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Background: Several microRNA (miRNA) molecules have emerged as important post-transcriptional regulators of tumour
suppressor and oncogene expression. Ras association domain family member 1 (RASSF1) is a critical tumour suppressor that
controls multiple aspects of cell proliferation such as cell cycle, cell division and apoptosis. The expression of RASSF1 is lost in a
variety of cancers due to the promoter hypermethylation.

Methods: miR-193a-3p was identified as a RASSF1-targeting miRNA by a dual screening approach. In cultured human cancer
cells, immunoblotting, qRT–PCR, luciferase reporter assays, time-lapse microscopy and immunofluorescence methods were used
to study the effects of excess miR-193a-3p on RASSF1 expression and cell division.

Results: Here, we report a new miRNA-mediated mechanism that regulates RASSF1 expression: miR-193a-3p binds directly to
RASSF1-30UTR and represses the mRNA and protein expression. In human cancer cells, excess of miR-193a-3p causes polyploidy
through impairment of the Rassf1-Syntaxin 16 signalling pathway that is needed for completion of cytokinesis. In the next cell cycle
the miR-193a-3p-overexpressing cells exhibit multipolar mitotic spindles, mitotic delay and elevated frequency of cell death.

Conclusions: Our results suggest that besides epigenetic regulation, altered expression of specific miRNAs may contribute to the
loss of Rassf1 in cancer cells and cause cell division errors.

The tumour suppressor gene Ras association domain family
member 1 (RASSF1, (Dammann et al, 2000; Burbee et al, 2001))
encodes eight different transcripts (a–h), of which Rassf1a is the
most abundant. The RASSF1 gene is located in a chromosomal
locus 3p21.3 in which high frequency of allelic loss is observed in a
variety of human cancers (Kok et al, 1987; Zbar et al, 1987; Chen
et al, 1994; Wistuba et al, 1997). Indeed, RASSF1 is considered as
one of the most frequently inactivated genes in a broad spectrum of
human tumour types such as brain, lung, breast, ovarian, bladder,
prostate and renal cell carcinomas (Burbee et al, 2001; Lee et al,
2001; Yoon et al, 2001; Liu et al, 2002; Horiguchi et al, 2003). The
loss of activity is mostly due to hypermethylation of the gene
promoter but also the aforementioned allelic imbalance (Hogg
et al, 2002; Ito et al, 2005) and in rare cases inactivating mutations
(Kashuba et al, 2009) play a role. Importantly, mice with loss or
decline of Rassf1a protein (hereafter Rassf1) are more prone to

develop tumours spontaneously and after carcinogen or irradiation
exposure (Tommasi et al, 2005; van der Weyden et al, 2005).

Rassf1 carries multiple structural domains (Dammann et al, 2000;
Guo et al, 2007; Hamilton et al, 2009) enabling the protein to operate
in several key regulatory pathways such as the cell cycle and cell
division (Shivakumar et al, 2002; Song et al, 2004), microtubule
stability (Liu et al, 2003; Dallol et al, 2004), DNA damage response
(Hamilton et al, 2009) and apoptosis signalling networks (Baksh et al,
2005; Matallanas et al, 2007). According to recent evidence, rather
the microtubule and cell cycle than the apoptosis-related functions of
Rassf1 are pivotal for its tumour suppressor effect; mutation of the
Rassf1 microtubule-interacting domain abolishes the protein’s
capability to restrain cell cycle progression and suppress cancer cell
growth, albeit intact apoptosis induction (Donninger et al, 2014).

One largely unexplored control mechanism of RASSF1 expres-
sion is the microRNA (miRNA) pathway. miRNAs regulate gene
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expression post-transcriptionally by binding to the target gene
mRNA, which causes degradation of the mRNA and/or inhibition
of protein translation (Guo et al, 2010). Normal function of the
miRNA pathway is essential for the maintenance of many
physiological processes, such as development, differentiation and
apoptosis. Importantly, altered expression of miRNAs have been
associated with several human pathologies as cardiovascular
diseases (Yang et al, 2007; Thum et al, 2008) and cancer
(Cimmino et al, 2005; Johnson et al, 2005). MicroRNAs can be
very potent cancer drivers or suppressors, owing to the capability
of one miRNA to target several genes in the same signalling
cascade or genes with similar function. On the other hand, each
gene can be controlled by several miRNAs. (Bueno et al, 2011) To
date, few miRNAs have been reported to regulate RASSF1
expression, mainly indirectly via targeting genes that are involved
in its epigenetic silencing (Chen et al, 2011; Wang et al, 2011; Li
et al, 2012). Moreover, miR-181a/b has been shown to control
RASSF1 expression by direct binding to the RASSF1-30UTR (Meng
et al, 2012; Bräuer-Hartmann et al, 2015).

Here, we report a novel Rassf1-regulating miRNA, miR-193a-
3p, which directly binds to the 30UTR of RASSF1 mRNA. Previous
reports indicate that miR-193a-3p regulates key metastasis genes,
such as ERBB4 (Yu et al, 2015) and RAB27B (Pu et al, 2016).
Moreover, the miRNA is also known to promote chemoresistance
(Li et al, 2015). Our results reveal a new regulatory function of
miR-193a-3p; overexpression of the miRNA in human cancer cells
abrogates normal cell division by disturbing Rassf1-Syntaxin16
(Stx16) axis that is needed for faithful cell division.

MATERIALS AND METHODS

Cell culture. HeLa cells (ATCC CCL-2, obtained 2006) were
cultured in DMEM (Sigma-Aldrich, St Louis, MO, USA) as
described before (Mäki-Jouppila et al, 2015) or in DMEM/F12
(Sigma-Aldrich) supplemented with 10% foetal bovine serum
(Gibco, Thermo Fisher Scientific, Carlsbad, CA, USA), 0.1 mM

non-essential amino acids (Sigma-Aldrich) and 1% penicillin–
streptomycin (Sigma-Aldrich). For H2B-GFP/tubulin-mCherry
HeLas, which were obtained in 2012 from Dr Stephan Geley
(Medical University, Innsbruck, Austria), G418 (250mg ml� 1) was
added to the culture medium. OVCAR-8 cells (DCTD Tumor/Cell
Line Repository, NCI) were obtained from Dr Olli Carpén in 2015
and were cultured as previously described (Tambe et al, 2016).
HCT116 cells, obtained in 2009 from Dr Lauri Aaltonen (University
of Helsinki, Finland), were cultured as previously described (Mäki-
Jouppila et al, 2015). All cell lines were grown at 37 1C supplemented
with 5% CO2, and tested negative for mycoplasma.

Target prediction screen. The target prediction screen was
conducted with a custom miRIDIAN mimic library (v19.0, GE
Dharmacon, Lafayette, CO, USA) consisting of 55 miRNAs
predicted to target RASSF1. H2B-GFP/tubulin-mCherry HeLas
were reverse transfected using HiPerFect (Qiagen, Valencia, CA,
USA) with the miRNA mimics (40 nM), printed on a 384-well
assay plate in four replicates as described before (Mäki-Jouppila
et al, 2015). MicroRNA-transfected cells were then synchronised
with a double thymidine block as described in ‘Cell cycle
synchronisation’ section. Live-cell imaging with Incucyte (Essen
Instruments Ltd, Hertfordshire, UK) was started immediately after
cells were released from block. Fluorescent still images were
obtained from the transfected cells at the time of the mitotic peak,
equalling 72 h after transfection, with Operetta high-content
imaging system (PerkinElmer, Waltham, MA,USA), equipped
with heating (37 1C) and CO2 supply (5%).

Transient transfections. miRIDIAN miRNA mimics (GE Dhar-
macon) were reverse transfected into cells at 50 nM concentration

using HiPerFect (Qiagen) according to the manufacturer’s protocol.
miRIDIAN miRNA Mimic Negative Control #1 served as a non-
targeting control miRNA. Anti-miR-193a-3p and corresponding
negative control miRNA were purchased from Ambion (Thermo
Fisher Scientific, Carlsbad, CA, USA) and used at 50 nM concentra-
tion. For luciferase reporter assays, miRNA mimics and reporter
plasmids were forward transfected with Lipofectamine 2000 or 3000
(Invitrogen, Thermo Fisher Scientific, Carlsbad, CA, USA) using the
manufacturer’s protocol.

Cell cycle synchronisation. For live-cell imaging experiments,
cells were synchronised with a double thymidine block. First, cells
were plated to 50% confluency and after attachment treated with
2 mM thymidine (Sigma-Aldrich) for 19 h. Cells were released from
the first block by washing with fresh culture medium for 2�
10 min and 1� 30 min and let recover for 3–4 h before reverse
transfection of miRNA mimics. The second thymidine was added
5–6 h after transfection, summing up the total time between the
blocks to 8–9 h. After overnight incubation with the second
thymidine, cells were released into fresh medium and live-cell
imaging started.

RNA isolation and qRT–PCR analysis. For gene expression
analyses, RNA isolation from harvested cells was performed with
RNeasy Mini Kit (Qiagen) according to manufacturer’s instruc-
tions. Complementary DNA was prepared with iScript cDNA
synthesis kit (Bio-Rad, Hercules, CA, USA). For TaqMan-based
qRT–PCR protocol and GAPDH primers used, please refer to
previous publication (Tambe et al, 2016). The primers used for
RASSF1 were R1A-Fw 50-GCTCGTCTGCCTGGACTG-30 and
R1A-Rv 50-CTCCACAGGCTCGTCCAC-30. The following pri-
mers were used to measure STX16 transcript variant 1 expression:
STX16-Fw 50-CAGCTGTTAGCCGAGCAAGT-30 and STX16-Rv
50-CATCAGCAAGCTCGTCCAG-30. To measure mature miR-
193a-3p levels in cells, total RNA was isolated with miRvana
miRNA isolation kit (Ambion, Thermo Fisher Scientific) and
reverse transcription was performed with TaqMan MicroRNA
Reverse Transcription Kit (Applied Biosystems, Thermo Fisher
Scientific, Foster City, CA, USA). miR-193a-3p and RNU6B
specific TaqMan MicroRNA assay (Applied Biosystems,
Thermo Fisher Scientific) were used to measure the expression
of miR-193a-3p and the internal control used for normalisation.

Immunoblotting. The method for cell lysis is described elsewhere
(Mäki-Jouppila et al, 2015). Lysed protein samples were run on 4–
20% gels (Bio-Rad) and then transferred with semi-dry transfer
equipment (Bio-Rad) to nitrocellulose membrane. 5% milk/TBS-T,
5% BSA/TBS-T and Odyssey blocking buffer (LI-COR Biotechnology,
Lincoln, NE, USA)/TBS-T (1 : 1) were used as blocking agents. The
primary antibodies used were mouse anti-Rassf1a (1 : 500; ab23950,
Abcam, Cambridge, UK or SM6017, Acris antibodies GmbH,
Herford, Germany), rabbit anti-STX16 (1 : 750; HPA041019, Atlas
antibodies, Stockholm, Sweden) and mouse anti-GAPDH (1 : 30 000–
50 000; mAb 6C5, Advanced ImmunoChemical Inc., Long Beach, CA,
USA, or HyTest Ltd, Turku, Finland). Primary antibodies were
diluted into TSB-T or in the case of Rassf1a antibody, into TBS-T/
Odyssey blocking buffer (5 : 1) when infrared detection system was
used. Secondary antibodies (1 : 5000 in TBS-T) and detection methods
used are described in previous publication (Tambe et al, 2016) with
the addition of HRP-linked anti-rabbit IgG (Cell Signalling
Technology, Danvers, MA, USA) used also as a secondary antibody.

Immunofluorescence labelling. For Stx16 detection, miRNA-
transfected cells were grown on coverslips and then fixed with 2%
paraformaldehyde in 0.5% Triton-X-100/PHEM (60 mM Pipes,
25 mM Hepes, 10 mM EGTA, 4 mM MgSO4). For microtubule
staining, the cells were pre-extracted in PHEM/0.5% Triton-X-100
for 5 min before fixation using the fixative above supplemented with
0.2% glutaraldehyde. After rinse with MBST (10 mM MOPS, 150 mM
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NaCl and 0.05% Tween 20), coverslips were blocked in 20% boiled
normal goat serum (bngs)/MBST for 1 h at RT. Primary antibodies
used were rabbit anti-STX16 (1 : 250; HPA041019, Atlas antibodies),
mouse anti-CETN3 (1 : 500; H00001070-M01, Abnova), rat anti-a-
tubulin (1 : 500; YL1/2, ab6160, Abcam) and rabbit anti-pericentrin
(1 : 500; ab4448, Abcam), all diluted in 5% bngs/MBST and incubated
1 h at RT. Secondary Alexa Fluor goat anti-mouse 555, goat anti-
rabbit 488, 555 and 647, and chicken anti-rat 488 antibodies
(Invitrogen, Thermo Fisher Scientific) were used at 1 : 500 concen-
tration and incubated for 1 h at RT. DNA was stained with DAPI
(1 : 10 000 in MQ H2O) and coverslips mounted on slides using
Vectashield (Vector laboratories, Burlingame, CA, USA).

Luciferase reporter assay and site-directed mutagenesis. The
RASSF1-30UTR-pMirTarget construct, harbouring the human
RASSF1-30UTR downstream of firefly luciferase sequence, was
purchased from OriGene (Rockville, MD, USA). For luciferase
reporter assay, cells were seeded on a white 96-well plate with clear
bottom, and 1 day later the RASSF1-30UTR reporter vector
(100 ng) was co-transfected with miRIDIAN mimics (50 nM) into
cells, along with Renilla luciferase plasmid (25 ng, pRL-SV40,
Promega, WI, USA) used for normalisation. Lipofectamine 2000 or
3000 (Invitrogen, Thermo Fisher Scientific) was used as transfec-
tion agent, following the manufacturer’s protocol. Luminescence
signal was measured 24 h or 48 h post transfection, respectively,
with the Dual-Glo Luciferase Assay System (Promega) and EnSight
Multimode Plate Reader (PerkinElmer). To mutate the predicted
binding site of miR-193a-3p in the RASSF1-30UTR-pMirTarget,
Quick-Change Lightning Site-Directed Mutagenesis Kit (Agilent
Technologies, Santa Clara, CA, USA) was used according to
manufacturer’s protocol. The following primers were used to
generate a 4 nucleotide mutation: Fw 50-GCCGTGTGAGTGTGA-
CAGGTTACGTGGGGCCTGTGGAATGAG-30 and Rv 50-CTCA
TTCCACAGGCCCCACGTAACCTGTCACACTCACACGGC-30.
The mutation was confirmed by sequencing at the Finnish
Microarray and Sequencing Centre (Turku Centre for Biotechnol-
ogy, Turku, Finland).

Image acquisition and analysis. Immunofluorescence specimens
were imaged with a Zeiss inverted 200 M microscope (Zeiss GmbH,
Oberkochen, Germany) equipped with Hamamatsu ORCA-ER
camera (Hamamatsu Photonics, Hamamatsu City, Japan) and
Metamorph software version 6.2r6 (Molecular Devices, Downing-
town, PA, USA). Signal intensities were measured from maximum
projections of Z-stacks (0.5 mM step size). The relative area
occupied by Stx16 signal was measured from maximum projec-
tions of Z-stacks using the thresholding function to include only
the Stx16 signal for automated area measurement. Signal area was
normalised to cell number for each analysed image. For fluorescent
imaging of live cells, Operetta high-content imaging system was
used (PerkinElmer) and Incucyte equipment was used for phase-
contrast live-cell imaging.

Clinical data analysis. The MicMa breast cancer cohort and the
performed analyses are described in more detail in a previous
publication (Mäki-Jouppila et al, 2015).

Statistical analysis. Statistical analyses were performed using
paired two-tailed Student’s t-test. Statistical significance was
defined as *Pp0.05, **Pp0.01 and ***Pp0.001. Values are
presented as the average±s.d.

RESULTS

Discovery of novel RASSF1-regulating miRNAs. One of the
Rassf1 key functions is to control M-phase progression through
restriction of APC/C-Cdc20 activity (Song et al, 2004). Impor-
tantly, changed amount of Rassf1 protein causes errors both in

mitotic timing and in spindle architecture and chromosome
alignment (Liu et al, 2003; Song et al, 2004). To identify RASSF1-
targeting miRNAs that impair normal mitosis, we selected 55
candidate miRNAs according to miRNA target prediction soft-
wares and tested their ability to induce cell division errors when
overexpressed in vitro. Synchronised H2B-GFP/tubulin-mCherry
tagged HeLa cells were transiently transfected with individual
miRNAs and subjected to live-cell imaging for 3 days. Nine
miRNAs were found to induce pronounced mitotic errors; the
overexpressing cells exhibited increased frequency of multipolar
spindles, lagging chromosomes, chromosome bridges and poly-
ploidy in comparison to miR-control (Figure 1A). Importantly, no
significant changes in the progression of cell cycle were detected
with any of the tested miRNA. Western blotting assays and qRT–
PCR indicated that five out of the nine candidate miRNAs (miR-
1271-3p, -323a-3p, -193a-3p, -181a-5p and -506-3p) suppressed
Rassf1 mRNA and protein levels by at least 20% in comparison to
miR-control (Figure 1A). One of the hit miRNAs, miR-181a-5p,
was recently confirmed to target RASSF1 by others (Meng et al,
2012; Bräuer-Hartmann et al, 2015) that provides validation for
our screen and hit selection criteria.

In addition to the target prediction screen, we implemented a
second clinical correlation screen based on miRNA-RASSF1
mRNA correlation analysis performed retrospectively from a
collection of 101 breast cancer tumour samples profiled for almost
800 miRNAs (Naume et al, 2001; Enerly et al, 2011). The hit
miRNAs (n¼ 19) that displayed statistically significant and the
most negative Pearson correlation (p� 0.22) with RASSF1 mRNA
expression (Figure 1B), were tested in vitro for suppression of
Rassf1 mRNA and protein expression. Western blot analyses and
qRT–PCR of HeLa cell populations overexpressing the selected
miRNAs separately indicated that three miRNAs (miR-182-3p,
-130b-3p and -454) suppressed both the Rassf1 mRNA and protein
levels by at least 20%, while six decreased only the mRNA
expression (Figure 1B). We conclude that the two screens yielded a
total of seven potential RASSF1-targeting miRNAs that efficiently
suppressed RASSF1 expression in cultured human cancer cells.

miR-193a-3p regulates Rassf1 expression via direct binding to
the RASSF1-30UTR. To determine if the hit miRNAs bind directly
to the RASSF1-30UTR, we performed a luciferase reporter assay.
Out of the seven hit miRNAs, only the co-transfection of miR-
193a-3p mimic with firefly luciferase reporter vector harbouring
the RASSF1-30UTR sequence resulted in significant suppression of
the luciferase signal in comparison to the negative miR-control
(Figure 2A, 0.77±0.06, P¼ 0.02). To validate the luciferase
reporter assay result, we mutated the predicted binding site of
miR-193a-3p in the RASSF1-30UTR (Figure 2A) and measured the
impact on the luciferase activity. The results show that co-
transfection of the miR-193a-3p mimic with the mutated luciferase
reporter vector did not suppress the luciferase activity when
compared to miR-control, which confirms that miR-193a-3p binds
to the predicted binding site in the 30UTR of the gene (Figure 2A).

To confirm successful miR-193a-3p mimic transfection, we
measured the expression of mature miR-193a-3p in miR-control
and miR-193a-3p mimic-transfected HeLa cells 48 h post transfec-
tion. The miR-193a-3p levels 420 000-fold higher in mimic
transfected cells compared to miR-control-transfected cell popula-
tion (Figure 2B). Next, to exclude the possibility that the impact of
miR-193a-3p on Rassf1 expression is a HeLa cell-specific event, we
transiently transfected ovarian OVCAR-8 and colon HCT116
carcinoma cells with the miRNA followed by measurement of the
Rassf1 mRNA and protein levels 48 h post transfection. The
qRT–PCR and Western blotting data show that Rassf1 mRNA
and protein levels were equally suppressed in all three cell lines;
the mRNA levels were reduced by an average of 39±16%,
31±8% and 49±11%, in HeLa, OVCAR-8 and HCT116
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Figure 1. Identification of novel Rassf1-regulating miRNAs. Flowchart representations of the two screening approaches utilised. (A) The target
prediction screen. Representative micrographs show mitotic anomalies induced by the overexpressed miRNAs. Scale bar is 50mm. Arrowheads
point to examples of detected mitotic defects, such as lagging chromosomes, chromatin bridges and multipolar mitotic spindles. Suppression of
Rassf1 mRNA and protein expression by the most potent miRNAs is shown below. (B) The clinical correlation screen. The table shows the Pearson
correlations and P-values of the most potent miRNAs (n¼19) with RASSF1 mRNA expression in a breast tumour sample set. Results from Rassf1
qRT–PCR and immunoblotting experiments with these miRNAs are shown below. The target prediction screen (A) yielded four and the clinical
correlation screen (B) three hit miRNAs that are marked with arrows in the graphs. The data are from one or two experiments (mean±s.d.).
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cells, respectively, and the protein levels were declined by an
average of 47±11%, 29±2% and 50±17%, respectively, when
compared to the miR-controls (Figure 2C and D). Moreover,

inhibition of endogenous miR-193a-3p activity in HeLa cells
with anti-miRNA resulted in increase of Rassf1 protein
expression by an average of 51% (Figure 2E). In conclusion,
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out of the seven hit miRNAs, only the miR-193a-3p bound
to the RASSF1-30UTR and was found to cause significant
downregulation of Rassf1 mRNA and protein expression in
various human cancer cell lines.

miR-193a-3p overexpression hampers cytokinesis. Several stu-
dies have functionally associated Rassf1 in the regulation of mitosis
and cell cycle progression (Shivakumar et al, 2002; Song et al, 2004,
2009; Guo et al, 2007; Tommasi et al, 2011). Rassf1 may control
mitosis by perturbing microtubule stability (Liu et al, 2003).
However, the protein has also been suggested to control mitotic
timing by inhibiting APC/C-Cdc20 activity in early prometaphase
(Song et al, 2004). Moreover, Rassf1 localises to the mitotic spindle,
centrosomes and later in mitosis to the midzone/midbody, which
supports the notion that the protein regulates cell division (Song
et al, 2004; Guo et al, 2007). The mitotic defects detected in the
miR-193a-3p-overexpressing cells (Figure 1A) prompted us to
analyse mitotic processes in more depth. Time-lapse imaging of
synchronised HeLa cells with excess miR-193a-3p revealed that a
significant portion of the cells failed to separate the daughter cells
at the end of M-phase; in average 18.7±3.8% of miR-193a-3p-
overexpressing cells failed to form two daughter cells in
comparison to 2.7±0.6% observed in miR-control population
(P¼ 0.02, Figure 3A). The phenotype was confirmed in OVCAR-8
cells in which excess of miR-193a-3p increased the frequency of
cells exhibiting failed cytokinesis from 2.3±0.6% of control cells to
8.0±2.6% (P¼ 0.04, Figure 3A). Also the average duration of
mitosis (from nuclear envelope breakdown to anaphase) in miR-
193a-3p-transfected cell population was slightly longer compared
to miR-control (Figure 3B).

Failure to segregate the daughter cells often results in formation
of progeny cells with two or more nuclei. Quantification of miR-
193a-3p or miR-control-overexpressing HeLa cells that were fixed
and DAPI-stained 48 h post transfection indicated significantly
increased frequency of binuclear cells by miR-193a-3p over-
expression (7.8±1.7%) in comparison to miR-control (2.3±0.5%,
P¼ 0.03). Moreover, when cells with more than two nuclei were
also counted, the fraction of multinuclear cells in miR-193a-3p-
overexpressing cell population further increased in comparison to
miR-control (9.7±2.3% vs 2.3±0.4%, P¼ 0.03, Figure 3C). Similar
observation was also made in OVCAR-8 cells (Figure 3C). We
conclude that excess of miR-193a-3p resulted in a failure of
cytokinesis that caused formation of multinuclear daughter cells.

Excess of miR-193a-3p disturbs the Rassf1-Stx16 axis needed for
cytokinesis. Rassf1 regulates cytokinesis in the spindle midzone by
recruiting a t-SNARE protein Stx16 (Song et al, 2009), which is
needed for accumulating central abscission factors to the midbody
(Neto et al, 2013). Interestingly, Stx16 is also a predicted target of
miR-193a-3p. To assess whether excess of miR-193a-3p affects Stx16
expression, we determined Stx16 mRNA and protein levels in the
miRNA-transfected HeLa cells. Quantification of the qRT–PCR data
showed no difference in Stx16 mRNA levels at 48 h post transfection
in comparison to miR-control (Figure 4A). However, immunoblot-
ting data indicated that the amount of Stx16 protein was
significantly decreased by 40±0.12% (P¼ 0.03) in the miR-193a-
3p-overexpressing cells when compared to control (Figure 4B).

Earlier studies have shown that Stx16 predominantly localises to
Golgi/endosomal compartment in interphase and to spindle midzone
and midbody in late M-phase (Neto et al, 2013; Willett et al, 2013).
Our immunostainings confirmed that in miR-control-transfected
HeLa cells Stx16 resides in these locations (Figure 4C and D).
However, in miR-193a-3p-overexpressing HeLa cells, the Stx16
signals were clearly more dispersed at 48 h post transfection
(Figure 4C). To quantify the difference, we measured the relative
area occupied by Stx16 signals in the miR-control and miR-193a-3p-
transfected cells. The analysis indicated a 2.3 times larger areal signal
distribution in miR-193a-3p-overexpressing cells compared to

miR-control (Figure 4C, P¼ 0.05). Importantly, the Stx16 signal
intensity in the midbody of telophase cells was significantly decreased
by excess of miR-193a-3p in comparison to miR-control (by
38±13%, P¼ 0.03, Figure 4D). We conclude that excess of miR-
193a-3p abrogates cytokinesis due to impairment of Rassf1-Stx16
regulatory axis needed for faithful cytokinesis/abscission.

Overexpression of miR-193a-3p induces multipolarity in mitotic
cells. Cytokinesis failure gives rise to polyploid progeny cells with
extra centrosomes that can cause errors in spindle organisation and
chromosome segregation in the subsequent mitoses (Storchova and
Kuffer, 2008). Interestingly, depletion of Rassf1 (Song et al, 2004)
or its’ centrosomal recruitment factor MAP1S (Dallol et al, 2007)
by RNAi have been reported to cause centrosome defects and
multipolar spindles. To investigate if excess of miR-193a-3p
induces mitotic spindle anomalies, we fixed and immunostained
miR-control and miR-193a-3p-transfected HeLa cells with anti-
bodies against a-tubulin and pericentrin 48 h post transfection.
A variety of multipolar mitotic spindles was detected in cells with
excess of miR-193a-3p (Figure 5A). According to quantification, an
average of 47.3±12.2% of the mitotic cells in the miR-193a-3p-
transfected cell population exhibited a multipolar spindle, which was
significantly more than in the miR-control showing an average of
13.3±5.0% of multipolar mitoses (P¼ 0.01, Figure 5A). To get more
detailed information about the origin of the multipolarity, we
performed immunostainings with a centriole marker, centrin-3
antibody, together with pericentrin and a-tubulin. In 40% of the
multipolar cells in miR-193a-3p-overexpressing population, all poles
were positive for centrin-3 and the rest of the multipolar cells
exhibited one or more poles without centrioles (Figure 5B). This
suggests that both polyploidisation and pericentriolar matrix
fragmentation contribute to the multipolarity induction. In conclu-
sion, excess of miR-193a-3p results in increased frequency of
centrosome abnormalities and multipolar spindles in mitotic cells.

Mitotic defects induced by excess miR-193a-3p result in
accumulation of M-phase cells and increased cell death. Com-
plete or partial loss of Rassf1 (Guo et al, 2007; Tommasi et al, 2011)
or the associated protein MAP1S (Dallol et al, 2007) has been
linked to extended mitotic timing. Furthermore, extra chromo-
somes and/or centrosomes and multipolar spindles have been
reported to prolong mitosis per se in mammalian cells (Gisselsson
et al, 2008; Yang et al, 2008). To investigate whether excess miR-
193a-3p causes accumulation of cells to M-phase, we determined
the mitotic index in asynchronous HeLa and OVCAR-8 cells that
were fixed and DNA-stained 48 h post transfection. Analysis
indicated significantly elevated mitotic index in both cell lines in
comparison to miR-control; 9.8±0.2 vs 3.5±0.4 (P¼ 0.002,
Figure 5C) and 5.9±0.9 vs 3.3±1.6 (P¼ 0.05), respectively.

Besides the spindle anomalies and delayed mitosis, the cells with
excess of miR-193a-3p were found to die more frequently than the
miR-control cells. The fraction of dead cells, analysed from fixed
and DAPI-stained HeLa cells was increased from the average of
3.5±0.1% in miR-control cells to 14.5±5.2% observed in miR-
193a-3p-transfected cells (Figure 5C). To conclude, the mitotic
defects induced by overexpression of miR-193a-3p result in a
transient mitotic arrest and increased cell death.

DISCUSSION

Our data describe a new molecular mechanism whereby expression
of the tumour suppressor gene RASSF1 is controlled in human
cells; miR-193a-3p binds directly to the RASSF1-30UTR, which
leads to downregulation of the mRNA and protein levels of the
target gene. Phenotypically, overexpression of miR-193a-3p in
cultured human cancer cells perturbs normal cell division and
causes polyploidy. Moreover, polyploidisation together with de

BRITISH JOURNAL OF CANCER miR-193a-3p regulates cell division via Rassf1

1456 www.bjcancer.com | DOI:10.1038/bjc.2017.110

http://www.bjcancer.com


m
iR

-c
on

tr
ol

m
iR

-1
93

a-
3p

25 140

14

12

10

8

6

4

2

0

120

100

80

60

40

20

0

miR-control

miR-193a-3p

miR-control

miR-193a-3p

miR-control miR-193a-3p

20

15

* *

* *

10

5

0
HeLa OVCAR-8

HeLa OVCAR-8

P
er

ce
nt

ag
e 

of
 m

ito
tic

 c
el

ls
 w

ith
fa

ile
d 

cy
to

ki
ne

si
s 

(m
ea

n 
± 

s.
d.

)

D
ur

at
io

n 
of

 m
ito

si
s 

(m
in

)

P
er

ce
nt

ag
e 

of
 m

ul
tin

uc
le

ar
 c

el
ls

m
ea

n 
± 

s.
d.

A

B

C

7:10 7:20 7:30 7:40 7:50

8:00 8:10 8:20

7:00

8:30 8:40 8:50

7:35 7:45 7:55 8:05 8:15 8:25

8:35 8:45 8:55 9:05 9:15 9:25

miR-193a-3p

miR-193a-3p miR-193a-3p

I

miR-control

II

III IV

Figure 3. Excess of miR-193a-3p impairs cytokinesis. (A) Representative still images from live-cell films of synchronised HeLa cells transfected with
either miR-control or miR-193a-3p. Time is h : min after release from the double thymidine block. Arrowheads point to dividing cells, with either
normal (miR-control) or failed cytokinesis (miR-193a-3p). Scale bar equals 25mm. The bar graph presents quantification for percentage of mitotic
cells failing in cytokinesis. The data are from three independent experiments with HeLa and OVCAR-8 cell lines (n¼ 300 cells per category). (B) The
scatter plot from one representative live-cell imaging experiment (n¼ 100 cells per group) with miR-control or miR-193a-3p-transfected HeLa cells,
showing the duration of mitosis (min; NEBD-to-anaphase, mean±s.d.) and the fate of each recorded cell. Each cell is presented by a diamond
shape, and the grey colour indicates a cell with failed cytokinesis. (C) Representative micrographs from miR-control or miR-193a-3p-transfected
HeLa cells fixed 48 h post transfection. Arrowheads indicate abnormal binuclear (II), trinuclear (III) and tetranuclear (IV) interphase cells in the miR-
193a-3p-transfected population. Quantification from three experiments shows increased frequency of multinuclear interphase cells in the miR-
193a-3p-overexpressing HeLa and OVCAR-8 cell populations (mean±s.d.; n41500 cells per group) in comparison to miR-control. Scale bar is
25mm.

miR-193a-3p regulates cell division via Rassf1 BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2017.110 1457

http://www.bjcancer.com


novo centrosome abnormalities induces chromosome alignment
problems in the next M-phase, followed by transient mitotic arrest
and cell death.

Although Rassf1 is among the most frequently lost tumour
suppressor proteins, the regulation of Rassf1 by post-translational
mechanisms has not been extensively studied earlier. Among the
human miRNAs, only the miR-181a/b cluster has been demon-
strated to regulate RASSF1 via direct binding to the 30UTR of the
gene product. This miRNA-mediated regulation of RASSF1 plays a
specific role in the pathogenesis and treatment of certain forms of
acute promyelocytic leukaemia, in which PML/RAR fusion
oncogene can promote proliferation via miR-181a/b upregulation
and Rassf1 suppression. (Bräuer-Hartmann et al, 2015) Identifica-
tion of miR-193a-3p as another miRNA that directly binds to the
RASSF1-30UTR and causes efficient suppression of the gene
expression extends the notion that Rassf1 is a target of the miRNA
pathway. However, the potential tumorigenic roles of miR-193a-3p
and miR-181a/b in vivo remain to be studied further in leukaemia
and other neoplasms.

Rassf1 is a tumour suppressor that restrains malignant cell
proliferation plausibly via regulating cell cycle progression and

microtubule stability (Donninger et al, 2014). Here we show, in line
with previous reports (Song et al, 2004, 2009; Guo et al, 2007;
Tommasi et al, 2011), that reduction of Rassf1 expression due
to overexpression of miR-193a-3p abrogates normal cell division and
causes polyploidisation, followed by formation of multipolar mitotic
spindles in the next cell cycle. As both tetraploidy and
extra centrosomes have been intimately linked to promotion of
chromosomal instability and malignant cell growth (Fujiwara et al,
2005; Ganem et al, 2009), we speculate that miR-193a-3p is
an oncomiR that fine-tunes the Rassf1 expression to prevent
cell division errors that can challenge genomic stability. Previously
miR-193a-3p has often been reported to function as a tumour
suppressor miRNA that represses the metastatic capability of cancer
cells (Yu et al, 2015; Pu et al, 2016) and restricts their proliferation
(Seviour et al, 2016). We observed a transient mitotic arrest and
increased cell death following the mitotic defects induced by excess of
miR-193a-3p. However, also the other putative target genes of miR-
193a-3p, such as the anti-apoptotic protein Mcl-1 (Kwon et al, 2013)
may contribute to the cell fate.

To conclude, here we demonstrate that Rassf1 expression
is under post-transcriptional regulation by a novel miRNA,
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miR-193a-3p. Moreover, our data indicate a new, potentially
tumorigenic function of miR-193a-3p; overexpression of the
miRNA disturbs normal cell division, leading to polyploidisation
and accumulation of mitotic defects. The potential tumorigenic
function of the miR-193a-3p-Rassf1-regulatory pathway in vivo
remains as a subject for further studies.
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