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Abstract
Autism spectrum disorders (ASDs) are highly heritable and characterised by deficits in so-

cial interaction and communication, as well as restricted and repetitive behaviours. Al-

though a number of highly penetrant ASD gene variants have been identified, there is

growing evidence to support a causal role for combinatorial effects arising from the contribu-

tions of multiple loci. By examining synaptic and circadian neurological phenotypes result-

ing from the dosage variants of unique human:fly orthologues in Drosophila, we observe

numerous synergistic interactions between pairs of informatically-identified candidate

genes whose orthologues are jointly affected by large de novo copy number variants

(CNVs). These CNVs were found in the genomes of individuals with autism, including a pa-

tient carrying a 22q11.2 deletion. We first demonstrate that dosage alterations of the unique

Drosophila orthologues of candidate genes from de novo CNVs that harbour only a single

candidate gene display neurological defects similar to those previously reported in Dro-
sophilamodels of ASD-associated variants. We then considered pairwise dosage changes

within the set of orthologues of candidate genes that were affected by the same single

human de novo CNV. For three of four CNVs with complete orthologous relationships, we

observed significant synergistic effects following the simultaneous dosage change of gene

pairs drawn from a single CNV. The phenotypic variation observed at the Drosophila syn-
apse that results from these interacting genetic variants supports a concordant phenotypic

outcome across all interacting gene pairs following the direction of human gene copy num-

ber change. We observe both specificity and transitivity between interactors, both within

and between CNV candidate gene sets, supporting shared and distinct genetic aetiologies.

We then show that different interactions affect divergent synaptic processes, demonstrating

distinct molecular aetiologies. Our study illustrates mechanisms through which synergistic

effects resulting from large structural variation can contribute to human disease.
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Author Summary

Autism spectrum disorders (ASDs), which are characterised by poor social interaction and
repetitive behaviours, are in part caused by genetic variation. A number of genes that vary
in copy number in ASD patients have been identified, many of which were known to func-
tion at the neuronal synapse. We theorised that in some cases the dosage change of multi-
ple genes simultaneously, rather than singularly, may lead to faulty neuronal development,
and contribute to ASD. To test this, we asked whether alterations in these candidate genes
would cause neuronal synapse and sleep/rest changes using the fruit fly Drosophila, and
validated this model using single-gene models. We considered the simultaneous change of
pairs of genes that were jointly affected by a large human copy number variant (CNVs),
which are structural changes in the genome. In three of four CNVs, mutations in subsets
of genes synergistically interacted to cause neuronal changes comparable to the single gene
candidates. We also observed that the changes in synapse size followed the direction of the
human gene copy number change. Finally, we show that different interactions affect the
development of the synapse through different mechanisms, allowing us to identify distinct
molecular alterations that illuminate the etiological heterogeneity of ASD.

Introduction
Autism spectrum disorders (ASDs) comprise a large group of complex neurodevelopmental
diseases that are influenced by genetic and environmental factors [1]. They are characterised
by altered cognitive function including poor social and verbal interaction capability, and repeti-
tive and stereotyped verbal and non-verbal behaviours [1]. ASDs are highly heritable (*90%
monozygotic twin studies); however, the genetic cause has been identified in less than 30% of
cases, while the increase in risk between di-zygotic twins is comparable to that of first degree
siblings [2], suggesting that ASD-causative alleles are likely to be both numerous and rare [3].

Recently, large numbers of autistic individuals, with unaffected family members, have been
shown to possess de novo copy number variants (CNVs) [2,4–6]. In addition, many rare variant
studies have identified pathways or processes that are commonly contributed to by significant
proportions of those genes found to be disrupted [7–9]. Two additional striking findings from
a recent study into the genes affected by 192 de novo CNVs identified in individuals with ASD
have also been identified [9]. Firstly, many of these CNVs affect genes that appear to operate in
the same functional pathway/network and, secondly, a significant proportion of individual
CNVs (33%) simultaneously affect multiple genes whose proteins interact within that function-
al pathway [9]. This raises the possibility that it is the combined effect of these genes’ copy
number change that causally contributes to these patients’ autistic phenotypes. Combinatorial
effects have also been observed beyond de novo variants, where an increased risk of ASD result-
ing from multiple distinct and inherited CNVs has been reported [10]. However, while the con-
tribution from combinatorial effects of genetic variation has been proposed by computational
and statistical analyses, these hypotheses have yet to be validated in vivo. Here, we use Drosoph-
ila as an in vivo system to examine genetic interactions that may contribute to neurological
phenotypes like ASD.

Understanding the interactions between genes implicated in autism requires a tractable,
high-throughput in vivo system. This is particularly important as patient genotypes possess
variants affecting many genes, thus generating an exponential number of potential interactions.
To this end, the fruit fly Drosophila melanogaster offers a versatile tool in which neurodevelop-
ment and behaviour can be studied in isogenised genetic backgrounds, and under controlled
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environmental conditions [11–13]. To detect single and combinatorial gene dosage effects in
the fly, we examine two neurological phenotypes, namely (1) abnormalities in larval neuromus-
cular junction (NMJ) bouton number and (2) circadian defects apparent through abnormalities
in adult sleep rest cycles. The NMJ offers a sensitive in vivo system to identify interactions that
alter synaptic growth and maturation [14] and has proved a valuable tool for studying genes as-
sociated with neurodevelopmental disorders including autism spectrum disorders, intellectual
disability and neuropsychiatric diseases [15–19]. For example, mutations in Neurexin IV, the
Drosophila orthologue of the autism gene CTNAP2, have been shown to decrease NMJ bouton
number and the abundance of glutamate receptors that oppose the active zones. Circadian
rhythm activity defects have been previously reported in Drosophila neurodevelopmental mod-
els, including fragile X syndrome and Angelman syndrome, and can be an indicator and causa-
tive factor of neurodevelopmental and neurodegenerative disorders in humans [20–23]. Recent
studies in Drosophila have also identified sleep abnormalities in mutations of the candidate
ASD gene cullin 3 (CUL3) [24–26]. Furthermore, sleep and circadian abnormalities are both
significantly associated with ASD: Sleep disturbance is experienced by up to 80% of individuals
with ASD, and while more strongly associated with ASD than other neurodevelopmental disor-
ders it is not associated with intellectual disability, which is however frequently comorbid with
ASD [22].

In this study, we modelled the effects of gene dosage changes on Drosophila neurological
readouts using gene sets derived from multigenic de novo CNVs that had been identified in pa-
tients with autism [5,27–29]. We focussed our attention on the unique Drosophila orthologues
of genes affected by these CNVs whose protein products had previously been found to partici-
pate in an ASD-associated interaction network, and which had a role in neural functioning [9].
To do this, we first considered those CNVs that changed only a single gene in the ASD-associ-
ated network, and show that the dosage alterations in the Drosophila orthologue yields neuro-
logical defects similar to those previously reported in Drosophila neurodevelopmental disease
models [30,31]. We next looked at CNV gene sets that affected multiple genes in the ASD-asso-
ciated network. Amongst these genes, no heterozygous mutation in a single gene led to signifi-
cant synaptic defects in the fly. However, pairwise crosses between heterozygously-mutated
genes yielded neurological defects comparable to the monogeneic models. We observe that (i)
pairwise combinatorial dosage effects amongst these genes are not additive, but clearly syner-
gistic, and (ii) that when the direction of copy change of the orthologues in individuals with
ASD is considered, the observed effect at the Drosophila synapse supports a model of conver-
gent phenotypic outcome between distinct synergistically-interacting gene pairs. No effects
were observed among gene pairs that included neuronally-expressed Drosophila genes whose
orthologues were affected by these CNVs but that were not part of the ASD-associated net-
work. We show that the combinations of genes drawn from these CNVs that interact are specif-
ic, supporting distinct molecular aetiologies underlying ASD. We also show that these specific
interactions affect different molecular processes at the Drosophila synapse, supporting the role
of distinct molecular ASD related aetiologies. In total, we identified synergistically-interacting
orthologous pairs among 3/4 of the CNVs considered, demonstrating novel synergistic interac-
tions that may contribute to the aetiology of autism.

Results
Previous studies applying network analyses to rare ASD associated genetic variants have pro-
posed that these variants may genetically interact to exert their phenotypic influence in a pa-
tient [9,10]. To investigate the proposition of gene-gene interactions in these ASD cases, we
used the fruit fly Drosophila. In particular, we modelled the effects of combinatorial
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heterozygous dosage changes of pairs of candidate genes, in the fly, and looked for synaptic
and circadian defects. A schematic of our method is also set out in Fig. 1. Candidate genes were
defined as those genes that had both (1) been identified to be previously affected in individuals
with ASD by de novo CNVs, and additionally (2) those contributing to a large network of inter-
acting proteins with roles in neural functioning, herein termed as an “ASD-associated network”
[9]. Firstly, two CNVs were identified that affected only a single gene within the ASD-associat-
ed network: Specifically, 1 CNV affected CTNND2 while another CNV affected NOTCH1
(Table 1). These were brought forward as ‘monogenic’ candidates. Four additional de novo
human CNVs were identified that each overlapped multiple ASD-associated network candi-
date genes, and where every candidate gene possessed a unique Drosophila orthologue. These
CNVs gene sets were also taken forward for in vivo study (Table 1). In addition, from each of
these 4 CNVs, two control genes were randomly selected and taken forward. These were genes
that again possessed a unique Drosophila orthologue, and which were expressed in both the lar-
val and adult nervous system (Table 1). Of the final 6 CNV gene sets taken forward for in vivo
modelling, 2 sets were monogenic while 4 sets were polygenic. 4 were derived from copy num-
ber losses while 2 were derived from copy number gains. Table 1 details the CNVs, directionali-
ty, human genes and corresponding Drosophila ortholouges for all experiments.

Modelling ASD genes in the fly with NMJ and circadian phenotypes
Singular and combinatorial effects resulting from the simultaneous dosage change of ASD-can-
didate genes were investigated by identifying changes in neuromuscular junction (NMJ) bou-
ton number, and circadian rhythms (specifically alterations in the light/dark bias towards sleep
and rest). As a complex disease with behavioural deficits relating to alterations in the human
brain, ASD may not be wholly modelled in Drosophila. However, by enabling the rapid screen-
ing of multiple target genes the fly is a powerful model to test gene-gene interactions in vivo. It
thus offers a tractable method to better understand the gene-gene interactions postulated to

Fig 1. Drosophila screening strategy to detect interactions between the orthologues of genes
simultaneously affected by a de novo CNVs identified in individuals with ASD (see Methods).

doi:10.1371/journal.pgen.1004998.g001
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Table 1. Human CNVs, candidate (bold) and control genes, and their respective Drosophila orthologues.

CNV Identity Chr Start End CNV
Type

Human Candidate genes Drosophila Orthologues
of candidate genes

Figure

11079_chr3_loss_197208363_l 3 197208363 198838422 Loss Phosphate Cytidylyltransferase 1,
Choline, Alpha (PCYT1A)

fsn 3

Discs large 1 (DLG1) Discs large (dlg) 3

p21-activated kinase 2 (PAK2) p21-activated kinases
(Pak)

3

LOC220729 CG5359 3

12289_chr5_loss_11403621_l 5 11403621 11493124 Loss catenin delta 2 (CTNND2) p10 catenin (p120ctn) 2

1946_301_chr9_gain_138505259 9 138505259 139336068 Gain Notch1 Notch (N) 2

12235_chr9_gain_129907917_l 9 129907917 130512360 Gain Dynamin-1 (DNM1) dynamin/shibire (shib) 5

Prostaglandin E Synthase 2
(PTGES2)

su(p) 5

SWI5 Recombination Repair
Homolog (SWI5)

CG14104 5

alpha-Spectrin (SPTAN1) alpha-Spectrin (a-spec) 5

12239_chr22_loss_17249508_l 22 17249508 18693261 Loss T-box 1 (TBX1) optomotor-blind-related-
gene-1 (orbg-1)

4

Guanine nucleotide-binding
protein subunit beta-like
protein 1 (GNB1L)

CG13192 4

histone cell cycle regulator (HIRA) hira 4

solute carrier family 25 (SLC25A1) sea 4

Zinc finger, DHHC-type
containing 8 (ZDHHC8)

CG34449 4

George syndrome critical region
gene 8 (DGCR8)

partner of drosha
(pasha)

4

Septin 5 (SEPT5) Septin 4 (Sept4) 4

12691.
p1_chr16_loss_68529466_s

16 68529466 71494580 Loss VAC14 CG5608 S1

PH domain and leucine rich
repeat protein phosphatase-like
(PHLPPL)

PH domain leucine-rich
repeat protein
phosphatase

S1

Splicing factor 3B subunit 3
(SF3B3)

CG13900 S1

Calbindin 2 (CALB2) Calbindin 53E (cbn) S1

tyrosine aminotransferase (TAT) CG5608 S1

C-type lectin domain family 18,
member C (CLEC18C)

CG3626 S1

AP1G1 adaptor-related protein
complex 1, gamma 1 subunit
(AP1G1)

AP-1γ S1

Dihydroorotate dehydrogenase
(DHODH)

Dihydroorotate
dehydrogenase (dhod)

S1

CNVs were selected from previous studies that identified de novo or rare CNVs in the genomes of individuals with ASD (see Methods). CNVs post-fixed

“_1” were taken from the study by Levy et al. [28], CNVs post-fixed “_s” were taken from the study by Sanders et al.[29], while the CNV

1946_301_chr9_gain_138505259 was taken from the AGP study [5]. The candidate and control genes were among those genes affected by the given

CNV: The protein products of the candidate genes interacted in a previously identified network of interacting proteins associated with neural functioning,

while the control genes’ protein products are expressed embryonically and neuronally.

doi:10.1371/journal.pgen.1004998.t001
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occur as a result from these large de novo CNVs. We believed bouton number, and circadian
rhythms to be relevant because phenotypes because: (i) The fly NMJ, a tractable and highly
characterised glutamatergic synapse, has been successfully used to detect synaptic defects in
models of ASD, neuropsychiatric disease and intellectual disability [15,31]; (ii) circadian
rhythm defects are associated with ASD and several fly ASD models [21,32,33].

Drosophilamodels of monogenic forms of ASD yield neurological
phenotypes
Two of the six CNV gene sets considered contained only one candidate gene. One monogenic
gene set is derived from a loss CNVs that affected the orthologue of the Drosophila gene p120
catenin (p120ctn) with roles in cell adhesion and signal transduction, while the other CNV con-
tained the evolutionarily conserved signalling molecule Notch, whose human orthologue was
found to be copy number increased (Table 1). Mutants for neurexin IV (using Nrx-IV4304), the
orthologue of the autism gene CNTNAP2, and w1118 were used as positive and wild type con-
trols, respectively. All Drosophila stocks were isogenised to the w1118 wild type background for
7 generations for this study. As previously described, we found that NrxIV homozygous null
mutants display reduced bouton numbers, while heterozygote nulls have no observable differ-
ence when compared to wild type (Fig. 2A) [34].

The first monogenic CNV gene set we analysed was DrosophilaNotch, the orthologue of
human Notch1, derived from a human Chromosome 9 copy number gain CNV (Table 1). To
investigate the increased expression of DrosophilaNotch, we overexpressed Drosophila Notch
(using UAS-Notch-Full) driven by the ubiquitous expression GAL4 driver 1032-Gal4 (Fig. 2B).
While larvae overexpressing Notch had no overt effect on early larval survival, we observed re-
duced NMJ bouton numbers (n>20, Kruskal-Wallis test, �� P<0.01; Fig. 2B) showing that dos-
age increase in this gene yields synaptic phenotypes in Drosophila.

Next, we considered the monogenic CNV gene set corresponding to the loss of the Drosoph-
ila orthologue p120ctn. The previously described null mutant p120ctn308 was isogenised to ana-
lyse hemizygous p120ctn loss [35]. However, p120ctn heterozygous null mutants displayed no
significant change in NMJ (Fig. 2C) although homozygous p120ctn null mutants were found to
display a significantly reduced bouton number (n>20, Kruskal-Wallis test, �� P<0.01, Fig. 2C).
We note that, unlike in vertebrates, Drosophila p120ctn homozygous null mutants are viable
[35].

We next looked for circadian rhythm defects in the monogenic CNV gene set orthologues
Notch and p120ctnmutants. Notch overexpression larvae were reared at 16°C, and were trans-
ferred to 25°C during pupation, so to mitigate gross developmental defects. We analysed sleep/
rest periods (measured as a contiguous 5 minute periods of inactivity) as a surrogate for look-
ing at gross defects in rhythmicity. While all negative control and single mutants displayed nor-
mal light/dark differences in sleeping patterns (i.e more sleep/rest periods during the dark
12hrs; Fig. 2D, E), both p120ctn homozygous nulls (Fig. 2E) and the Notch (Fig. 2D) overex-
pressing flies all lost the dark bias and displayed no significant difference between light/dark
sleeping patterns.

Taking these monogenic models together, we show that dosage change in Drosophila of the
orthologues of known ASD diseases genes (NrxIV), and of ASD-candidate genes subject to de
novo copy number increase (notch) and decrease (P120ctn) in human, all yield abnormalities at
the NMJ, and in circadian rhythms (notch and p120ctn) (Fig. 2). We also find that despite dif-
ferences in the direction of dosage change in Drosophila that are consistent with the copy
change observed for these 3 genes in individuals with ASD, the bouton count at the NMJ is

Genetic Interactions in Autism

PLOSGenetics | DOI:10.1371/journal.pgen.1004998 March 27, 2015 6 / 23



Fig 2. Bouton number at theDrosophila NMJ following the overexpression andmutation of the
Drosophila unique orthologues of candidate genes identified from human autism-associated copy
number variants (CNVs). A. Representative pictures of NMJs from NrxIV/NrxIV (using Nrx-IV4304), Notch
overexpessing (1032-GAL4, UAS-Notch), and p120ctn/p120ctn (using p120ctn308) 3rd instar larvae; Scale
bar = 20μm.B. Homozygous disruption ofNrxIV, the orthologue of the autism geneCTNAP2, provided a
positive control and displayed a reduced NMJ bouton number as described previously. Heterozygous
mutants of NrxIV yielded no bouton number reduction. Overexpression ofNotch (1032-GAL4; UAS-Notch-
full), whose human orthologue is duplicated in the de novo gain CNV_946_301_chr9_gain_138505259
(Table 1), gave reduced bouton numbers (n>20, Kruskal-Wallis test, ** P<0.01).C. Homozygous disruption
of p120ctn, that is affected by the de novo loss CNVs 12289_chr5_loss_1140362 (Table 1), yields reduced
bouton numbers. (n>20, Kruskal-Wallis test, ** P<0.01). Heterozygous mutants of p120ctn have no
significant change on NMJmorphology. D. and E. Circadian sleep/rest rhythm analysis of candidate genes
from the CNV sets. 1032-GAL4, UAS-Notch, and p120ctn/p120ctn flies lost the dark bias, displaying no
significant difference between light/dark sleeping patterns (t, representing the crosses where no light/dark
sleep/rest bias was observed). Light/dark sleeping bias was measured using student’s t-tests.

doi:10.1371/journal.pgen.1004998.g002
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reduced in all models, supporting a convergent phenotypic outcome in both Drosophila and
human.

Drosophilamodels of polygenic causes of ASD are driven by genetic
interactions
We next considered the four CNVs that each affected multiple genes within the ASD-
associated network. For each, we asked whether the dosage change of their Drosophila
orthologues singularly or in pairwise combination yielded NMJ synaptic or circadian
abnormalities. The number of ASD-associated network candidate genes in each of the five
CNVs with multiple candidate genes ranged from 2–6, with a mean of*4. The four CNVs
consisted of three loss CNVs (11079_chr3_loss_197208363_l with two candidate genes;
12239_chr22_loss_17249508_l with five candidates; 12691.p1_chr16_loss_68529466_s with
six candidates) and one gain CNVs (12235_chr9_gain_129907917_l with two candidates)
(Table 1)

The first multiple candidate gene CNV studied, human de novo loss CNV
11079_chr3_197208363 (Fig. 3A), contained two candidates: the septate junction protein discs
large (dlg) and p21-activated kinase (pak), a serine/threonine-protein kinase [36], which has
been previously shown to control the synaptic Dlg localisation. Isogenised transheterozygotes
of the mutants dlg (dlg1) and pak (pak6) were used and bouton number analysed for synaptic
alterations. Single dlg and pak heterozygous mutants alone displayed no significant change in
NMJ morphology when compared to controls (Fig. 3B, C), whilst homozygous mutants are le-
thal, as previously reported [37,38]. However, dlg/pak transheterozygotes (although the correct
full geneotype is w1118, dlg1; +/+; pak6/+ for this example, all transheterozygtes will be repre-
sented in the ‘gene/gene’ format going forward, for simplicity) displayed significant bouton
number reductions (n>20 Kruskal-Wallis test, �� P<0.01; Fig. 3C). For additional controls,
Fsn (using FsnKG08128) and CG5359 (using CG5359e03976), which were selected from genes
found within CNV 11079_chr3_197208363 but did not participate in the ASD-associated net-
work, were crossed to dlg and pak heterozygotes but no significant NMJ morphology changes
were observed (Fig. 3D). To look for circadian behavioural phenotypes, day/night sleep pat-
terns of adult flies were again analysed. Wild type flies and all negative controls (transheterozy-
gote crosses with FsnKG08128 and CG5359e03976; Fig. 3E, F) and single mutants displayed normal
light/dark differences in sleeping patterns, with more sleeping periods in the dark. However,
dlg/pak flies lost the dark bias (Fig. 3E), displaying no significant difference between light/dark
sleeping patterns. Thus, dlg/pak flies demonstrated synergistic effects, displaying both reduced
NMJ bouton number and circadian rhythm defects only in the transheterozygotes.

Analysis of a second human de novo loss (12239_chr22_loss_17249508_l; Table 1; Fig. 4A),
covering the recurrent 22q11.2 microduplication critical region [39], found no evidence of ab-
normalities in NMJ bouton count nor circadian cycle in the single heterozygote mutants of any
of the 7 genes examined (5 candidates and 2 controls; Fig. 4). However, the two transheterozy-
gous combinations of partner of drosha (pasha; using pashaLL03360) [40] with optomotor-blind-
related-gene-1 (org-1, using org-1MB01466) [41] and that of pasha with Septin4 (Sep4, using
Sep4NP7170) were both found to have reduced bouton numbers (Fig. 4B; n>20, Kruskal-Wallis
test, �� P<0.01, �p<0.05). These relations, however, were not transitive as the combination of
org-1 and Sep4 (org-1/Sep4) did not yield these phenotypes. Similarly, only the org-1/pasha
and pasha/Sep4 transheterozygote flies also lost the dark bias, displaying no significant differ-
ence between light/dark sleeping patterns while org-1/Sep4 did not (Fig. 4D). No significant
NMJ morphology or sleep/rest changes were seen when negative controls hira (using hira185b)
and sea (using seaEP3364) were crossed to form transheterozygotes with the candidates (Fig. 4C,
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Fig 3. Synergistic interaction inDrosophila betweenDlg and Pak, the orthologues of ASD-candidate
genes from a de novo loss CNV 11079_chr3_197208363. A. The Locus of the CNV with mapped
Drosophila orthologues (Candidates, green; controls, red). B. Representative pictures of NMJs from dlg/+
(using dlg1), pak/+ (using pak6), and dlg/pak 3rd instar larvae; Scale bar = 20μm. C. Synaptic alterations were
characterised by NMJ bouton number. Individual heterozygous mutants of candidate gene orthologues dlg
and pak (dlg/+ and pak/+) gave no significant change in NMJmorphology overw1118 controls. However, dlg/
pak transheterozygotes have reduced bouton numbers. (n>20, Kruskal-Wallis test, ** P<0.01). D. Non-
candidate gene controls fsn (using FsnKG08128) and CG5359 (using CG5359e03976) selected from genes
found within CNV gave no significant NMJ phenotype singularly or when crossed to form transheterozygotes
with dlg or pak. E. and F. Circadian rhythm analysis of candidate genes. All negative control F. and single
mutants displayed normal light/dark differences in sleeping patterns. However, transheterozygote dlg/pak
flies lost the dark bias, and displayed no significant difference between light/dark sleeping patterns (t).

doi:10.1371/journal.pgen.1004998.g003
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E). Thus, again, we observe synergistic combinatorial effects, with both NMJ bouton number
and circadian rhythm defects apparent only in the transheterozygotes for this second multigen-
ic loss CNV gene set. However, a final multigenic loss CNV gene set, 12691.p1_chr16_loss_
68529466_s, failed to yield any significant NMJ bouton number or circadian defects amongst
single or pairwise heterozygotes (Table 1; S1 Fig.).

A Drosophilamodel of a human gain CNVs supports convergent
aetiologies following copy number change in ASD
We next analysed a gene set derived from a copy number gain (12235_chr9_gain_129907917_l,
Fig. 5A), by generating constructs for overexpression, and by employing the UAS-GAL4 over-
expression system. The two ASD-associated network genes, dynamin (Shibire) and alpha spec-
trin, when over-expressed together display a decreased NMJ bouton number (Fig. 5B) and lost
the dark bias to sleep (Fig. 5C). The observed decrease in bouton number following pairwise

Fig 4. Synergistic interactions inDrosophila between org-1, pasha and Sept4, the orthologues of
ASD-candidate genes from a de novo loss CNV 12239_chr22_loss_17249508_l. A. The Locus of the
CNV with mapped Drosophila orthologues (candidates, green; control, red).B. Synaptic alterations were
characterised by NMJ bouton number. Individual heterozygous mutants of 5 candidate gene orthologues
(org-1, CG13192, CG34449, pasha, Sep4; blue bars) gave no significant change in NMJ morphology over
w1118 controls (red bar). org-1/pasha and pasha/Sep4 transheterozygotes display reduced bouton. (n>20,
Kruskal-Wallis test, ** P<0.01). The mutants pashaLL03360, org-1MB01466 and Sep4NP7170 were used
respectively. C. Non-candidate gene controlsHira (using Hira185) and Sea (using seaEP3364) selected from
genes found within CNV gave no significant NMJ phenotype singularly or when crossed to form
transheterozygotes with candidate genes.D. and E. Circadian rhythm analysis of candidate genes. All
negative control and single mutants displayed normal light/dark differences in sleeping patterns. However,
org-1/pasha and pasha/Sep4 transheterozygotes lost the dark bias, and displayed no significant difference
between light/dark sleeping patterns (t).

doi:10.1371/journal.pgen.1004998.g004
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over-expression of these candidate genes duplicated in humans with ASD is consistent with the
bouton number decrease also observed among the pairwise disruptions of candidate genes
found to be deleted in humans with ASD. Although the dynamin (Shibire) over-expresser
alone also showed a loss of dark sleep bias in this case, individually-driven genes displayed no
significant change in NMJ morphology over w1118 controls. No significant NMJ morphology
changes are seen when non-ASD-network controls from the CNV gene set Su(P) (using Su
(P)EY13245) and CG14104 (using CG14104f07593) are crossed into the overexpressing back-
grounds (Fig. 5B for NMJ analysis and Fig. 5C for sleep/rest analysis).

Taking all the polygenic models together, with one exception (dynamin (Shibire) dark bias;
Fig. 5B), we show that only particular pairwise combinations of dosage change generate inter-
actions that yield neurological phenotypes comparable to those observed in the monogenic
models (Figs. 2–5). As with the mongenic CNV gene sets examined, among the 3 CNV gene
sets that demonstrate pairwise interactions, we observe directionality effects in NMJ bouton

Fig 5. Synergistic interactions inDrosophila between shibire and alpha spectrin, the orthologues of
ASD-candidate genes from a de novo gain CNV 12235_chr9_gain_129907917_l. A. The Locus of the
CNV with mapped Drosophila orthologues (Target, green; control, red).B. Synaptic alterations were
characterised by NMJ type IB bouton number. Individual heterozygous mutants of candidate gene
orthologues gave no significant change in NMJmorphology overw1118 controls. However, Shibire and alpha-
spectrin double over expressers display reduced bouton numbers (using 1032-GAL4; UAS-Dynamin/UAS-
alpha-spectrin; n>20, Kruskal-Wallis test, * P<0.05). Non-candidate gene controls Su(P) (using Su(P)EY13245)
andCG14104 (using CG14104f07593) selected from genes found within CNV gave no significant NMJ
phenotype singularly or when crossed to form transheterozygotes with candidate genes.C. Circadian rhythm
analysis of candidate genes. Negative controls and candidate gene orthologue overexpression of alpha-
spectrin displayed normal light/dark differences in sleeping patterns singularly or when crossed. However,
Shibire overexpression, and co-overexpression with alpha-spectrin lost the dark bias, and displayed no
significant difference between light/dark sleeping patterns (t).

doi:10.1371/journal.pgen.1004998.g005
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count that are consistent with a convergent phenotypic outcome. Finally, singularly or in pair-
wise combinations, we observed no phenotypes for any model involving non-ASD-associated
network genes.

Specific subsets of the candidates modify the Neurxin IV background
Understanding the functional relationships between genes underlying ASD will help elucidate
the processes that lead to neurological dysfunction and ultimately may pinpoint common
mechanisms that lead to the disorder. To test the relationship between our candidate genes and
a known ASD candidate we crossed subsets of our candidates with neurexin IV, the orthologue
of the autism gene CNTNAP2. From our candidate list we selected dlg, pak and p120ctn which
have functional roles in cell adhesion processes that may involve neurexin IV [35]. We crossed
heterozygous dlg (dlg1), pak (pak6) and p120ctn homozygotes (p120ctn308/p120ctn308) to a sen-
sitised background of NrxIV (Nrx-IV4304/+) and analysed bouton number. In all three cases,
the transheterozgotes of each of dlg, pak and p120ctn/p120ctn in combination with NrxIV
(Nrx-IV4304/+) synergistically yielded reduced bouton number and displayed a loss in the dark
bias to sleep suggesting that these proteins may act in the same pathway (Fig. 6A, B for NMJ
analysis and Fig. 6D, E for sleep/rest analysis). It is worth noting that p120ctn/p120ctn flies in
combination with NrxIV had a significantly reduced survival.

Fig 6. Selective genetic interactions observed between theDrosophila orthologues of ASD candidate
genes and Neurexin IV. A sensitised background of Neurexin IV (NrxIV/+), the orthologue of the autism
geneCTNAP2, was used to look for interactions betweenNrxIV and the ASD candidate gene orthologues
dlg, pak, p120ctn, pasha, and org-1. A. dlg/+, pak/+ andNrxIV/+ heterozygous mutants have no significant
change in NMJmorphology overw1118 controls. However, dlg/NrxIV and pak/NrxIV crosses both displayed
reduced bouton numbers (n>20 Kruskal-Wallis test, ** P<0.01). B. Significant NMJ morphology changes
are also seen for theNrxIV cross with the homozygous p120ctnmutant cross, when compared to the
homozygous p120ctnmutant cross alone (n>20 Kruskal-Wallis test, ** P<0.01). C. No NMJmorphology
changes were observed when pasha and org-1, both from human de novo loss 12239_chr22_loss_
17249508_l, were crossed to NrxIV/+. D. to F. Circadian rhythm analyses of models in Panels A, B and C
support observed genetic interactions: dlg/NrxIV, pak/NrxIV transheterozygotes and the NrxIV cross with the
homozygous p120ctnmutant flies lost the dark bias, and displayed no significant difference between light/
dark sleeping patterns (t), while pasha/NrxIV and org-1/NrxIV transheterozygotes displayed no abnormal
circadian phenotype.

doi:10.1371/journal.pgen.1004998.g006
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We next crossed pasha, sep4, and org-1 heteozygotes with neurexin IV to see if modification
of the NMJ and dark sleep bias was a common feature when alleles were present in the sensi-
tised NrxIV (Nrx-IV4304/+) background. In these cases no significant changes to the NMJ phe-
notypes (Fig. 6C) or sleep/rest rhythms (Fig. 6F) were observed suggesting that pasha, Sep4 and
org-1 are acting on non-converging pathways.

Genetic interactions subsets cause differential synaptic defects
To better understand how these interacting and non-interacting gene pairs exert common cir-
cadian and synaptic phenotypic effects, we next looked for molecular defects at the synapse.
Single homozygous mutations of Drosophila ASD gene orthologues display defects in synapse
development [18,42]. Examples of these defects include alterations in glutamate receptors
abundances, active zone numbers, and presynaptic and postsynaptic structural defects at the
larval NMJ [15,17,18,21,30,42]. To investigate whether gene dosage changes from the transhe-
terozygote subsets above cause molecular synaptic defects, we looked for alterations in active
zone localisation and glutamate receptors abundance at the Drosophila larval NMJ. Drosophila
active zones are identified by staining with the protein bruchpilot (BRP, Fig. 7A), which is posi-
tioned presynaptically and opposite to the postsynaptic neurotransmitter receptors. We

Fig 7. Different genetic interactions effect distinct synaptic defects suggesting that distinct molecular aetiologies underlie ASD. A. The Drosophila
NMJ contains presynaptic active zones (labelled by Bruchpilot, BRP) and postsynaptic glutamate receptor (labelled by GluRIIA). B. Representative images
of BRP staining demonstrate a reduced number of active zone (BRP) puncta in the transheterozygotes dlg/pak, NrxIV/dlg andNrxIV/pak as compared to
control (w1118), C. The number of active zone (BRP) puncta (normalised to bouton size) were significantly reduced in dlg/pak, NrxIV/Dlg andNrxIV/Pak
transheterozygotes. D. The fluorescence of the post-synaptic glutamate receptors were scored and normalised to bouton size HRP levels. Pasha/Sep4
transheterozygotes were the only genotype to demonstrate decreased glutamate receptor abundance. E. Representative images of GluRIIA staining
demonstrating the reduced fluorescence in the transheterozygote Pasha/Sep4when compared to control. F. A schematic showing the sub-types of genetic
interactions supporting distinct molecular aetiologies underlying ASD that converge to yield defects at the synapse.

doi:10.1371/journal.pgen.1004998.g007
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measured BRP foci and normalised them to bouton area from transheterozygotes of NrxIV,
dlg, pak, pasha, Sep4 and org-1. We found that all transheterozygous crosses between nrxIV,
dlg and pak, which we have shown to genetically interact, displayed a reduction in BRP localisa-
tion at the synapse (Fig. 7B, C). However, this was not observed for the genetically-interacting
transheterozygotes pasha/Sep4 or pasha/org-1 or single heterozygous mutants and controls.
We next explored whether dosage changes in our candidate genes might lead to the destabilisa-
tion of the clustering of the postsynaptic glutamate receptors, by studying the levels of GluRIIA
at the synapse. Again, alterations in glutamate receptor subtypes have been discovered in single
homozygous mutations of Drosophila ASD gene orthologues [42,43]. In this case, we found
that out of all single and transheterozygote crosses, only pasha/Sep4 displayed a reduction in
the levels of GluRIIA (Fig. 7D, E). Taken together, our findings demonstrate that distinct mo-
lecular developmental alterations are associated with the different genetically interacting gene
combinations, supporting the idea that distinct molecular aetiologies may contribute to ASD
by converging on common phenotypic outcomes (Fig. 7F).

Discussion
In this study we have developed an in vivomodel system in Drosophila to determine how genes
can synergistically interact within ASD associated de novo CNVs. Specifically, we have shown
that (i) of the 4 human CNVs containing 2, 2, 5 and 6 network-identified candidate genes re-
spectively (from a combined total of 114 copy-changed protein-coding genes), pairwise inter-
actions between Drosophila orthologues yielding changes in the neuromuscular junction
(NMJ) bouton number and circadian rhythms were observed for 3 CNVs; (ii) that the interac-
tions observed are synergistic, as opposed to additive, in nature, and (iii) that the synaptic bou-
ton counts observed following the simultaneous dosage change of all 5 pairs of interacting
CNV candidate genes’ orthologues within Drosophila support a convergent phenotypic out-
come arising from these genes’ dosage change for the individuals with ASD within whom they
were identified (Figs. 2–5, S2). We show that the combinations of genes drawn from these
CNVs that interact are specific, both within a CNV (Fig. 4) and between CNVs (Fig. 6), sup-
porting distinct aetiologies underlying ASD. Finally, we go on to show these specific interac-
tions act through different molecular aetiologies, supporting the role of distinct molecular
aetiologies in ASD (Fig. 7).

The synergistic, as opposed to additive, nature of the pairwise genetic interactions that we
observe in Drosophila has important consequences for identifying the genetic causes of ASD,
and (i) the conserved orthology of the interactors, (ii) the human orthologues’ participation in
an ASD-relevant network constructed from known mammalian interactions, and (iii) the con-
cordance between the direction of dosage change and phenotype all support the inter-species
relevance of our findings. Although there are over 100 ASD candidate genes currently identi-
fied, at least 70% of the genetic causes remain to be explained [9,44]. The presence of multiple
genetic variants in many patients [29,45] suggests that inherited variants might lead to ASD
through the combinatorial effects of distinct deleterious variants which affect a shared biologi-
cal pathway (Fig. 6) [10]. Where variants that act additively to cause ASD in a proband are in-
herited from each parent, those variants individually may cause detectable ASD-relevant traits
in the parents [10,46,47]. However, if combinations of variants act only synergistically to cause
ASD, there would be no expectation of ASD-relevant traits in either parent. Importantly, if
sub-threshold ASD traits affect fecundity then variants that are only deleterious in combination
may rise to a higher frequency in the population. Our results in Drosophila show that only par-
ticular combinations of dosage variants act together to yield an abnormal phenotype (Fig. 4
and Fig. 6). Identifying those variants that contribute to ASD only in combination with other
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specific variants, amongst a background of large amounts of non-contributing genetic varia-
tion, will be challenging because the variety of gene variant combinations is extremely large,
and allele frequencies are likely very rare.

The genes participating in the pairwise genetic interactions identified by our screen were
discs large (dlg: human orthologue (h.o) DLG1), p21-activated kinase (pak: h.o. PAK2), p20
catenin (p120ctn: h.o. CTNND2), Notch (N: h.o Notch 1), shibire/dynamin (shi/dynamin: h.o.
DNM1), alpha-Spectrin (α-spec: h.o. SPTAN1), optomotor-blind-related-gene-1 (org-1: h.o.
TBX1), partner of drosha (pasha: h.o. DGCR8) and Septin 4 (Sep4: h.o. SEPT5). An examination
of CNVs listed in the Database of Genomic Variants (DGV) [48] reveals that most of these
genes are found to be individually dosage changed in the same direction in apparently healthy
individuals (DLG1, 7 CNVs; PAK2, 1 CNV; DNM1, 1 CNV; SPTAN, 1 CNV; SEPT5, 2 CNVs;
TBX1, 9 CNVs; DGCR8 5 CNVs). However, only one of these CNVs might simultaneously
change two genes that our study demonstrate genetically-interact in the fly (variant nsv828939;
[49]) and CNVs strongly implicated in ASD have previously been reported in apparently
healthy individuals [47,50]

Many of the interacting genes have known functions in the nervous system. For example
the localisation of the septate junction and neuronal adhesion protein Dlg at the NMJ has been
shown to be regulated by Pak serine/threonine-protein kinase activity [36]. In addition, it is in-
teresting to point out that p21-activated kinase (PAK) has been shown to interact with the pro-
tein SHANK3 in rat, whose disruption can also cause ASD, with mutant Shank3 altering actin
dynamics driven by PAK signalling [51]. Destabilisation of the actin filaments at the NMJ leads
to defective NMDAR-mediated synaptic current in neurons. PAK inhibitors have also been
shown to rescue fragile X syndrome phenotypes in Fmr1 KO mice [52], suggesting an impor-
tant role for Pak serine/threonine-protein kinase activity in ASD and ID. The gene alpha-spec-
trin, which we show genetically interacts with the dynamin protein shabire [53], is known to
cross link actin, and has been shown to be important for the localisation of Dlg at the synapse
[54]. The phenotypes resulting from the combination of these genes’ variants suggests an im-
portant role for the control of synapse integrity via actin stabilisation in ASD [55]. This again is
supported up by a particular enrichment for genes directly and indirectly associated with both
cell adhesion and cytoskeletal associated cell membrane proteins in our interacting genes (5
out of 9; discs large, p120 catenin, Notch, alpha-spectrin, pak), several of which have been iden-
tified to have properties in the neuron [54,56–59]. Many studies have linked neurodevelop-
mental disorders, including ASD, to mutations in synaptic adhesion proteins, including the
neurexins and neuroligins, and mutations in these in Drosophila have yielded both behavioural
and larval NMJ defects [30,31,60]. We show specific interactions between P120ctn, dlg and pak
with Drosophila neurexin IV, which has been shown to be involved in the maturation of the
Drosophila NMJ. [34,61,62]. Notably, the ASD-network orthologues (namely org-1, pasha and
sep4) that contribute to the interactions modelling the CNV 12239_chr22_loss_17249508_l
that covers the 22q11.2 microdeletion critical region, did not yield phenotypes in the sensitised
NrxIV background (Fig. 6) suggesting that these intracellular genes may be exerting phenotypic
effects through an alternative process. While other (non-ASD network) genes in this 22q11.2
critical region have received interest in effecting the many associated phenotypes, our study
suggests that interactions between the human genes TBX1, DGCR8 and SEPT5may play a sig-
nificant causal role [39].

Alterations in active zone structures have been connoted in ASD [63]. Moreover, neuron
specific knockdown of the Drosophila orthologues of the ASD genes CNTNAP2 and NRXN1,
NrxIX and Nrx-1 (dnrx), have been shown to alter the levels of the active zone protein BRP
[18]. BRP shows both sequence and functional homology with the mammalian ELKS/CAST
proteins that are structural components of the vertebrate active zone [64,65]. Here we show
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that dosage changes created by transheretozygotes between NrxIV, dlg and pak lead to a reduc-
tion in BRP foci. Dlg is a postsynaptic anchoring protein which is required for the development
and stability of the postsynaptic subsynaptic reticulum (SSR), whilst Pak is known to phos-
phorylate Dlg and control its abundance at the synapse [36]. NrxIV is predominantly presyn-
aptic, but is required for the cell-cell contacts that influence synaptic development [66], and
govern the interconnectivity between both neurons, glial cells and the pre- and postsynapse
[30]. Dosage alterations in NrxIV with Dlg, Pak and p120 catenin may lead to alterations in ad-
hesion protein interactions, causing the destabilisation of the synaptic architecture in both the
pre- and postsynapse, ultimately leading to defective synaptic maturation. In the null mutant
of the Drosophila orthologue of NRXN1, Nrx-1 (dnrx), GluRIIA subunit fluorescence and BRP
active zone density were increased, although bouton numbers still remain reduced [62]. It has
been suggested that interactions between Drosophila neurexins and neuroligins may synchro-
nise GluRIIA, and presynaptic active zone neurexin and neuroligin may be involved in the link
between GluRIIA expression and presynaptic active zone dynamics [30,62]. The interactions
observed between P120ctn, NrxIV dlg and pak also result in synaptic maturation defects. Null
mutants in pak and dlg have also been shown to lead to alterations in glutamate receptor sub-
units (GluRIIA) [36], however, here we did not see a significant interaction between the dlg/
pak transheterozygotes, or the interactions with NrxIV. GluRIIA levels were affected in the
pasha/Sep4 cross. Reductions in GluRIIA have been found to lead to a compensatory increase
in active zone size [67]. We did not observe a change in active zone puncta in the pasha/Sep4
cross, suggesting that these compensatory mechanisms may be compromised in this case. It is
also worth noting that, through changes in the mammalian target of rapamycin mTOR, altered
eIF4E-dependent translation results in ASD-relevant phenotypes in mouse [68] and altered
regulation of the synthesis of neuroligins. Mutations in Drosophila TOR and eIF4E alter levels
of GluRIIA but do not alter the active zones [69]. Interestingly, the fragile X syndrome associat-
ed protein FMRP (fragile X syndrome has 30% co-morbidity with ASD) and the miRNA path-
way are known to mechanistically interact [70] (Pasha, is part of the miRNA microprocessor
complex), while the mRNA of the Sept4 human orthologue (SEPT5) is an FMRP target [10].
Both FMRP, which is known to pause ribosomal translocation [71], and Pasha are involved in
translational repression [72,73]. In addition, both mutations in FMRP and the microRNA pro-
cessing machinery affect the ratios of GluR subunits [43,74]. It may be that pasha/Sep4 deficit
leads to the suboptimal translation of Sep4, which functions in complexes that associate with
cellular membranes and actin filaments. This may lead to inefficient synaptic anchoring. Fur-
ther analysis of this process, and those arising from the gene-gene interactions in this study,
can now be performed. In summary, our in vivo model system may be well suited to rapidly
evaluate how combinations of genes may contribute synergistically to the neurological defects
that, in turn, may contribute to ASD.

Although our data strongly supports a significant causal role for synergistic effects underly-
ing ASD, our current study design is unable to reliably estimate the extent as it was limited to
(i) considering only pairwise interactions among sets of candidate genes, defined as those
genes whose protein products were identified as participating in an ASD-associated interaction
network [9], (ii) considering a limited number of neurological phenotypes studied in the
model organism Drosophila [11] and (iii) our study considered only those 4 multigenic de novo
CNVs identified in individuals with ASD in previous studies where each candidate gene pos-
sessed a unique Drosophila orthologue (seeMethods). Given that each CNV in those previous
studies affected on average 16 protein-coding genes (including non-network genes), we might
only expect only 4 genes to possess unique human:Drosophila orthologues (seeMethods), se-
verely limiting the ability of this model to examine all combinations of affected genes. However,
given that even 16 genes per CNV would generate 240 pairwise gene combinations, it is
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difficult to imagine the extent and nature of these interactions being examined in a less tracta-
ble model with a higher ratio of unique orthologues. While we employed NMJ analysis as a
tractable system for studying synaptic function, and circadian analysis to provide a high
throughput method for studying behavioural deficit, it would be interesting to expand the
behavioural assays to include those which studied social interaction, such as the social space
index [75], and also courtship analysis [76]. Nonetheless, the relevance of our findings in Dro-
sophila to humans is supported by the consistent directional effects observed between the in-
creased or decreased bouton counts, which correspond well with the direction of gene dosage
change in the human CNV. Taken together with the fact no non-ASD-associated network gene
examined yielded abnormal phenotypic effects, when disrupted singularly or in combination
(Figs. 2–5), the development of an informatics-targeted Drosophila-screen presents a rapid ap-
proach for identifying disease-relevant candidate interactions.

Methods

Selecting Drosophila orthologues of genes affected by de novo CNVs
identified in individuals with autism
We considered the four sets of CNVs we informatically examined previously: (1) 73 de novo
CNVs from the Autism Genome Project study [5], (2) 28 de novo CNVs from the Marshall
et al. study [27], (3) 94 de novo or rare CNVs from the Levy et al. study[28] and (4) 67 de novo
or rare CNVs from the Sanders et al. study [29]. On average each CNV overlaps 16 genes with
an s.d. of 23 showing wide variation. In order to reduce the combinatorial search space, we con-
sidered only those 210 genes whose protein products had been identified in a previous CNV
study to participate in a large and highly-significant network of interacting proteins with roles
in neural functioning (herein termed the ASD-associated network) [9]. This network provides
an aetiological basis through which genetic interactions might be mediated. We downloaded
the set of the unique human:Drosophila orthologues as determined by the InParanoid tool
[77]. Although our study has strictly focused on unique (1:1) orthologues, we note that a much
larger number of Drosophila orthologues could be identified by relaxing the requirement of
only a unique human orthologue [78]. Nonetheless, examining the 95 de novo CNVs that har-
boured genes from the ASD-associated network [9], we identified 7 CNVs for which a unique
fly orthologue could be identified for every CNV-overlapped network gene (Table 1; Figs. 2–6,
S1, S2). In addition, we selected two non-network genes from each CNV with multiple candi-
date genes, whose unique fly orthologues were neuronally-expressed in the larval stage. Ac-
knowledging the limited number of unique human: Drosophila orthologues, we were not
seeking here to exhaustively ascertain combinatorial effects in Drosophila between all simulta-
neously copy number changed genes in individuals with autism but rather to investigate the
informatically-proposed presence of such effects in vivo (see Discussion). All selected genes
were completely overlapped by their respective genes.

Drosophila genetics
All Drosophila stocks were isogenised to the w1118 wild type background for 7 generations.
Where possible, previously described amorphic mutants were selected for analysis. Uncharac-
terised insertions were validated using deficiencies. Stocks were acquired for positive mutation
hits from the Bloomington Drosophila Stock Center (BDSC, Indiana University) unless other-
wise stated and contained the following insertions or lesions: p120ctn308, dlg1, pak6, htsk06121,
locoKG02176, aux727, org-1MB01466 and pashaLL03360, α-Specrg41, Sep4NP7170 (Drosophila Genetic
Resource Center, Kyoto Institute of Technology), CG13192EY07746, CG34449d00976, CtBP87De-10,
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CG8507G4779, httMB03997. w1118; UAS-notchFull, UAS-alpha-spectrin and UAS-Dynactin (Sha-
bire) were used for overexpression relating to gains. To generate these, the coding sequences
were amplified using primers containing KpnI sites, subcloned into pUAST, and injected into
embryos. The 1032-GAL4 ubiquitous driver was used for overexpression due to its moderate
ubiquitous expression. NrxIV4304 (BDSC, Indiana University) was used as a positive control.
Negative controls were randomly selected from genes that were not picked as candidates from
the CNV set. All negative controls selected displayed both larval and adult neuronal expression
(BDSC, Indiana University). w1118; FsnKG08128, w1118; cg5359e03976, w1118; Hira185 w1118;
seaEP3364, w1118; Su(P)EY13245, w1118; CG14104f07593, w1118; nelf-aKG09483, w1118; CG8507G4779 and
CG3321c00226 were used for negative controls.

Drosophila larval NMJ analysis
All stocks were cultured on standard molasses/maize meal and agar medium in plastic vials or
bottles at 25°C. Larvae were reared on apple juice plates supplemented with molasses/maize
meal and yeast as previously described [79]. Larvae were selected for NMJ analysis at 5 days
post egg laying. For analysis of bouton number was performed on the NMJ innervating muscles
6 and 7 from hemisegment A2 (1). Over 15 larvae were analysed for each genotype. For immu-
nohistochemistry larvae were fixed for 20mins in 4% paraformaldehyde, or Bouin’s fixative for
30 minutes (GluRIIA). Primary antibodies used were anti-discs large (DLG, Developmental
Studies Hybridoma Bank (DSHB), Iowa City, Iowa, USA),anti-Fas2 (DSHB), anti-GluRIIA
(DSHB) and anti-BRP (DSHB), all used at 1/100. Secondary antibodies used were AlexaFluor
488 goat anti-rabbit and AlexaFluor 633 goat anti-mouse (Invitrogen) at 1/1000, and anti-
HRP-TRITC (The Jackson Laboratory, Bar Harbor, Maine, USA). Z-stacks were taken using a
laser-scanning confocal microscope (Leica TCS SP5 II confocal microscope) and analysis per-
formed using ImageJ and Adobe Photoshop. For statistical analysis of the genetic interactions,
ANOVA was performed between the control, the two single heterozygous mutations and
the transheterozygotes.

GluRIIA and BRP fluorescence analysis
For GluRIIA and BRP analysis at the NMJ, synapses were analysed with optical sections of
0.2μm using a laser-scanning confocal microscope (Leica TCS SP5 II confocal microscope) All
digital analysis performed using ImageJ. For BRP staining the number of puntcta was scored
over the synapse and normalized to synapse area. For GluRIIA analysis the average fluores-
cence intensity was analysed over the whole synapse (marked by HRP staining) and then nor-
malized to HRP intensity. No alterations in HRP levels were observed in any genotypes.

Drosophila sleep/wake circadian behavioural assays
All stocks and F1 crosses were cultured on standard molasses/maize meal and agar medium in
plastic vials or bottles at 25°C within a light/dark cycle of 12 hrs light/ 12 hrs dark (12:12 LD).
For overexpressions, flies were reared at 16°C and then switched during late pupation so to
mitigate gross developmental defects. The flies were then transferred to 25°C within a light/
dark cycle of 12 hrs light/12 hrs dark (12:12 LD). Flies selected for analysis were between 3 and
5 days old. Flies were the transferred to activity tubes containing 5% sucrose and 2% Bacto agar
at one end and were continually synchronized and entrained using a light/dark cycle of 12 hrs
light/12 hrs dark (12:12 LD) at 25°C in the circadian incubator for 3 days before data collection.
The flies were then switched analysed for experimentation and data collection. Sleep/rest peri-
ods were identified as contiguous 5 minute periods of inactivity and were scored and averaged
over 2 day period for both dark ‘day’ and ‘night’ cycles. The raw binary data is processed using
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DAM Filescan102X (Trikinetics, Inc.) and summed into 5 minute bins when analysing sleep/
rest parameters. Data analysis was performed within Excel. Statistics were performed using stu-
dent’s t-tests between ‘day’ and ‘night’ activity.

Supporting Information
S1 Fig. No significant interactions were observed between the pairwise crosses ofDrosophi-
la gene orthologues associated with the human de novo loss _l 12691.
p1_chr16_loss_68529466_s. A) NMJ morphology and B) circadian analysis for Drosophila
orthologues of ASD candidate genes (Table 1). No NMJ or light/dark bias changes were ob-
served in any of the single heterozygous mutants or pairwise crosses.
(TIF)

S2 Fig. The interactions observed between the Drosophila orthologues of the human CNVs
candidates (bold) and control genes. Green indicates an interaction, red no interaction.
(TIF)
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