells (Le Poul et al., 2003; Kostylina et al., 2008), and vascular 
cells (Hughes-Large et al., 2014).

Kidney Diseases and Dysbiosis
Low-grade inflammation is a major component not only of 
renal diseases but is also common ground for a variety of 

other noncommunicable diseases, including cardiovascular 
disease, metabolic syndrome, neurological disorders, and 
allergic conditions (Camps and Garcia-Heredia, 2014). The 
development and activation of the immune system are highly 
dependent on microbial–host interactions, and an unbalanced 
relationship can lead to sustained immune activation or 
inappropriate suppression (Rook, 2013). Several environmental 
and host-related factors can disturb the microbial ecosystem 
to such an extent that its resilience and resistance abilities are 
overcome. Despite the inexistence of a core microbiome shared 
among healthy individuals (Human Microbiome Project, 2012; 
Yatsunenko et  al., 2012; Lloyd-Price et al., 2016), a common 
bacterial core is composed of four main phyla: Actinobacteria, 
Proteobacteria, Firmicutes, and Bacteroidetes (Arumugam 
et al., 2011). Mounting evidence indicates that compositional 
and functional changes in the gut microbiota (dysbiosis) are 
associated with intestinal and extraintestinal diseases.

Although it remains unclear whether alterations in gut 
microbiota caused by extrinsic factors could be the primary 
agent to trigger kidney injury, in the past years several studies 
clearly showed that impaired kidney function contributes to gut 
dysbiosis, which in turn aggravates kidney injury. The importance 
of gut microbiota in kidney diseases was demonstrated by Jang et 
al. (2009), who showed that germ-free mice are more susceptible 
to kidney injury, whereas reintroduction of a gut microbiota 
conferred protection against the disease. Germ-free mice 
exhibited an abnormal high number of natural killer T cells and 
lower IL-4 levels in the kidneys, which were more susceptible to 
ischemia–reperfusion damage.

Growing evidence indicates that gut dysbiosis causes gut 
inflammation and impairs intestinal barrier integrity, resulting 
in activation of the NF-ĸB pathway and, ultimately, systemic 
inflammation (Anders et al., 2013). Disruption of intestinal 
barrier enables the translocation of bacterial endotoxins, such 
as lipopolysaccharide (LPS), leading to activation of immune 
cells at the lamina propria and to enhanced secretion of 
proinflammatory cytokines. Of note, endotoxemia is correlated 
with the risk of mortality in CKD patients (McIntyre et al., 2011). 
Microbial dysbiosis can also contribute to kidney failure through 
the accumulation of bacterial-produced uremic toxins, such as 
indoxyl sulfate (IS), p-cresol sulfate, and trimethylamine-N-
oxide (TMAO). Using germ-free technology, Wikoff et al. (2009) 
demonstrated that the gut microbiome strongly influences the 
levels of several protein-bound uremic toxins. Under healthy 
conditions, these toxins are partially eliminated with the feces, 
whereas whatever amount absorbed by the intestine is excreted 
by the kidneys. Therefore, impairment of kidney function can 
lead to the retention of uremic toxins that originated in the 
gut. Several studies have observed high levels of these toxins 
in patients with kidney failure. Increased levels of p-cresol 
sulfate were found in patients with mild to moderate CKD and 
were associated with low estimated glomerular filtration rate 
(Meijers et al., 2010a). Likewise, circulating TMAO levels rise as 
kidney function declines in CKD patients (Stubbs et al., 2016) 
and correlate with lower long-term survival rates (Tang et  al., 
2015). Some studies reported adverse effects of uremic toxins 
on the kidney. These toxins instigate inflammation (Motojima 
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et al., 2003) by increasing ROS production and the levels of 
proinflammatory cytokines (Watanabe et al., 2013) (Figure 2). 
In addition, they can promote renal fibrosis through reduction 
of klotho expression and cell senescence (Adijiang et al., 2011).

It is noteworthy that, in turn, CKD can affect the status 
of gut microbiota, thus contributing to dysbiosis. Growing 
evidence has shown significant changes in the gut microbiota of 
CKD patients in terms of individual species (Hida et al., 1996; 
Wang I et al., 2012; Vaziri et al., 2013). Kidney diseases lead to 
metabolic acidosis, volume overload, recurrent use of antibiotics, 
prolonged colonic transit time (Bammens et al., 2003), intestinal 
wall edema (Vaziri et al., 2013), and reduction of dietary fiber 
intake (Kalantar-Zadeh et al., 2002), which can not only alter 
the intestinal permeability, but may cause an imbalance in gut 
microbiota. Moreover, profound changes can be induced by 
uremia per se. Vaziri et al. (2013) observed significant alterations 
in the abundance of 175 bacterial operational taxonomic units 
in nephrectomized rats, indicating that the effect of uremia 
is independent from interindividual variations, comorbid 
conditions, and dietary and medical interventions. Furthermore, 
ESRD patients showed expansion of bacterial families possessing 
enzymes that produce uremic toxins in detriment of those 
expressing enzymes that degrade fibers and generate SCFAs 
(Wong et al., 2014). This adverse scenario is further aggravated 
by the medical recommendation to reduce the intake of fruits and 
vegetables to avoid hyperkalemia. Because fiber-rich foods are 
the major source of resistance starch used to generate SCFAs, one 
can speculate that the consequent reduction in the production of 
SCFAs may contribute to kidney damage. Indeed, low intake of 
fiber forces a switch in the gut microbiota metabolism leading to 
decreased production of SCFAs and to the generation of harmful 
metabolites (Duncan et al., 2007; Russell et al., 2011). A potential 
additional adverse effect of fiber restriction was pointed out in 
an elegant experimental study showing that, in a scenario of 
dietary fiber deficiency, gut microbiota resorts to host-secreted 
mucus glycoproteins as a nutrient source, resulting in a thinner 
colonic mucus layer, which could contribute to enhanced 
pathogen susceptibility, endotoxemia, and, ultimately, systemic 
inflammation (Desai et al., 2016).

Gut Microbiota–Based Therapies
In an elegant study, Poesen et al. (2016) reported a high 
resemblance between the fecal metabolite profiles of CKD 
patients and those of their household contacts on the same 
diet, after adjustment for age, gender, body mass index, and the 
presence of diabetes mellitus. CKD-related changes in the human 
colonic microbial metabolism were largely attributable to dietary 
restrictions and, to a lesser extent, to loss of renal function. Thus, 
the plasticity of gut microbiota in response to environmental 
factors offers a potential avenue for therapeutic interventions 
aimed at slowing the progression of kidney disease and reducing 
cardiovascular risk factors in these patients.

Dietary Fiber and Prebiotics
Dietary fiber has been defined as edible carbohydrate polymers 
(with three or more monomeric units), which are not 
enzymatically digested, hydrolyzed, or absorbed in the small 

intestine (Jones, 2014). Consumption of a fiber-rich diet has been 
linked to lower risk of allergy, depression, and cardiovascular 
disease (Estruch et al., 2013; Rice et al., 2015; Sanchez-Villegas 
et al., 2015). However, reduction in the intake of dietary fiber, 
present mostly in fruits and vegetables, is usually recommended 
to patients with advanced CKD in order to avoid the 
accumulation of potassium. Unfortunately, as mentioned earlier, 
fiber deprivation leads to a reduction of intestinal mucus barrier 
due to the overgrowth of mucin-degrading bacteria (Desai et al., 
2016). Furthermore, mucus degradation may enhance pathogen 
susceptibility and bacteria translocation and exacerbate local and 
systemic inflammation status (Desai et al., 2016; Andersen et al., 
2017). This dilemma can be addressed by a novel approach based 
on the administration of substances or living organisms aimed 
at modifying the intestinal bioma. This goal can be achieved by 
so-called prebiotics, probiotics, symbiotics, or postbiotics.

Prebiotics
The use of prebiotics, defined as nondigestible ingredients 
capable of stimulating the growth and/or activity of health-
promoting bacteria, is a widely known strategy to alter the 
gut microbiota (Bindels et al., 2015). In both healthy and 
pathological conditions, prebiotics favor the growth of beneficial 
bacteria (e.g., bifidobacteria and lactobacilli), while suppressing 
potentially pathogenic microorganisms such as clostridia and 
enterobacteria (Silk et al., 2009). Inulin supplementation induced 
a selective increase of “healthy” gut microbiota components, 
including bifidobacteria, in a randomized double-blind, placebo-
controlled, crossover trial (Vandeputte et al., 2017). In a similar 
study involving obese women, inulin treatment afforded equally 
beneficial results (Dewulf et al., 2013). Shifts in the gut microbiota 
composition induced by prebiotics are dependent on their carbon 
structure (Martinez et al., 2010) and on the microbial enzymatic 
ability to process them (Koropatkin et al., 2012). Recent data 
showed that, in patients with type 2 diabetes, dietary fiber intake 
promoted selective growth of a group of SCFA-producing strains, 
while most other potential SCFA producers were inhibited or 
remained unchanged. In addition, the growth of producers 
of harmful metabolites was diminished. These changes were 
accompanied by clinical benefits such as lower hemoglobin A1c 
levels (Zhao et al., 2018).

Besides their potential effect on the generation of SCFAs, 
plant-based diets exert other effects on metabolites produced 
by the gut microbiota. For instance, they contain less TMAO 
precursors compared to an animal-based diet (Richter et 
al., 2015). Experimental data showed that the consumption 
of amylose-enriched diet retards the progression of kidney 
damage through the attenuation of oxidative stress, 
inflammation, and fibrosis (Vaziri et al., 2014). Additionally, 
human interventional studies showed that fiber-rich diets 
and prebiotics ameliorated metabolic disorders (Sola et al., 
2007; Aliasgharzadeh et al., 2015), reduced uremic toxins 
(Meijers et al., 2010b), and delayed the decline in glomerular 
filtration rate (Pavan, 2016). Moreover, epidemiological 
studies indicated that high total fiber intake is associated 
with lower risk of inflammation and mortality in CKD 
(Krishnamurthy et al., 2012). Meijers et al. (2010b) observed 
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low serum concentrations of IS and p-cresol in hemodialysis 
patients under dietary prebiotic oligofructose-enriched inulin 
supplementation. Likewise, the intake of resistant starch 
improved renal function in CKD (Chiavaroli et al., 2015) 
and significantly decreased serum concentrations of uremic 
toxins in hemodialysis patients (Sirich et al., 2014). Extrarenal 
benefits have also been observed, such as weight loss and 
improved metabolism of glucose and lipids, lending further 
support to the therapeutic use of prebiotics (Meijers et al., 
2010b; Cani et al., 2007).

Probiotics
The Food and Agriculture Organization of the United Nations 
and the World Health Organization define probiotics as “live 
microorganisms that when administered in adequate amounts 
confer a health benefit on the host” (Hill et al., 2014). Probiotics 
consist of living bacteria (mostly bifidobacteria and lactobacilli 
species) that can be added to food, drugs, and dietary supplements. 
As with prebiotics, oral administration of live microorganisms 
does not significantly change the composition of the indigenous 
gut microbiota in healthy adults (Kristensen et al., 2016). 
However, benefits of probiotic therapy have been extensively 
observed in several pathological scenarios, probably through 
the generation of bioactive metabolites and immunomodulation 
(Konstantinov et al., 2008).

Animal studies support the beneficial effects of probiotic 
therapy in CKD. Administration of Bacillus pasteurii and 
Lactobacillus sporogenes reduced blood urea nitrogen (BUN) 
levels and prolonged the life span of uremic rats (Ranganathan 
et al., 2005). Treatment with the urease-positive bacterium 
Sprosarcina pasteurii showed similar benefits by removing urea 
from the gut (Ranganathan et al., 2006). Similar to these findings, 
treatment of rats with 5/6 renal ablation with Lactobacillus 
acidophilus attenuated inflammation by reducing the serum 
levels of uremic toxins, such as IS and p-cresyl sulfate, and 
inflammatory mediators (LPS, C-reactive protein, and IL-6). 
At the same time, this treatment ameliorated urinary protein 
excretion and reduced the glomerulosclerosis index (Yoshifuji 
et al., 2016).

Clinical studies have also demonstrated that probiotic 
supplementation improves renal function. Simenhoff et al. 
(Simenhoff et al., 1996) first reported that oral administration 
of L. acidophilus lowered serum levels of the potential uremic 
toxin dimethylamine and nitrosodimethylamine in hemodialysis 
patients. Likewise, other studies have observed reduced levels 
of homocysteine and IS in hemodialysis patients under oral 
treatment with Bifidobacterium longum (Takayama et al., 2003; 
Taki et al., 2005). A 6-month supplementation with a blend 
of L. acidophilus, B. longum, and Streptococcus thermophilus 
ameliorated renal function and the quality of life of 46 patients in 
stage III or IV of CKD (Ranganathan et al., 2010).

Recently, genetically engineered bacteria have been 
used to reduce renal inflammation and proinflammatory 
mediators in intestinal diseases. Bacteria can be genetically 
modified to sense, kill, or restrain specific pathogens or to 
produce biomolecules, such as human hormones, ILs, and 
antibodies within specific organs or tissues (Pinero-Lambea 

et al., 2015). Oral administration of Lactococcus lactis resulted 
in local delivery of anti-TNF nanobodies at the colon and 
significantly reduced inflammation in mice with dextran 
sulfate sodium–induced chronic colitis (Vandenbroucke et al., 
2010). Beneficial effects were also reported using a L. lactis 
strain engineered to secrete the anti-inflammatory cytokine 
IL-10 in Crohn disease (Braat et al., 2006). This cutting-edge 
therapeutic approach has also been applied in extraintestinal 
diseases. A strategy using a L. lactis strain engineered to secrete 
proinsulin and IL-10 induced autoantigen-specific long-
term tolerance, allowing reversal of established autoimmune 
diabetes in mice (Takiishi et  al., 2012). Engineered bacteria 
have also been used to emulate urease-producing bacteria. 
Prakash and Chang (1996) successfully used genetically 
modified Escherichia coli DH5 to remove urea and ammonia, 
hence lowering BUN in uremic rats.

Symbiotics
Combined therapies using prebiotics and probiotics (symbiotics) 
have been explored in an attempt to alleviate both the toxic 
effects of uremia and the gut dysbiosis associated with CKD. A 
randomized double-blind pilot study of CKD stages IV and V 
reported that a combination of high-molecular-weight inulin, 
fructo-oligosaccharides, galacto-oligosaccharides, lactobacilli, 
bifidobacteria, and streptococci altered the stool microbiome, 
particularly with enrichment of Bifidobacterium and depletion 
of Ruminococcaceae, and reduced plasma concentrations of 
p-cresol (Rossi et al., 2016). Likewise, 4-week treatment with the 
commercially available symbiotic Probinul-neutro® decreased 
p-cresol levels in patients with CKD stages III and IV (Guida 
et al., 2014). Additionally, a therapeutic combination of galacto-
oligosaccharides and Lactobacillus casei strain Shirota and 
Bifidobacterium breve strain Yakult led to normalization of bowel 
habits and a decrease of serum p-cresol levels in hemodialysis 
patients (Nakabayashi et al., 2011).

Despite the benefits observed in a variety of diseases, the 
success of probiotic-based therapies seems to depend heavily 
on the pathological condition and on the selected microbial 
species chosen. For example, treatment with E. coli Nissle 
1917 is recommended in cases of constipation in adults 
(Chmielewska and Szajewska, 2010), while Bacillus coagulans 
seems suitable to treat antibiotic-associated diarrhea (Hempel 
et al., 2012). Further investigation is needed to ensure 
the safety and the effectiveness of probiotics in different 
populations and diseases.

Postbiotics
The use of postbiotics, also known as metabiotics, has been 
recently proposed as an adjunctive or alternative therapeutic 
approach for a healthier gut homeostasis and mucosal immune 
system. The term postbiotic has been coined to designate 
products from nonviable bacteria or metabolic byproducts 
from probiotic microorganisms, such as vitamins, SCFAs, cell 
surface proteins, and enzymes that can affect positively the gut 
microbiome and the host (Patel and Denning, 2013). According 
to Shenderov (2013), postbiotics have favorable absorption, 
metabolism, distribution, and excretion properties, which 
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could indicate a high capacity to elicit favorable biological 
responses in different organs in the host (Aguilar-Toala et al., 
2018). Although the postbiotic therapy has never been applied 
in CKD, it is noteworthy that many commensal bacteria 
produce SCFAs, which, as pointed out earlier, exert a number 
of beneficial effects. Regarding kidney diseases, Andrade-
Oliveira et al. (2015) reported that treatment with SCFAs 
reduces kidney injury induced by ischemia–reperfusion by 
protecting the renal tissue against inflammation and oxidative 
stress and by increasing autophagy, reducing apoptosis, and 
improving mitochondrial biogenesis.

Fecal Microbiota Transplantation
Fecal microbiota transplantation (FMT) refers to the 
introduction of indigenous intestinal microbes from a healthy 
donor using capsules or colonoscopy into a dysbiotic gut, 
aiming to restore the microbial community. FMT differs 
from probiotic therapy in that the donor material is a mixture 
of undefined microorganisms, including bacteria, yeasts, 
parasites, and viruses (Hill et al., 2014). Although the first 
reports date back over 1,700 years (Zhang et al., 2012), FMT is 
a relatively new therapy for recurrent or refractory Clostridium 
difficile infection (CDI), being moderately recommended as an 
alternative treatment for a third recurrent CDI after a pulsed 
vancomycin regimen (Surawicz et al., 2013). The mechanism 
of action of FMT is unclear. The high rates of resolution of 
CDI may be due to the infusion of large amounts of bacteria 
to the gut and/or a variety of metabolites present in the donor 
sample (Chanyi et al., 2017). FMT has been used in conditions 
other than CDI, such as metabolic syndrome (Vrieze et al., 
2012), autism (Kang et al., 2017), and multiple sclerosis 
(Makkawi et al., 2018), although the results with irritable 
bowel syndrome were disappointing (Halkjaer et al., 2018). 
Clinical studies focusing on the possible beneficial effects of 
FMT on CKD are lacking. Only anecdotal cases of recurrent 
infections in a patient with ESRD (Singh et al., 2014) and in a 
kidney graft recipient (Biehl et al., 2018) have been reported.

Despite their positive effects on the levels of uric acid 
and BUN, no prebiotic-, probiotic-, or symbiotic-based 
approaches have been shown to normalize the levels of uremic 
toxins. Moreover, the long-term impact of these therapies 
on CKD progression remains unknown due to a number of 
limitations, such as small sample size and short duration of 
studies. Larger clinical studies are needed in order to ascertain 
the possible application of these innovative strategies in the 
treatment of CKD.

REPURPOSED DRUGS TO TARGET 
RENAL INFLAMMATION

Recent studies have shown unexpected beneficial effects for 
repurposed or emerging drugs in the context of AKI and CKD. 
Several drugs and compounds used to modulate inflammation 
and immune response in experimental and/or human conditions, 
such as gout, hypertension, autoimmune diseases, cancer, and 
organ transplantation, may exert renoprotection by limiting 

oxidative stress and inflammation. These drugs may exert anti-
inflammatory effects by acting on one or more pathogenic 
pathways such as the RAAS, the innate immune response, and/or 
the adaptive immunity.

RAAS Inhibition in Kidney Inflammation
RAAS inhibition is one of the most widely used therapies 
for the control of hypertension, a leading risk factor for 
CKD, along with diabetes mellitus. In addition, angiotensin-
converting enzyme inhibitors (ACEIs) and angiotensin II 
receptor blockers (ARBs) are extensively used to prevent 
or delay the progression of established CKD (Lewis et al., 
1993; Brenner et al., 2001; Lewis et al., 2001). Evidence 
amassed in the past three decades shows that, besides their 
hemodynamic effects, ACEIs and ARBs directly influence the 
immune response (Shimada and Yazaki, 1978). Angiotensin 
II stimulates the expression of inflammatory mediators such 
as cytokines, chemokines (Ruiz-Ortega et al., 1998; Hisada 
et al., 1999), growth factors (Kagami et al., 1994; Johnson 
et al., 1992), and adhesion molecules (Gräfe et al., 1997) 
in renal parenchymal and immune cells, as well as splenic 
lymphocyte proliferation (Nataraj et al., 1999). Moreover, 
intrarenal angiotensin II production may participate in local 
inflammation (Gilbert et al., 1999; Gonçalves et al., 2004), 
whereas RAAS blockade was shown to provide hemodynamic-
independent renoprotection (Griffin and Bidani, 2006). An 
extremely high dose of losartan ameliorated renal injury and 
promoted regression of hypertension and albuminuria in the 
Nx model by reducing the renal macrophage infiltration and the 
interstitial angiotensin II expression, rather than by lowering 
intraglomerular pressure (Fujihara et al., 2005). Losartan also 
exerted effective renoprotection and anti-inflammatory effects 
in the streptozotocin diabetes model (Teles et al., 2009). These 
beneficial effects were markedly amplified when losartan 
was administered along with hydrochlorothiazide (Fujihara 
et al., 2007b), even when the combined therapy was started 
after renal injury was already advanced (Arias et al., 2013). 
The renoprotective effect of RAAS inhibitors may be partially 
mediated by limiting activation of the NF-κB pathway (Figure 
2), known to be activated by angiotensin II in experimental 
CKD (Ruiz-Ortega et al., 2006).

Few studies have investigated the anti‐inflammatory 
potential of RAAS-blocking agents in humans. The use of 
ACEIs is associated with lower plasma TNF-α and C‐reactive 
protein levels in patients with advanced CKD (Stenvinkel 
et  al., 1999). A comparative study showed that the ACEI 
ramipril and, especially, the ARB valsartan lowered the IL-6 
levels in hemodialysis patients (Gamboa et al., 2012). In 
addition, losartan treatment prevented the differentiation of 
monocytes into proinflammatory CD14+CD16+ cells (Merino 
et al., 2012) and of oxidative stress–related inflammation 
(Kayabasi et al., 2013) in hemodialysis patients. However, 
other studies failed to show blood pressure–independent 
anti‐inflammatory effects of ARBs in hemodialysis patients 
(Ordaz-Medina et al., 2010; Peters et al., 2017). Thus, further 
studies are needed to clarify the effect of the RAAS blockers 
on human renal inflammation.

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Inflammation and Kidney D iseasesAndrade-Oliveira et al.

11 October 2019 | Volume 10 | Article 1192Frontiers in Pharmacology | www.frontiersin.org

Allopurinol Inhibits Activation of the Renal 
NLRP3 Inflammasome
Hyperuricemia is present in 20% to 35% of patients with CKD 
(Shan et al., 2010; Lin et al., 2012). Although hyperuricemia 
is usually asymptomatic, urate crystals may accumulate in 
tissues such as articular synovium, causing joint inflammation 
and the symptoms usually associated with gout (Watson, 
1899; Ogryzlo et al., 1966; So and Thorens, 2010). Whether 
hyperuricemia is a real risk factor or just a biomarker of renal 
and cardiovascular injury is presently unclear. However, 
recent studies suggest that reducing circulating uric acid 
slows the progression of CKD (Siu et al., 2006; Goicoechea 
et al., 2010). Allopurinol, a prodrug of oxipurinol, a xanthine 
oxidase inhibitor, is widely employed in the treatment of 
hyperuricemia (Sanders et al., 1997). Besides reducing uric 
acid production, xanthine oxidase inhibition by allopurinol 
also diminishes ROS production, thus exerting antioxidant 
and anti-inflammatory effects (Bakris et al., 1990; Correa-
Costa et al., 2011). It is noteworthy that both crystals of uric 
acid and ROS can activate the NLRP3 inflammasome (Mulay 
and Anders, 2017). Furthermore, emerging evidence indicates 
that soluble uric acid is equally capable of activating this 
inflammasome complex in renal cells and that allopurinol 
inhibits this process (Correa-Costa et al., 2011; Xiao et al., 
2015) (Figure 2). Accordingly, NLRP3 inhibition following 
allopurinol treatment ameliorated renal inflammation and 
injury in experimental diabetic kidney disease (Kim et al., 
2015). In the UUO model, allopurinol reduced the renal 
content of soluble uric acid and inhibited NLRP3 activation, 
preventing the progression of proteinuria, as well as renal 
fibrosis and inflammation (Braga et al., 2017b). In a recent 
study of the Nx model, we showed that allopurinol reduced 
soluble renal uric acid and oxidative stress, thus reducing 
NLRP3 activation and IL-1β levels, as well as tubulointerstitial 
inflammation and fibrosis (Foresto-Neto et al., 2018).

Inhibition of uric acid synthesis can also exert beneficial 
effects in human CKD. In a 2-year randomized controlled 
trial, Goicoechea et al. (Goicoechea et al., 2010) showed that 
treatment with allopurinol prevented the progressive decline 
in glomerular filtration rate in patients with CKD of various 
etiologies. In a post hoc analysis of these patients 5 years later, it 
was shown that long-term treatment with allopurinol not only 
slowed CKD progression, but also reduced cardiovascular risk 
(Goicoechea et al., 2015). Similar findings were obtained in a 
3-year randomized parallel-controlled study of type 2 diabetic 
patients with asymptomatic hyperuricemia (Liu et al., 2015). 
As a whole, these experimental studies and randomized trials 
reinforce the view that allopurinol can contribute to slow the 
progression of renal disease.

NF-κB Inhibition Slows CKD Progression
Inhibition of NF-κB, a major innate immunity pathway, 
has been proposed as a strategy to reduce inflammation 
and retard or detain the progression of a number of renal 
diseases (Sanz et al., 2010). NF-κB activation can be blocked 
by preventing IkB degradation. The antioxidant compound 

pyrrolidine dithiocarbamate (PDTC) inhibits IKK, thus 
preventing NF-ĸB activation (Schreck et al., 1992) (Figure 2). 
In NX model, PDTC treatment inhibited activation of renal 
NF-ĸB and, ameliorated glomerular and interstitial injury 
in the Nx model (Fujihara et al., 2007a). In rats receiving 
adenine overload, PDTC strongly attenuated renal interstitial 
fibrosis (Okabe et al., 2013). In both studies, PDTC markedly 
reduced renal infiltration by macrophages, underlining its 
anti-inflammatory effect. Accordingly, in an experimental 
model of CKD by type 1 diabetes, renal NF-ĸB was activated 
in association with increased MCP-1 gene expression and 
macrophage infiltration as early as 1 month after induction of 
diabetes mellitus. PDTC reduced renal inflammation at this 
time point, although its long-term effect on kidney injury was 
not assessed (Lee et al., 2004).

Interestingly, rats treated with PDTC during lactation 
developed hypertension as adults, in association with 
early activation of the RAAS and upregulation of sodium 
transporters, without renal structural damage or functional 
impairment (Canale et al., 2011), in contrast with the 
severe renal damage caused by neonatal losartan (Machado 
et  al., 2008). This finding suggests that the NF-κB system is 
needed during nephrogenesis for adequate renal control of 
blood pressure in adult life, but not for nephrogenesis. In a 
subsequent study (Ávila et al., 2019), rats that had received 
neonatal PDTC were subjected to uninephrectomy and salt 
overload in adult life. These animals exhibited marked NF-ĸB 
activation and developed severe inflammation and injury to 
glomerular, interstitial, and arterioles. Curiously, treatment of 
adult rats with losartan inhibited renal NF-κB and attenuated 
renal injury/inflammation.

Parthenolide is a sesquiterpene lactone that occurs 
naturally in some plants and has been proposed as an NF-ĸB 
inhibitor (López-Franco et al., 2006) (Figure 2). However, 
few data are available regarding the effect of parthenolide 
in kidney diseases. In cisplatin-induced renal damage, 
parthenolide reduced renal injury and inflammation 
(Francescato et al., 2007). In the UUO model, parthenolide 
reduced renal monocyte/macrophage infiltration and 
attenuated renal injury (Esteban et al., 2004). Although some 
drugs currently employed in the treatment of kidney diseases 
possess anti-inflammatory effects and can inhibit renal NF-κB 
activation (Esteban et al., 2003), no specific NF-κB inhibitor 
is available for human use. Systemic inhibition of NF-κB may 
cause substantial adverse effects, since NF-κB is required for 
adequate nephrogenesis, immune responses, and cell survival. 
Thus, understanding the mechanisms underlying NF-κB 
activation and/or inhibition in renal diseases is crucial for the 
development of more specific regulators, allowing this system 
to become an important therapeutic target in the quest to 
prevent the progression of human kidney disease.

CONCLUDING REMARKS

Renal inflammation is central to the development of both 
AKI and CKD, as well as to the transition of AKI to CKD. 
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Activation of major pathways of innate immunity, such as 
the NF-ĸB system and the NLRP3 inflammasome, is one of 
the main factors triggering renal inflammation in both AKI 
and CKD. The role of the gut microbiota in the pathogenesis 
of inflammation and its dynamic relationship with renal 
disease have been unraveled in recent years. New avenues 
of investigation and new therapeutic perspectives have 
been opened with the development of suitable NLRP3 and 
NF-ĸB inhibitors, as well as of strategies centered on the 
manipulation of the gut microbiota. Additional therapeutic 
possibilities are provided by the repurposing of old drugs 
such as allopurinol. New clinical trials will establish the value 
of these novel approaches for a better comprehension of the 
mechanisms underlying the pathogenesis of AKI and CKD 
and for the development of innovative therapeutic strategies 
in the management of these serious conditions.
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