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ABSTRACT

The brain is a complex network of interconnected and interacting neuronal populations.

Global efforts to understand the emergence of behavior and the effect of perturbations

depend on accurate reconstruction of white matter pathways, both in humans and in model

organisms. An emerging animal model for next-generation applied neuroscience is the

common marmoset (Callithrix jacchus). A recent open respository of retrograde and

anterograde tract tracing presents an opportunity to systematically study the network

architecture of the marmoset brain (Marmoset Brain Architecture Project; http://www

.marmosetbrain.org). Here we comprehensively chart the topological organization of the

mesoscale marmoset cortico-cortical connectome. The network possesses multiple

nonrandom attributes that promote a balance between segregation and integration, including

near-minimal path length, multiscale community structure, a connective core, a unique motif

composition, and multiple cavities. Altogether, these structural attributes suggest a link

between network architecture and function. Our findings are consistent with previous reports

across a range of species, scales, and reconstruction technologies, suggesting a small set of

organizational principles universal across phylogeny. Collectively, these results provide a

foundation for future anatomical, functional, and behavioral studies in this model organism.

AUTHOR SUMMARY

Emerging research points to network connectivity as a fundamental feature of brains,

influencing interregional signaling, cognition, and behavior. Global efforts are under way to

map, image, and trace cellular connection patterns in humans and in a variety of model

organisms. The common marmoset is increasingly becoming the most used nonhuman

primate model for neuroimaging, genomics, and behavioral research. Here we provide a

comprehensive characterization of the marmoset brain connectome using a recently

published cortico-cortical tract tracing atlas. We find evidence of nonrandom organization

across multiple scales, including near-minimal path length, multiscale community structure,

densely interconnected hubs, a unique motif fingerprint, and the existence of topological

cavities. Collectively, these features suggest that the network is configured to support the

coexistence of segregation and integration of information.

INTRODUCTION

The brain is a networked system of distributed neuronal populations. The complex arrange-

ment of anatomical projections supports interregional signaling and functional interactions,

manifesting as patterned neural activity. Collective signaling in the network is thought to sup-

port perception, cognition, and action. Recent technological advances permit extensive tracing

and imaging of neural circuits in humans and nonhuman model organisms.
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Marmoset brain network

The composition and architecture of brain networks reveals potential routes and mecha-

nisms by which signals are transmitted and integrated (Avena-Koenigsberger, Misic, & Sporns,

2018; Suárez, Markello, Betzel, & Misic, 2020). Numerous studies of structural networks

have revealed characteristic network features such as high local clustering and short pathClustering:
The proportion of a node’s neighbors
that are also neighbors (connected)
with each other.

length (Kaiser & Hilgetag, 2006), as well as the existence of functionally specialized mod-

ules interlinked by densely connected and highly central “hubs” (Betzel et al., 2013; Hilgetag

Hub:
A node that is disproportionately well
connected or central in the network.

& Kaiser, 2004). Hubs have a pronounced tendency to be interconnected with each other

(van den Heuvel, Kahn, Goñi, & Sporns, 2012), forming an integrated core (Zamora-López,

Zhou, & Kurths, 2010). These organizational attributes have been reported in nervous systems

of a range of species, suggesting common organizational principles across phylogeny (Goulas,

Majka, Rosa, & Hilgetag, 2019; van den Heuvel, Bullmore, & Sporns, 2016). Mapping the

architecture of neural circuits to behavioral and disease phenotypes remains a key challenge

for the field (Mišić & Sporns, 2016).

An emerging animal model for next-generation human clinical and behavioral neuroscience

is the common marmoset (Callithrix jacchus; Okano et al., 2016). A New World monkey, the

marmoset shares many key traits with humans, including complex individual and social be-

havior (Miller et al., 2016; Yokoyama & Onoe, 2015). Anatomically, marmoset cortex and

subcortex are also characterized by complex connection patterns, extensive white matter, and

a well-developed, granular frontal cortex (Reser et al., 2017). Short gestation times accelerate

cross-generation studies (Burkart & Finkenwirth, 2015). With the advent of transgenic modifi-

cation techniques and high-field imaging (Kishi, Sato, Sasaki, & Okano, 2014), the marmoset is

poised to become a powerful model for neurodevelopment and neurodegeneration, for mon-

itoring pathophysiological progression, and for testing therapeutic interventions in vivo.

The goal of the present report is to compile a complete quantitative topological charac-

terization of the marmoset white matter connectome. We use state of the art retrograde and

anterograde tract tracing atlas from the Marmoset Brain Architecture Project (Majka et al.,

2016). We then systematically investigate a range of topological attributes and organizational

principles thought to be important for neural signaling and communication, including hub

distribution, community structure, motif composition, and higher order organization.Community:
Subnetworks of brain areas with a
greater than expected density of
connections among each other.

Motif:
Repeating subgraphs or patterns that
form the building blocks of the whole
network.

RESULTS

Tracer data were downloaded from the Marmoset Brain Architecture Project (http://www

.marmosetbrain.org/; Majka et al., 2016). The directed network comprises 55 cortical nodes

and 1,861 directed edges. Injection sites span the cortex (Paxinos, Watson, Petrides, Rosa, &

Tokuno, 2011), including frontal cortex, motor and premotor cortex, somatosensory cortex,

posterior parietal cortex, medial and retrosplonial cortical areas, auditory cortex, visual cor-

tex, part of lateral and inferior temporal cortical regions, part of orbital frontal cortex, and part

of posterior cingulate cortex. For further details about network reconstruction, please see the

Materials and Methods section.

Global Topological and Geometric Attributes

With 55 nodes and 1,861 directed edges, the network is relatively dense (connection den-

sity: 0.626, directed, and 0.601, undirected), consistent with recent reports on the macaque

(Goulas et al., 2014; Markov et al., 2012, 2013, 2014). The weight of connections between

areas decreases monotonically with spatial separation, and the decrease is roughly exponential

(Figure 1B) (Horvát et al., 2016; Mišić, 2014; Roberts et al., 2016). The strength and binary

Strength:
The total weight of connections that
a node participates in.

Network Neuroscience 1182

http://www.marmosetbrain.org/
http://www.marmosetbrain.org/


Marmoset brain network

Figure 1. Global topological and geometric attributes. (A) The FLNe-labeled marmoset cortico-
cortical connectome. Nodes are n = 55 cortical regions with complete input and output project-
ions, giving a sparse weighted directed network (rows= source areas, columns= target areas) with
k = 1,861 edges. The weights are log-transformed. (B) Connection weight (y-axis) versus spatial
separation (x-axis). Each point represents a projection. (C) Global topological attributes of the net-
work, including reciprocity (tendency for nodes to be mutually linked), assortativity (tendency for
nodes to link with similar nodes), clustering (proportion of completed triangles around a node),
and path length (mean shortest set of edges connecting all pairs of nodes in the network). Network
measures are shown in red; distributions from 1,000 in-degree and out-degree preserving rewired
null networks are shown in gray.

degree distributions are right-skewed, suggesting the existence of disproportionately well-Degree:
The number of edges or connections
that a node participates in.

connected nodes or hubs and thus a potentially nonrandom organization (Figure S1).

The network possesses similar connection weights bidirectionally (reciprocity r = 0.602),

several magnitudes greater than in rewired null networks (rrand = 0.001; Figure 1C), sug-

gesting a tendency for bidirectional communication. The strength assortativity of the network

is positive (0.006) but close to 0 and indistinguishable from the null distribution, suggesting

no evidence of homophilic attachment among nodes with similar strengths. The network is

highly clustered (clustering coefficient 0.006; normalized clustering coefficient γ = 1.586)

with short characteristic path length (characteristic path length 6.25, normalized characteristicCharacteristic path length:
The mean length of all shortest paths
(minimum contiguous set of edges)
between all pairs of nodes.

path length λ = 1.23; Figure 1C). Thus it exhibits the small-world property (small-world index

σ = 1.29), consistent with previous findings across multiple model organisms (Hilgetag, Burns,

O’Neill, Scannell, & Young, 2000; Watts & Strogatz, 1998; but see also Hilgetag & Goulas,

2016).

Community Structure

We next seek to characterize the mesoscale structure of the network: the architectural proper-

ties that describe the tendency for neural elements to be organized into circuits and clusters.

By decomposing the network into functionally meaningful components, it becomes possible

to infer node- and edge-level involvement in the network at multiple topological scales.

We use multiscale community detection to describe the modular organization of the net-

work. We apply a Louvain-like greedy modularity maximization method and perform a

Network Neuroscience 1183
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Figure 2. Community structure. A greedy Louvain-like algorithm was used to identify network
communities. (A) The algorithm was run 1,000 times at multiple resolutions (γ parameter), yielding
potential community assignments at multiple scales. (B) Normalized mutual information among
partitions suggests three prominently defined scales, centered on γ = 0.8, γ = 1.4, and γ = 2.0

(indicated by red triangles in panel A). (C) Consensus community partitions at each scale, revealing
4, 5, and 8 communities. Top row: adjacency matrix reordered by community assignment and
strength. Middle row: co-assignment probability across 1,000 runs of the Louvain algorithm. Bottom
row: flatmap projections of community assignments.

parameter search across a range of resolutions (γ = 0.5 . . . 2.0); the search allows us to tune

the sensitivity of the algorithm from a small set of large communities (low resolution) to a large

set of small communities (high resolution) (Figure 2A). We use normalized mutual information

to evaluate patterns of similarity between partitions over resolutions γ (Figure 2B). The proce-

dure identifies three regimes at which community structure is well defined, revealing a nested

hierarchical architecture (Figure 2).

We focus on three points in parameter space (γ = 0.8, γ = 1.4, and γ = 2.0; shown in

red triangles in Figure 2A). The partitions yielded 4, 5, and 8 spatially contiguous communi-

ties, respectively. For the three resolutions, Figure 2C shows the consensus partition (top), the

frequency of co-assignment across multiple algorithm runs (middle), and the spatial layout (bot-

tom). Across resolutions, the frontal cortex is consistently identified as a community, including

dorsolateral and ventrolateral aspects. At the highest resolution (γ = 2.0), the ventrolateral

aspect becomes a separate community. The auditory cortex is also well delineated as a stand-

alone community. At the lowest resolution, the remaining areas are distributed among two

communities; one mainly contains motor and premotor cortical regions and somatosensory

cortex, while the other mainly contains visual areas and parts of lateral and inferior temporal

cortex. At higher resolutions these communities are further broken up into more specialized

units, such as ventrolateral frontal cortex or inferior temporal cortex (Hung et al., 2015). Al-

together, the analysis highlights the existence of a multiscale community structure that maps

onto increasingly specialized functional domains in the marmoset brain.
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Hub Organization

In the previous section we demonstrated that the marmoset connectome displays function-

ally meaningful community organization at multiple scales. This feature is thought to promote

segregation of streams of information, helping to concentrate communication within special-

ized neural circuits (Hilgetag et al., 2000; Hilgetag & Kaiser, 2004). At the same time, co-

herent perception, cognition, and action necessitate a complementary integrative mechanism.

Hubs—central nodes with diverse connection profiles—are thought to be a fundamental fea-

ture that allows information to be sampled and ultimately integrated from multiple specialized

communities (Zamora-López et al., 2010).

We begin by studying the diversity of a node’s connections (participation coefficient;Participation coefficient:
A measure of how evenly distributed
a nodes connections are among
the network’s communities (1 =
maximum, 0 = minimum).

Guimera & Amaral, 2005). Values close to 0 indicate that a node is exclusively connected

to other members of the same module, while values close to 1 indicate that a node’s connec-

tions are evenly distributed among multiple modules. For a particular resolution, we calculate

the participation coefficient for every node and rank nodes according to their participation co-

efficients. We then average the ranks of participation coefficients over all partitions (Figure 3A).

Node participation ranks are consistent across resolutions (Figure 3A; heatmaps), suggesting

that nodes tend to act as hubs across a range of scales. For both in- and out-projections, nodes

Figure 3. Hub organization. (A) The mean rank-transformed participation coefficients across the
range of resolution parameters. In-degree participation coefficients quantify the diversity of a node’s
afferent projections; out-degree participation coefficients quantify the diversity of a node’s efferent
projections. (B) Out-strength to in-strength ratio, showing nodes with greater than expected effer-
ent connectivity. The ratio is correlated with total node strength, meaning that densely connected
nodes are more likely to have greater than expected out-strength. (C) Rich club detection was per-
formed by computing the density of subgraphs composed of ≥ k nodes (rich club ratio; purple), and
comparing it with densities of 1,000 degree-preserving randomly rewired networks (rewired rich
club ratio; gray). The ratio between the two (normalized rich club ratio; pink) indicates levels where
high-degree nodes in the empirical network are significantly more connected with each other than
expected on the basis of their degree alone. P values are estimated as the proportion of rewired rich
club ratios that are greater than the empirical rich club ratio (asterisks). Rich and nonrich (peripheral)
nodes projected on a flatmap.
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with the greatest participation were located in medial frontal cortex, auditory cortex, and vi-

sual cortex. Node participation is also correlated with node degree (in-participation: r = 0.69,

p = 4.7 × 10−9; out-participation: r = 0.76, p = 2.75 × 10−11), suggesting that densely con-

nected nodes tend to have diverse connection profiles (Rubinov, Ypma, Watson, & Bullmore,

2015).

The resolved directionality in the tracer-labeled marmoset connectome allows us to

consider whether some areas are more likely to act as sources or sinks for information flow

(Markov et al., 2013;Mišić, Goñi, Betzel, Sporns, &McIntosh, 2014; van denHeuvel, Scholtens,

& de Reus, 2016). To address this question, we compute the ratio of out-strength to in-strength

for each node and relate this quantity to total strength (Figure 3B). We note two results. First,

the range of out- to in-strength ratios is considerable, suggesting that some areas are better po-

sitioned to absorb signal traffic, while others are better positioned to disseminate signal traffic.

Second, total strength and out- to in-strength ratios are correlated (r = 0.55, p = 1.1 × 10−5),

meaning that nodes with greater strengths are also more likely to act as sources rather than

sinks. There are also several notable outliers with disproportionately large out-strength than

expected on the basis of their overall strength, including frontal polar A10 and inferior tempo-

ral area TE3 (Figure 3C).

We finally investigate the relationship among the well-connected nodes. An oft-observed

phenomenon in brain networks is that high-degree hubs tend to be disproportionately con-

nected with each other (Zamora-López et al., 2010), forming a putative communication back-

bone (van den Heuvel et al., 2012). This tendency can be statistically detected and quantified

using the rich club framework, whereby the connection density of subgraphs containing onlyRich club:
A group of high-degree nodes that
are disproportionately densely
connected with each other.

nodes with degrees ≥ k is compared against an ensemble of rewired null networks

(Colizza, Flammini, Serrano, & Vespignani, 2006; Opsahl, Colizza, Panzarasa, & Ramasco,

2008). Figure 3C shows the density of subgraphs composed of nodes with increasing degree

(purple), the density of subgraphs for rewired networks (gray), and the ratio between the two

(pink). At k ≥ 70 the ratio between the real network and rewired nulls is consistently and

significantly greater than 1, suggesting evidence of rich club organization. Anatomically, rich

club nodes are evenly distributed throughout the marmoset brain, including portions of frontal

cortex, motor cortex, auditory cortex, and inferior temporal cortex (A23a, A23b, A45, A47L,

A6DC, A6DR, A6Va, A8aD, A8aV, A8b, AIP, AuCM, MST, OPt, PFG, PG, S2E, TE3, TPO). No-

tably, rich club nodes are evenly distributed among the segregated communities, providing an

infrastructural feature to sample and integrate information from specialized domains.

Higher Order Interactions

Finally, we study the propensity of the network to support higher order interactions. So far

we have focused on network attributes derived from dyadic (two node) relationships, but an

emerging literature emphasizes the role of higher order interactions that simultaneously take

place among more than two nodes, including motifs and cavities (Benson, Gleich, & Leskovec,Cavity:
Encapsulated combinations of nodes
where information is exchanged
serially, rather than in parallel.

2016; Sizemore, Phillips-Cremins, Ghrist, & Bassett, 2019).

We first consider the motif composition of the network (Milo et al., 2002; Shen et al., 2012;

Sporns & Kötter, 2004). We focus only on three-node motifs as they can take 13 distinct con-

figurations (four-node motifs can take 199 combinations, making the analysis of larger motifs

computationally prohibitive). Specifically, we study the frequency with which motifs occur and

compare this with an ensemble of rewired null networks (Figure 4; real network frequencies =

purple; null network frequencies = black). Comparison to the null model reveals that the net-

work is enriched for several specific motifs (denoted by red stars; p ≤ 0.05), including motifs

Network Neuroscience 1186
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Figure 4. Motif composition. The prevalence of 13 distinct three-nodemotif arrangements is quan-
tified in the empirical network (purple) and in a population of 100 degree-preserving randomly
rewired networks (black boxplots). Two-tailed tests indicate that some motifs are significantly more
frequent in the empirical network (motifs 4, 9, 12, 13; pink asterisk) and some are significantly less
frequent (motifs 1, 2, 3, 5, 7, 8, 10, 11; blue asterisk), suggesting that the topology of the marmoset
connectome possesses a unique motif fingerprint, promoting specific nonrandom circuit configura-
tions. Boxplot whiskers represent the most extreme, non-outlier data points (≤ 1.5× inter-quartile
range).

4, 9, and 13. The network is also deficient in several motifs (denoted by blue stars; p ≤ 0.05),

including motifs 1–3, 5, 10, and 11. This motif spectrum is largely consistent with previous

reports on the macaque (Shen et al., 2012; Sporns & Kötter, 2004). The relative abundance of

motif 9 is noteworthy, as it suggests the existence of “chains” of reciprocally connected regions,

without connections between the ends of the chains. This suggests a functional tendency to

balance segregation and integration: Areas are integrated with their neighbors, but some pairs

of areas have no direct connection and are therefore segregated from each other (Sporns &

Kötter, 2004).

Finally, we investigate the spectrum of higher order structures in the network (Giusti, Ghrist,

& Bassett, 2016; Sizemore et al., 2018, 2019). In particular, we focus on connections that are

unexpectedly absent from the network, suggesting attenuation of communication. The goal of

the analysis is to identify topological cavities: clusters of nodes that form voids, precluding

parallel information exchange and promoting serial information exchange instead. We first

apply edge weight filtration: beginning with the empty graph and adding one edge at a time,

in order of decreasing weight (Figure 5A). Through the filtration process, we track the appear-

ance and disappearance of topological cavities. The process yields a persistence “barcode”

(Figure 5B) and diagram (Figure 5C), representing cycles as they appear (birth) or disappear

(death) through the filtration process. Each bar (row) in Figure 5B corresponds to one point in

Figure 5C, giving an intuitive overview of the cycles’ lifetime. Cavities here are represented

by their minimal representative cycles just before death time, and are referred to using this

definition. H subscripts represent cavities of increasing dimensions; H0 represents connected

components, H1 represents 2D holes, and H2 represents 3D holes (see Figure 5A). Cavities that

persist for a long time (defined as death time minus birth time) represent encapsulated com-

binations of neuronal populations where information is not exchanged in parallel, but rather

in a serial fashion over extended paths. The existence of persistent cavities is then compared

with a rewired null model (Figure 5C, gray).

Compared with a population of randomly rewired networks, the marmoset network displays

multiple statistically unexpected cavities (Figure 5C). Figure 5D shows the top three cavities

Network Neuroscience 1187
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Figure 5. Higher-order organization. (A) Edge filtration was used to identify the appearance of
persistent homology. We focused on topological cavities: circuit configurations that promote serial
or sequential passing of information among constituent nodes. (B) Edge filtration applied to the
marmoset network, focusing on 2D and 3D cavities (H1 and H2, respectively). (C) Edge filtration
identifiedmultiple long-lived cavities in the empirical network (red, green, blue), but generally fewer
than in randomized networks (gray). (D) Representative three-and four-node cavities projected onto
a flatmap.

with four nodes and top five cavities with three nodes, ranked by persistence. Of the four-node

cavities, one spans dorsolateral prefrontal cortex, posterior parietal cortex, and visual cortex

(A8aV, AIP, PG, V4), one is located mostly in the posterior half of the brain of posterior parietal

cortex, inferior temporal cortical region, and visual cortex (OPt, TE3, V4, V4T), and onemainly

resides in posterior parietal cortex, with one node in the premotor cortex (A8C, AIP, PF, PFG).

In general, the cavities are distributed across the processing hierarchy, typically including both

primary sensory-motor areas and higher order polysensory areas, suggesting the existence of

compact circuits that support serial trans-hierarchical processing.

DISCUSSION

The present report comprehensively characterizes the mesoscale connectome of the marmoset

brain. Using high-quality tracer data, we demonstrate that the marmoset brain possesses mul-

tiple nonrandom attributes, including multiscale community structure, a connective core, a

unique motif fingerprint, and multiple cavities. These organizational principles are concor-

dant with numerous reports in other model organisms, highlighting conserved architectural

features across phylogeny.

The configuration of the marmoset connectome suggests a balance between features that

promote segregation and those that promote integration of information (Sporns, 2013). The

network is highly clustered (Figure 1), with dense connectivity among areas that participate

in similar functions, manifesting as a nested hierarchy of specialized communities or mod-

ules (Figure 2). Connection patterns bypass some combinations of areas, yielding topological

cavities that effectively attenuate signaling in specific circuits (Figure 5). Collectively, these

features ensure that signals are exchanged within specific components of the network, limiting

exposure to and interference from signals originating elsewhere in the network.
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At the same time, the network also possesses several disproportionately connected areas

that provide short communication paths between pairs of areas, resulting in near-minimal path

length (Figure 1). High-degree “hubs” are distributed among communities, possess diverse

connectional fingerprints, and are densely interlinked with each other (Figure 3), forming a

connective core that allows sampling and integration of information from specialized domains

(Zamora-López et al., 2010). Altogether, these findings reveal a computational infrastructure

that can simultaneously support a range of localized and distributed operations.

Collectively, these organizational attributes highlight the link between anatomical connec-

tivity and functional domains (Suárez et al., 2020). A salient example is the fact that special-

ized communities typically encompass unimodal areas, whereas high-participation rich club

areas are located in polysensory association cortex. We envision that these findings will help

to inform future work on structure-function relationships, including studies of hierarchical or-

ganization (Buckner & Margulies, 2019; Theodoni et al., 2020), comparisons of structural and

functional connectivity (Hori et al., 2020), and ultimately, large-scale computational models

(Shen et al., 2019). Indeed, the marmoset connectome possesses a prominent hierarchical

architecture defined by the laminar dependence of connections, which is reflected by the cy-

tological attributes of individual areas (Theodoni et al., 2020).

More generally, these findings contribute to a growing literature on comparative network

anatomy (van den Heuvel, Bullmore, et al., 2016). The topological properties of the mar-

moset cortico-cortical connectome are consistent with reports from a wide range of species,

from the invertebrate nematode worm (Towlson, Vértes, Ahnert, Schafer, & Bullmore, 2013;

Varshney, Chen, Paniagua, Hall, & Chklovskii, 2011) and the fruit fly (Shih et al., 2015), to

multiple avian (Layden, Schertz, London, & Berman, 2019; Shanahan, Bingman, Shimizu,

Wild, & Güntürkün, 2013), rodent (Bota, Sporns, & Swanson, 2015; Rubinov et al., 2015;

van den Heuvel, Scholtens et al., 2016), feline (de Reus & van den Heuvel, 2013), and nonhu-

man primate species (Harriger, van den Heuvel, & Sporns, 2012; Markov et al., 2013; Modha

& Singh, 2010). Despite differences in acquisition technology, spatial resolution, preprocess-

ing, and sample size, the findings point to a small but highly conserved set of organizational

principles.

Cross-species comparisons suggest a common set of network attributes, but which of these

attributes are statistically unexpected and what forces shape their emergence (Betzel et al.,

2016; Goulas et al., 2019; Rubinov, 2016; Vértes, Alexander-Bloch, & Bullmore, 2014)? The

most common inferential procedure used in the field, including the present report, involves

comparisons of network attributes with null distributions generated by random edge rewiring

(Maslov & Sneppen, 2002). This approach provides a single reference point, precluding

comparisonswith awider range of possible network configurations (Gollo et al., 2018; Zamora-

López & Brasselet, 2019), and thus limiting inferences about generative mechanisms. We

envision that future studies will take amore comprehensive approach, situating biological con-

nectomes in a broader context or morphospace spanned bymultiple traits (Avena-Koenigsberger,

Goñi, Solé, & Sporns, 2015), and equally importantly, populated by multiple comparable

graphs (Zamora-López & Brasselet, 2019). Consistent with the present results, a recent report in

the marmoset connectome found that connection placement is strongly driven by spatial em-

bedding, as well as by cytoarchitectural similarity (Theodoni et al., 2020), but more research

is needed to understand the generative principles governing the formation of the marmoset

connectome.
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METHODS

All graph measures except persistent homology were computed using Brainconn (https://

github.com/FIU-Neuro/brainconn). Persistent homologywas investigated using the Python bind-

ing of Dionysus 2 (http://mrzv.org/software/dionysus2/index.html). Code used to perform the

reported analyses is available on GitHub (Liu, 2020; https://github.com/netneurolab/marmoset

_connectome) under the BSD 3-Clause License.

Data Acquisition

Data were downloaded from the Marmoset Brain Architecture Project. The digital repository

provides a cellular resolution cortico-cortical connectome reconstructed using neuroanatom-

ical tracers (Majka et al., 2020, 2016). The 143 injections of retrograde tracers included in

the original data source were performed on 52 young adult marmosets (1.4–4.6 years, median

2.5 years; 31 male, 21 female). Six types of monosynaptic retrograde fluorescent tracers were

applied at multiple injection sites. For details about surgical and histological processing, see

Majka et al. (2020). Connection weights are quantified by the extrinsic fraction of labeled neu-

rons (FLNe), representing the proportion of labeled neurons found in the target area to the total

number of labeled neurons excluding the neurons in the injected area (Markov et al., 2014).

The resulting data are preserved, analyzed with a standardized pipeline, and mapped to the

Paxinos stereotaxic atlas using expert-assisted registration (Paxinos et al., 2011).

Network Preparation

Brain areas were defined according to the Paxinos marmoset atlas (Paxinos et al., 2011). Three-

dimensional coordinates for the injection sites are obtained and averaged to get the injection

center in each area. A directed FLNe-weighted structural connectivity matrix was constructed

by including only nodes with pairwise-complete connection values (N = 55), resulting in a

55 × 55 weighted directed adjacency matrix with k = 1, 861 edges. Zero-valued elements in

the adjacency matrix indicate that areas are not connected, as opposed to not tested. Interareal

distances were estimated as the Euclidean between injection centroids of each area.

Local and Global Properties

Local and global measures were implemented in Brainconn (https://github.com/FIU-Neuro

/brainconn), a derivation of bctpy (https://github.com/aestrivex/bctpy), which implements Python

version of Brain Connectivity Toolbox (Rubinov & Sporns, 2010). The weighted analogues of

node in- and out-degree (in-strength and out-strength) were defined as the sum of all afferent

and efferent weighted connections (wij) at a node, respectively:

sin
i = Σjwji and sout

i = Σjwji. (1)

At the global level, reciprocity was used to measure the similarity of directed connections.

For weighted networks, we use the definition from Garlaschelli and Loffredo (2004), which is

calculated as the correlation coefficient between the adjacency matrix and its transpose:

ρ =
Σi 6=j(wij − w̄)(wji − w̄)

Σi 6=j(wij − w̄)Σi 6=j(wji − w̄)
, (2)

where w̄ denotes the sample mean.
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To measure the preference for nodes to connect to others with similar properties, we used

the assortativity statistic. Specifically, we quantified degree assortativity by correlating nodal

degree profiles on the ends of each edges (Barrat, Barthélemy, Pastor-Satorras, & Vespignani,

2004; Leung & Chau, 2007; Newman, 2002).

Finally, to capture the small-worldness organization of the network, we assessed clustering

and characteristic path length. The clustering coefficient measures the tendency for a node’s

neghbors to be connected with each other by counting the fraction of triangles around each

node (Watts & Strogatz, 1998). In the present report we used a weighted and directed analogue

of nodal clustering (Fagiolo, 2007; Onnela, Saramäki, Kertész, & Kaski, 2005). Characteristic

path length describes the harmonic mean length of weighted shortest paths between all pairs

of nodes in the network (Watts & Strogatz, 1998). To recover weighted shortest paths, we used

a logarithmic weight to distance mapping, such that large edge weights correspond to short

distances. Low characteristic path length suggests that the network is well configured to pass

signals among constituent nodes. All measures were contrasted against a population of 1,000

randomly rewired networks with preserved in- and out-degree.

Community Detection

Communities are groups of nodes with dense connectivity among each other. A Louvain-like

greedy algorithm was used to identify a community assignment or partition that maximizes

the quality function Q (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008; Leicht & Newman,

2008):

Q =
1

m ∑
i,j

[

Aij − γ
sout

i sin
j

m

]

δ(ci, cj), (3)

where Aij is the weight of connection between nodes i and j, sout
i and sin

j are the directed

strengths of i and j, m is a normalizing constant, ci is the community assignment of node i, and

δ-function δ(u, v) is defined as 1 if u = v and 0 otherwise. The resolution parameter γ scales

the importance of the null model and effectively controls the size of the detected communities:

Larger communities are more likely to be detected when γ < 1 and smaller communities (with

fewer nodes in each community) are more likely to be detected when γ > 1.

To detect stable community assignments, the algorithm was initiated 1,000 times at each

value of the resolution parameter and consensus clustering was used to identify the most repre-

sentative partition (Lancichinetti & Fortunato, 2012). This procedure was repeated for a range

of resolutions γ = [0.5, 2.2]. We then quantified the similarity between pairs of consensus

partitions (Rubinov et al., 2015). The procedure yielded three regimes/intervals > 0.2 with

near-maximal mutual information (γ = 0.8, 1.4, 2.0), which we focus on in the present report.

Given a partition, we quantify the diversity of a node’s connections to multiple communities

using the participation coefficient (Guimera & Amaral, 2005). The in-participation coefficient

is defined as

pin
i = 1 − ∑

c∈C

[

si(c)
in

sin
i

]2

(4)

and the out-participation coefficient is defined as

pout
i = 1 − ∑

c∈C

[

si(c)
out

sout
i

]2

, (5)
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where si is the total strength of node i, si(c) is the strength of i in community c, and the

sum is over the set of all communities C. Nodes with a low participation coefficient are mainly

connected with nodes in a single community, while nodes with a high participation coefficient

have a diverse connection profile, with connections to multiple communities.

Rich Club Detection

A rich club is defined as a set of high-degree nodes that are also densely interconnected with

each other, above and beyond their degree (Colizza et al., 2006; Opsahl et al., 2008). The

procedure is performed over a range of degrees k. At each level k, all nodes with degree

≤ k were removed from the network. The density of the remaining subgraph is termed the rich

club coefficient φ(k). An identical procedure is performed in parallel on a population of 1,000

randomly rewired networks with preserved in- and out-degree sequences (Maslov & Sneppen,

2002), yielding a null distribution of randomized rich club coefficients φrand(k). A p value

at each k level can then be estimated as the proportion of φrand(k) that are greater than the

empirical φ(k). A consistent regime of statistically significant φ(k) at large k values suggests

the presence of rich club organization.

Motif Composition

Motifs are local connection patterns among a set of nodes and can be thought of as the building

blocks of the network (Milo et al., 2002). For three nodes, there are 13 possible configurations,

including cycles, open triangles, and so forth. Here we computed the frequency of each of the

13 three-node motifs, relative to their frequency in a population of 1,000 randomly rewired

networks with preserved in- and out-degree sequence. A two-tailed p value, indexing how

unexpectedly frequent or infrequent a particular motif is, was estimated by computing the

proportion of null networks with frequencies greater or smaller than in the real network.

Persistent Homology

Persistent homology is computed through a process of edge filtration, using the Python bind-

ing of Dionysus 2 (Giusti et al., 2016; Reimann et al., 2017; Sizemore et al., 2018, 2019). The

filtration is applied to the negative-log-transformed (weight-to-distance transformed) network

by adding one edge at a time, in order of decreasing original connection weight. Through the

filtration process, we track the formation of cycles: structures that, when considered as a ge-

ometric object, form a closed shell with no boundary. To detect topological cavities, we note

the appearance (birth, ρbirth) and disappearance (death, ρdeath) of voids enclosed by cycles.

Persistent cavities, having a long lifetime (ρdeath − ρbirth), are thought to be relatively impor-

tant to the architecture of the network. The persistence of cavities in the empirical network

is contrasted against a population of 100 randomly rewired networks with preserved in- and

out-degree sequences.
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