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Microbial cell factories (MCFs) are of considerable interest to convert low value renewable substrates to biofuels
and high value chemicals. This review highlights the progress of computational models for the rational design of
an MCF to produce a target bio-commodity. In particular, the rational design of an MCF involves: (i) product
selection, (ii) de novo biosynthetic pathway identification (i.e., rational, heterologous, or artificial), (iii) MCF
chassis selection, (iv) enzyme engineering of promiscuity to enable the formation of new products, and
(v) metabolic engineering to ensure optimal use of the pathway by the MCF host. Computational tools such as
(i) de novo biosynthetic pathway builders, (ii) docking, (iii) molecular dynamics (MD) and steered MD (SMD),
and (iv) genome-scale metabolic flux modeling all play critical roles in the rational design of an MCF. Genome-
scale metabolic flux models are of considerable use to the design process since they can reveal metabolic
capabilities of MCF hosts. These can be used for host selection as well as optimizing precursors and cofactors of
artificial de novo biosynthetic pathways. In addition, recent advances in genome-scale modeling have enabled
the derivation ofmetabolic engineering strategies, which can be implemented using the genomic tools reviewed
here as well.
© 2014 Fisher et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In traditional chemical processes, a low-value starting material is
converted into a high-value product through a series of unit operations.
Initial operations may concentrate or refine the starting material by
Computational and Structural Biotechnology. This is an open access article under the CC BY

http://dx.doi.org/10.1016/j.csbj.2014.08.010
mailto:senger@vt.edu
http://www.sciencedirect.com/science/journal/18077
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2014.08.010&domain=pdf
http://dx.doi.org/10.1016/j.csbj.2014.08.010


92 A.K. Fisher et al. / Computational and Structural Biotechnology Journal 11 (2014) 91–99
separating it from contaminants. The processed starting material is
reacted with additional substrates in the presence of a catalyst, and
the product of interest is separated from unreacted substrates and
byproducts. Advances in catalysis and process optimization maximize
single-pass conversion and profitability. Microbial cell factories
(MCFs) have emerged as a revolutionary platform for combining tradi-
tional unit operations and complex multi-step catalysis into a single
self-replicating microbe [1–3]. Reactors filled with billions of microbes
can now replace much of the traditional chemical factory. Each cell
can selectively uptake a low value substrate and use its vast metabolic
network (and compartmentalization if necessary) to produce desired
products. This review covers recent advances in (i) how chassis
microbes are selected and engineered to serve as an MCF, (ii) how
new catalytic properties are added to the metabolic network, and
(iii) how the cell is engineered to use new metabolic pathways to
maximize yield of a desired product. Methods are often grouped into
combinatorial (i.e., evolutionary) and rational (i.e., informeddesign) ap-
proaches. This review specifically targets rational approaches that are
informed by computational models and demonstrates how computa-
tional approaches are advancing the design of a complete, customMCF.
2. Selecting components of an MCF

2.1. Defining the approach: native, heterologous, or artificial

Designing an MCF begins with defining the product of interest. The
desired product could be a native metabolite of the chassis organism
(i.e., wild-type host), or additional metabolic capabilities may be
required for a chosen chassis to produce the product of interest. It is im-
portant to note that simply the presence of a biosynthesis pathway does
not guarantee that a particular chassis is the optimum choice. Even if a
biosynthetic pathway is already present, oftenmetabolic and/or enzyme
engineering strategiesmaybe required to increasemetabolicflux through
the pathway to arrive at yields needed for industrial production. In a re-
cent example, an MCF was created using Saccharomyces cerevisiae along
with a computationally-derivedmetabolic engineering strategy for succi-
nate overproduction. Even though succinate is produced naturally by
wild-type S. cerevisiae, it is consumed by the TCA cycle. An engineered
strain of S. cerevisiae capable of producing industrially-relevant quantities
of succinate (N40-fold yield improvement overwild-type)was created by
deleting the succinate dehydrogenase (responsible for succinate
depletion) and the 3-phosphoglycerate dehydrogenase isoenzymes. The
resulting mutant up-regulated isocitrate conversion to succinate and
glyoxylate to counteract serine and glycine deficiency [4]. Additional
computationally-derived metabolic engineering strategies are discussed
throughout.
Table 1
Common MCF chasses.

Organisma Advantages/disadvantages of chassis

Clostridium sp. Sporulating obligate anaerobes; gene knockout and over
engineer; ability to use a wide variety of complex substr

Corynebacterium glutamicum A well-established industrial workhorse; genetic tools a
Escherichia coli Most well-characterized prokaryote; already used broad

available
Myxococcus xanthus Effective host for myxobacterial, polyketide, and deltapr
Pseudomonas putida Ease of cultivation and well established transformation tec

translational modifications; swappable genetic elements w
Saccharomyces cerevisiae Well characterized and widely used in industry; genomic

anaerobic fermentation
Streptomyces sp. Synthesis of polyketide derivatives
Chinese Hamster Ovary (CHO) Production of sialylated and glycosylated proteins, recom

large production and cultivation costs
Taxus plant cells Effective synthesis of toxic secondary plant metabolites;

a CHO and plant cells are included for comparison with traditional MCFs.
Another common approach to creating anMCF is to install a heterol-
ogous or artificial de novo biosynthetic pathway in a chassis organism to
arrive at a new product. The desired product could be (i) native to ami-
crobe that is difficult to culture/engineer, (ii) from a higher organism
(e.g., a plant) whose industrial production is not cost effective, or
(iii) non-native to all microbes and a product of artificial metabolism. In
addition, the MCF has also provided a convenient way of producing new
derivatives of a compound of interest. As an example, phenylpropanoids,
including resveratrol, are natural plant secondary metabolites that have
demonstrated therapeutic benefits and commercial value. These and
more bioavailable derivatives of resveratrol were sought from an MCF. A
de novo biosynthetic pathway for the formation of resveratrol in
Escherichia coli was constructed using heterologous enzymes from
bacteria and plants [5], and it was later expanded by the addition of a gly-
cosyltransferase (from Bacillus), which enabled synthetic production of
resveratrol glucoside derivatives (i.e., resveratrol 3-O-glucoside and res-
veratrol 4′-O-glucoside) in an E. coli MCF [6]. The use of enzymes here
in their natural function, with natural substrates toward the
production of phenylpropanoids, is an example of a heterologous
biosynthetic pathway. However, the use of the glycosyltransferase to
produce new compounds relies on enzyme promiscuity (i.e., the ability
of an enzyme to acceptmultiple substrates [7,8]). It is with promiscuous
enzymes that novel arrangements of enzymes can give rise to artificial
de novo biosynthetic pathways that allow MCFs to produce new
chemicals. While there are many published accounts, some examples
include the production of: (i) isobutanol [9,10], (ii) hydrocarbons [11],
(iii) styrene [12], (iv) 3-hydroxybutyric acid [13], (v) native silk protein
[14], and (vi) isoprenoids [15,16]. Most naturally occurring enzymes
maintain a spectrumof substrate promiscuity tomaximize evolutionary
fitness and that promiscuity can be engineered [17]. Computational
tools for enzyme engineering along with tools for artificial pathway
synthesis and assembly are discussed below. However, first, the
guidelines for selecting/engineering an optimal MCF chassis (i.e., host
organism) are discussed.

2.2. Selecting the MCF Chassis

The choice of MCF chassis can vary greatly and is generally made
according to: (i) the difficulty of metabolic engineering needed (and
available toolsets), (ii) the nature and toxicity of the product, and
(iii) the metabolic requirements (i.e., pathways, precursors, and cofac-
tors) needed to produce the product. A list of common MCF chasses
and their advantages/disadvantages is given in Table 1. While E. coli
and yeast still dominate as popular chasses due to their well-
developed genomic tools, this is expected to change. In the near-term,
new genomic toolsets will allow the MCF chassis to take advantage of
biodiversity, natural capabilities, and synergies. Ultimately, theminimal
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cell [18], which will eventually be programmed with desired capabili-
ties [19], has the potential to dominate. Given the current state of
technology, six criteria are given consideration when choosing an MCF
chassis and are discussed below.

1. Metabolic resources
For high levels of expression, a target pathway of an MCF requires
abundant precursors and cofactors, including ATP and NAD(P)H.
Strategies for allocating reducing power to biosynthetic pathways
have been reviewed recently [31], and genome-scale metabolic flux
modeling represents a computationalmethod of exploringmetabolic
capabilities [32,33]. While the topic of genome-scale modeling is
discussed in more detail below, it can be used to assess biodiversity
to select an appropriate MCF host. New tools have enabled the eval-
uation of multiple potential MCF hosts to see which best accommo-
dates a biosynthetic pathway of interest. In particular, automated
methods of genome-scale model building, such as the Model SEED
[34] and Path2Models [35], have produced models for thousands of
potential MCF hosts. Database resources such as MetaNetX [36] en-
able the direct incorporation of new de novo biosynthetic pathways
into existing genome-scale models, where their interactions and
use by the metabolic network can be studied.

2. Minimization of metabolic adjustment
When a microbe is metabolically engineered, its metabolic network
use is usually compromised, adhering to the form and function of
the wild-type [37] until evolutionary pressure enables optimality
[38]. Theremay be advantages to choosing anMCF host that requires
minimal metabolic perturbations and further adjustment through
evolution; although, this topic remains under investigation. Some
strains considered as anMCF host may require specialized metabolic
capabilities such as: (i) photosynthesis, (ii) CO2 fixation using the
Wood–Ljungdahl pathway, (iii) lignocellulosic substrate utilization
through a cellulosome complex, (iv) N2 fixation by a nitrogenase,
or (v) methanogenesis. Currently, to take advantage of these path-
ways often requires adopting the host as the expression platform.
An example is Clostridium ljungdahlii, a native host of the Wood–
Ljungdahl pathway, which was recently engineered with genes for
1-butanol synthesis [20]. However, success was also recently seen
in transferring the Wood–Ljungdahl pathway into a non-native, but
related, Clostridium acetobutylicum host to enable production of
biofuels and specialty chemicals from CO2 [21]. Computational tools
for MCF host selection for different de novo biosynthetic pathways
are emerging. Two recent toolsets involve the use of agent-based
modeling and global sensitivity analysis to identify critical compo-
nents [39] and genome-scale metabolic flux modeling to identify
compatible metabolic networks and medium formulations to maxi-
mize expression of a biosynthetic pathway.

3. Secretion of products
It is known that Bacillus spp. are preferred for protein secretion over
E. coli; however, considerable research is ongoing to identify addi-
tional protein secretion hosts [40], including halophiles that enhance
solubility [41] as well as Streptomyces [42] and yeast [43] (among
others) with genetically encoded capabilities for post-translational
modifications. Of course, the type of product can influence the MCF
host as well. For example, production/secretion of fatty acids has
been optimized in E. coli [44] and cyanobacteria [45] while the
Gram-positive soil bacterium Corynebacterium glutamicum has dem-
onstrated effective secretion of amino acids and other biobased fuels,
chemicals, and materials [46].

4. Toxicity of pathway products or intermediates
Many over-producedmetabolic products are toxic to the host organ-
ism, which is a serious consideration when choosing anMCF host for
a particular product [47,48]. Species naturally tolerant to alcohols
tend tomaintainmembrane fluidity under stress and yield increased
amounts of osmoprotectants, redox, and ion regulators. Other
species, such as Clostridium and E. coli, have been rationally or
combinatorially engineered to increase alcohol tolerance 8-fold
over wild-type levels [49–51]. Many synthetic pathways employ
methods of preventing the accumulation of harmful intermediates
using gene regulation. The production of fatty acids for biodiesel in
yeast was mademore effective and showed increased genetic stabil-
ity by a synthetic pathway that incorporated regulation of the fadD
gene by available fatty acids [52]. Further, Dahl et al. [53] increased
production of the isoprenoid amorphadiene using gene promoters
that respond to the presence of farnesyl pyrophosphate and prevent
it from rising to inhibitory concentrations.

5. Genomic toolsets and cultivation considerations
E. coli is a popular MCF chassis due to the relative ease of genetic ma-
nipulations; however, rapid developments have been seen in toolsets
for other organisms. Furthermore, exonucleotide-based “Gibson”
cloning strategies [54] have greatly enabled the ease and reliability
of DNAplasmid assembly. For culture growth, the choice of anaerobic
fermentation versus aerobic cultivation must also be addressed. Aer-
obic organisms in culture must be controlled for oxygen limitation,
excess heat generation, and a rapid growth rate that often results in
high biomass conversion and low yields for secondary products
[55]. The general advantages of anaerobic fermentation include sim-
plified fermenter mass transfer considerations, higher yield of prod-
uct over biomass, and a non-O2 terminal electron acceptor that
enables production of several different biofuels and chemicals from
pathways requiring significant reducing power [31,56].

6. Proper enzyme folding and function
Expression of active heterologous enzymes in an MCF chassis is de-
pendent on a number of factors including proper transcript reading,
availability of necessary chaperonins, and proper post-translational
modifications [57–59]. Eukaryotic systems such as (i) the yeast Pichia
pastoris [60], (ii) Chinese Hamster Ovary (CHO) and human cell lines
[61,62], (iii) highly versatile baculovirus-based insect cell lines [63],
and (iv) Taxus and other plant cells [30] enable host-dependent
post-translational modifications that are required for activity of
some enzymes. Of course there is a significant interest in transferring
these capabilities to othermicrobes. Recent advances using combina-
torial libraries, codon optimization, and shotgun proteomics have
enabled N-linked glycosylation and proper folding of AcrA and IgG
in E. coli [64]. While these considerations are important, there is a
critical need to quickly determine whether heterologous mRNAs
are properly translated in an MCF. A translation-coupling cassette
has been developed to aid troubleshooting by quickly determining
whether large multi-domain enzymes are translated in MCF hosts
[65].

2.3. Designing an artificial de novo biosynthetic pathway

The concept of an artificial de novo biosynthetic pathway design in-
volves the re-arrangement of characterized enzymes and the reliance
on enzyme promiscuity to enable the production of new products.
This is also an area of much ongoing research activity. In some cases, fa-
miliarity with a heterologous pathway that produces a desired product
naturally can provide a means to link the chassis metabolism to the
installed pathway. Such a “plug-in” heterologous pathwaywas recently
usedwith the chassis microbe C. glutamicum to produce anMCF capable
of making the chemical chaperone ectoine. The responsible gene cluster
was taken from the natural ectoine-producer Pseudomonas stutzeri and
uncoupled from its normal expression dependence on high-salinity
surroundings by placing it under control of the tuf gene promoter in
C. glutamicum. Because the tuf gene itself is an elongation factor, the cre-
ated MCF produced ectoine consistently, without the need for a corro-
sive high-salinity medium [23].

In several cases, a desired product will not exist in a heterologous
pathway or more economical routes to that product will be desired.
Here, artificial de novo biosynthetic pathways based on known reac-
tions and enzyme promiscuity are explored. Valuable resources for



Table 2
Tools for designing de novo biosynthetic pathways.

De novo pathway prediction program Function References

Biochemical Network Integrated Computational Explorer
(BNICE)

Formulation of enzyme rules based on EC classifications; assumes enzyme promiscuity to develop novel
pathways

[67,68,70]

BRENDA Database of enzymatic information [71]
DESHARKY Monte Carlo-based pathway design algorithm based on a enzymatic reaction database and linking to

host metabolism
[72]

From Metabolite to Metabolite (FMM) Reconstruction of metabolic pathways based on KEGG mappings [73]
L1SVM, L2SVM, BASELINE Use of chemical fingerprints to generate reaction-filling framework to predict likeliness of reaction

occurring between compounds
[74]

META Predicts sites on molecules prone to enzyme catalyzed reactions [75]
Metabolic Route Search/Design (MRSD) Utilizes metabolic network of an organism to find all known pathways between two defined

metabolites
[76]

Metabolic tinker Large-scope heuristic search strategy for thermodynamically feasible paths between two compounds [77]
METEOR Metabolic fate of a chemical is calculated given known enzymatic capabilities [78]
Minnesota Biocatalysts/Biodegradation Database (UM-BBD) Predicts degradation pathways for environmental contaminants [79]
PathPred Predicts pathways based on chemical reaction group pattern matching and KEGG reactant pair library

for xenobiotics and secondary metabolites
[80]

Rahnuma Prediction, analysis, and comparison of metabolic networks focusing on phylogenetic differences
between organisms

[81]

Retro-Biosynthesis Tool (ReBit) Query of enzyme catalyzed reactions by molecular structure with links to protein databases [82,83]
XTMS Provides ranked pathways for use with an MCF based on Extended Metabolic Space allowed by Gibbs

free energies, flux balance, enzyme sequence annotations, and toxicity of metabolites
[84]
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biosynthetic pathway synthesis are listed and discussed in Table 2. They
include truly novel approaches such as the Biochemical Network Inte-
grated Computational Explorer (BNICE) [66–68], which encodes
enzymes as computational rules that target functional groups of com-
pounds and catalyze chemical reactions. Recently, the BNICE algorithm
was used in conjunction with docking studies to test a method for
generating and screening novel pathways, using the production of
1-butanol from pyruvate in C. acetobutylicum as an example. Docking
studies, which will be discussed in a later section, were used following
pathway prediction to evaluate whether the proposed substrate-
enzyme pairs would be viable. Nine novel biosynthetic pathways were
predicted and evaluated in silico to be thermodynamically feasible and
metabolically favorable [69]. When enzyme promiscuity is assumed,
novel and economical pathways between substrate and product can
be located. Further optimization can even look for the use of particular
precursors and/or cofactors preferred by the metabolic network. This
approach provides possibilities that must be further explored through
enzyme and metabolic engineering, which are the next topics of this
review.
3. Building a functional MCF: enzyme engineering

3.1. Producing functional enzymes

With informed MCF chassis selection, a functional biosynthetic
pathway is needed to produce the product of interest. In the case of an
installed heterologous or artificial de novo biosynthetic pathway,
deficiencies may exist in the physical and chemical structure of the
enzyme(s) that can affect the catalytic rate, stability, specificity, and co-
factor requirements to such an extent to render thepathway inoperable.

The ratio of the catalytic toMichaelis constants kcat
KM

� �
can be readilymea-

sured and is often used to determine the effectiveness of an enzymatic
reaction, accounting for both the dependence of reaction rate on the
substrate concentration and the intrinsic rate of conversion of the sub-
strate to product. This ratio is affected by adjustments in temperature,
pH, solvent, choice of substrate, andmutations to the enzyme structure.
Thus, in the case of de novo biosynthetic pathways, especially artificial
pathways relying on enzyme promiscuity, enzyme engineering may
be required toproduce a fully functional pathway.Methods and applica-
tions of evolutionary approaches to enzyme engineering have been
reviewed extensively [85]. Here, we examine the rational design-
driven enzyme engineering strategies and outline some informed
combinatorial strategies that exist to produce a functional de novo
biosynthetic pathway capable of producing a novel product in an MCF.

A standard toolbox of techniques related to rational enzyme
engineering exists. However, many new tools are under develop-
ment, and recent expansions of computing (and supercomputing)
power and resources are now enabling tremendous growth in the
field. If the crystal structure of an enzyme is available and the
residues that form the active site (or catalytic residues) are known,
standard methods can generate mutant libraries based on rational
knowledge. This is an informed combinatorial approach that in-
volves random mutation and screening, and these methods are
discussed elsewhere [86,87]. In a directed approach, one amino
acid is replaced by another based on prior knowledge of the structure
or function of the enzyme. If structure analysis indicates region(s) of
an enzyme vital for substrate conversion, cofactor binding, or ther-
mostability, a saturation mutagenesis approach can yield significant
information if little is known about specific amino acid substitutions.
In this technique, mutagenic oligonucleotides are used with degen-
erate or partially degenerate three-base-pair substitutions which
generatemutant libraries expressing all natural amino acids simulta-
neously and evenly at a given mutation site [88,89]. Once a fully
representative library is generated, a directed evolution or high-
throughput screening method is used to identify the effect of the
particular mutations. Screening techniques potentially measure
(i) the activity of mutants by measuring substrate/product levels
directly, (ii) absorbance caused by cofactor usage, (iii) production
of optically active compounds, or (iv) auxotrophy resolution [86,
90–92].

3.2. Rational enzyme engineering tools

The two most common rationally-based enzyme engineering
approaches are (i) rational design and (ii) rational redesign. Rational de-
sign is not as commonly used as evolutionary approaches, and it is
unique in its ability to completely design new (i.e., never before seen
in nature) functional enzymes. This is done through computationally
driven design using the Rosetta suite of programs [93] to design a min-
imal active site given (i) the transition state for a reaction to be cata-
lyzed and (ii) a stable scaffold to support the active site. Thus far,
enzymes designed in this way have had sub-optimal catalytic rates
[94]. It has recently been proposed that by focusing on only one critical
aspect of catalysis during rational design, the catalytic rate of the
engineered enzyme should approach that of natural enzymes that



Table 3
Computational tools used in rational enzyme engineering.

Tool Use Reference

AMBER Popular force field for conducting MD simulations [96]
Autodock Several different ways of conducting docking studies and visualizing the results [97]
CHARMM Popular force field for conducting MD simulations [98]
Chimera Visualization and editing tools for molecular structures. Sequence alignment [99]
DOCK Docking studies [100]
GROMACS Conducting MD with a variety of force fields. Analysis of MD trajectories [101]
Modeller Homology model creation [102]
Molecular Operating Environment (MOE) Visualization of protein crystal structures. Homology model creation [103]
NAMD Popular force field for conducting MD simulations [104]
PHYRE2 Online homology modeling server [105]
Pymol Visualizing protein crystal structures and homology models; makes publication-worthy figures
Rosetta Suite De novo rational protein design [93]
SWISS-MODEL Online homology modeling server; homology model analysis tools [106]
Visual Molecular Dynamics (VMD) Visualizing protein crystal structures, homology models, and MD trajectories [107]
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catalyze similar reactions. A serine hydrolase was recently developed
possessing comparable activity to native enzymes through a focus on
obtaining the correct serine-containing catalytic triad design [95]. The
concept of synthesizing rationally designed enzymes for MCFs based
on a “bottom-up” approach fromcomputational design represents a sig-
nificant step forward for generating novel products fromMCFs. Howev-
er, this application of rational design in MCFs remains years away, and
immediate applications are more poised to focus on rational redesign
methods to engineer enzyme promiscuity. In rational redesign, the nat-
ural catalytic activity of an existing enzyme is altered through rational
selection of mutations. The selection process is also computationally
driven, and specific aspects are discussed below. In addition, a set of
useful computational tools is described in Table 3, and these tools are
referenced in the following sections.

1. Static analysis
The most direct way to rationally select mutations for enzyme rede-
sign,which requires the least amount of information about the target
enzyme, is by sequence comparison. In one example, it was desired
that a glucose oxidase be constructed to have the stability of its ho-
molog from Aspergillus niger and the catalytic activity of its homolog
from Penicillium amagasakiense to better carry out glucose oxidation
in industrial applications. By comparing the amino acid sequences of
these two homologs, 15 residues in the active site of the more stable
homolog were rationally supplanted with the residues from the
more catalytically active homolog. Separately and then combinatori-
ally, the 6 most heterogeneous residues among the glucose oxidase
family in the active site were subjected to random mutagenesis.
High-throughput directed evolution techniques determined that
the most stable and most active mutants contained mutations both
rationally selected and acquired randomly. This combinatorial
approach of both rational redesign and directed evolution produced
four mutant enzymes with slightly improved stability and 3 to
4-fold increase in specificity. Onemutant showed a 4.5-fold improve-
ment in catalytic rate over the homolog from A. niger and a slight im-
provement in catalytic rate over the homolog from P. amagasakiense
[108].
Beyond sequence information, three-dimensional crystal structure
information (if available) can also be compared among homologs
through overlay analysis of two protein crystal structures and root
mean square deviation (RMSD) between configurations of bound
substrates. Mannosyl binding was rationally redesigned in the
glycosidase endo-β-1,4-mannanase from Cellulomonas fimi through
structural comparison between it and its homolog, another endo-β-
mannanase from Cellvibrio japonicus. An important phenylalanine
was substitutedwith an alanine (F325A), and the resulting space cre-
ated was used to accommodate an arginine substitution (A323R).
These rationally selected residues were redesigned to mimic the
C. japonicus enzyme structure, and this resulted in enzymatic activity
similar to that of the C. japonicus enzyme [109].
In some cases, a three-dimensional structure of the enzyme of
interest may not be available. Utilizing the known structures of en-
zymes with comparable sequences, a homology model of the
protein of interest can be constructed. Several programs and online
web servers provide homology modeling services as well as tools
useful in evaluating the quality of the produced homology model
[102,103,105,106]. A homology model of the extremely thermosta-
ble homolog of E. coli penicillin acylase from Thermus thermophilus
was created in order to investigate both its thermostability and
substrate specificity. To exchange the preference of T. thermophilus
penicillin acylase for penicillin K substrates with a preference for
penicillin G substrates residues were rationally selected for mutation
to mimic the aromatic binding site of the E. coli penicillin acylase.
Several single and combinatorial mutations were investigated in a
low-throughput format, arriving at amethod for improving the cata-
lytic efficiency for penicillin G by T. thermophilus penicillin acylase by
up to 6.6-foldwith the single L24F rationally selectedmutation [110].
Beyond comparison among enzyme structures, three-dimensional
enzymemodels can also be used for more computationally intensive
analysis. The most intuitive of these analyses are docking studies.
Three-dimensional structures of natural or non-natural ligands are
allowed to adjust their conformations in order to best fit themselves
within a binding pocket of a protein three-dimensional structure.
Docking studies can be conducted and visualized with a choice of
computer programs, such as Autodock and DOCK [97,100,111].
Both enzyme redesign and drug design can benefit from the insight
provided by docking studies. Docking was recently used to study
the active site interactions taking place between newly synthesized
HIV-1 inhibitors thiazolidin-4-ones and the non-nucleoside binding
site of a HIV-1 reverse transcriptase. The tested compounds had
been verified to inhibit HIV-1 replication, and the docking studies
elucidated their methods of inhibition. By collecting such informa-
tion about docking poses, further analogs of inhibitors or activators
can be designed [112]. These techniques have direct applicability to
engineering enzyme promiscuity to enable conversion of new
substrates to desired products.

2. Dynamic analysis
Aweakness ofmolecular docking studies is that the protein usually is
held static during the analysis. While this is computationally advan-
tageous, accuracy may be sacrificed. Another, more computationally
intensive method called molecular dynamics (MD), requiring
supercomputing resources and the ability to learn and implement
scripting languages, allows both enzyme and ligand(s) to adjust
their conformations in the complex. MD studies simulate proteins
behaving according to physical laws defined in user-supplied force
field, such as those provided by the AMBER suite of programs [96]
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or the CHARMM development team [98], and usually span a single
nanosecond up to several microseconds of simulation time. Many
different force fields and programs for conducting molecular
dynamics have been published and refined, each with different
strengths, such as having very accurate parameters for modeling
lipid-membrane systems, and weaknesses, such as a propensity to
over stabilize alpha-helices [96,98,101,104]. The data obtained from
MD can be analyzed in several different ways and can provide signif-
icant insight into ways to modify enzyme behavior. These methods
are introduced and discussed next.
Among the different measures for interpreting the results of MD, the
RMSD analysis is a simple measure of the change in molecular con-
formation as compared to a reference conformation. RMSD analysis
can be used to (i) quantify the change in ligand conformation
among different docking studies, (ii) determine when a protein has
equilibrated duringMD simulations, and (iii) sort protein conforma-
tions throughout MD simulations into clusters for further analysis.
The percent amount of secondary structures formed throughout
MD simulations can also bemeasured quantitatively using the indus-
try standard DSSP algorithm [113] for assigning secondary structure
to each residue in a protein; this provides a timeline of structural
changes in the enzyme during the simulation. The amount of
solvent-accessible surface area on the enzyme is also quantifiable
throughout the simulation, allowing the identification of when and
under what circumstances quaternary structures are formed or bro-
ken. Detecting and quantifying the bond pairs, frequency, and dura-
tion of hydrogen bonds throughout an MD simulation can provide
insight into ligand stability in the active site.
Steered MD (SMD) can also be conducted to generate information
about enzyme structure organization and how ligands enter or
leave the active site [114]. A directional force is applied to an atom
or to the center of mass of a group of atoms in order to calculate po-
tential of mean force and binding affinities in silico. Qualitatively an-
alyzing SMD trajectories can provide clues on how to increase or
decrease the amount of steric clashes between the proposed ligand
and the active site. MD and SMD simulations have recently been
used to encourage substrate specificity of the lipase from Bacillus
thermocatenulatus (BTL2). C4 and C8 triacylglycerols were dynami-
cally modeled in the BTL2 active site and allowed to equilibrate.
The ligands were then pulled from the active site using SMD to esti-
mate the potential ofmean force. In order to encourage specificity for
C4 triacylglycerols, the three-dimensional structure of BTL2 used in
the study was altered to reflect the proposed mutations that would
decrease the volume of the active site cleft while preserving hydro-
phobicity. The mutation L360F made the most progress towards de-
creasing activity with C8 triacylglycerols while increasing activity
with C4 triacylglycerols. This change in specificity was confirmed
both in silico and in vitro [115].

4. Building a functional MCF: metabolic engineering

4.1. Experimental tools

Following the installation of de novo biosynthetic pathway(s), met-
abolic engineering is used to ensure their use by the host and enhance
productivity. Often, metabolic engineering strategies designed to
increase production of a desired product involve over-expression of
the synthesis pathway. This strategy has been found to be effective in
certain cases, but it often fails when used alone. Enzyme copy number
is optimized by evolution based on the availability substrates and
reaction thermodynamics. A balance is reached between activity re-
quirements and protein production costs, and over-expression can tax
the cell of resources and result in sacrificed cell growth and productivity
[116]. As such, additional metabolic engineering strategies look to
knockout gene expression and enzymatic activity of competing
pathway(s) in effort to direct metabolic flux towards formation of the
desired product. Gene knockout is a well-established genomic tool
used for substituting or removing sections of genomic DNAby engineer-
ing unique sites on an integration plasmid complementary to the gene
of interest. Accessory proteins, either native to the host or supplied in
the integration plasmid, catalyze the replacement of the targeted gene
with a marker (e.g., antibiotic resistance gene) that can later be removed
[117,118]. However, gene knockouts can cause host instability, resulting
in decreased growth rate. Decreasing gene activity through engineered
RNA regulation can resolve such instability. In this technique, small regu-
latory RNA (sRNA)molecules anneal and capture nascent transcripts and
block translation and/or tag them for degradation. A library of synthetic
sRNA molecules was screened and ultimately resulted in increased pro-
duction of tyrosine and cadaverine in E. coli. The technique is advanta-
geous because sRNAs can be fine-tuned through the calculation of
sRNA-mRNA binding thermodynamics, and mRNAs from multiple
genes can be targeted simultaneouslywithout chromosomal integrations
[119].

Though gene addition and over-expression can yield new products,
enzyme activity deficiencies are more often the result of substrate lim-
itation than low enzyme copy numbers. The formation of bottlenecks
and buildup of toxic intermediates have been overcome using regulated
or specialized promoters to balance substrate pools below toxic thresh-
olds. This was seen in the engineered regulation of an artifical
amorphadiene pathway that was designed to limit farnesyl pyrophos-
phate accumulation [53]. Evenwhen an operon ofmultiple genes is con-
trolled by a single promoter, variations in individual gene activities can
be engineered by modifying secondary structure stability in the mRNA
transcript between separate genes and altering the ribosome binding
site. This can generate up to a 100,000-fold range in protein production
from neighboring genes [120,121]. Substrate limitations due to
membrane transport also limit the formation of product. For example,
over-expression and mutation of appropriate transporter proteins in
various experiments have resulted in a 70% increase in isoprenoid titer
[122] and a 70% increase in xylose sugar utilization [123]. A recent
approach involves protein scaffolds, which physically bind enzymes of
a multi-step synthesis pathway into close proximity to enable substrate
channeling. This technique has been used in the synthetic multi-step
production of hydrogen from glucose, where the enzyme scaffold effec-
tively reduced interference from competing enzymes and minimized
kinetic limitations caused by the diffusion of substrates into the bulk
cell environment [124]. Thus, several tools exist to implement a rational
metabolic engineering strategy to effectively over-express a de novo
biosynthetic pathway of interest. However, cellular resources are
based on global demands for precursors, energy, and reducing power.
Computational tools, based on genome-scale metabolic flux modeling,
are now in place to gain holistic understandings of metabolic activity
and design engineering strategies.

4.2. Computational tools

A major focus in genome-scale metabolic flux modeling is the
rational design of metabolic engineering strategies. While multiple
algorithms have been published, OptKnock [125] was the first to dem-
onstratewidespread success. It effectively tied product formation to cel-
lular growth through selected reaction knockouts. The gene knockout
was the solely required experimental tool to implement OptKnock de-
rived strategies. This was updated by OptForce [126], which enabled
both up- anddown-regulation strategies to optimize product formation.
The tool OptORF [127] takes transcriptional regulatory networks into
consideration in designing strategies, and k-OptForce [128] is the latest
development to incorporate kinetic constants to enhance metabolic
prediction and improvemetabolic engineering strategies. The approach
Flux Balance Analysis with Flux Ratios (FBrAtio) [129,130] is another
attempt to effectively model wild-type metabolism and design meta-
bolic engineering strategies. FBrAtio considers how multiple enzymes
compete for the same limited metabolite pool. Factors such as enzyme
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and cofactor availability as well as reaction thermodynamics determine
howmetabolic flux is distributed at critical branch points (i.e., nodes) in
the metabolic network. FBrAtio can be used to locate the critical nodes
in a metabolic network and design how available experimental tools
(i.e., over-expression, knockout, knock-down) can be implemented to
enhance expression of a product-forming pathway elsewhere in the
metabolic network.

5. Conclusions

MCFs can accommodate specialized metabolic pathways that
allow the conversion of renewable substrates into valuable products.
Design of an MCF is a multifaceted optimization problem that con-
sists of several challenges in enzyme and metabolic engineering.
While research is ongoing on all fronts, it is clear that MCF design
originates with the critical choice of product, which will ultimately
be the most important factor in determining profitability. Multiple
tools exist for designing either heterologous or artificial de novo
biosynthetic pathway(s) to a product of interest, and the nature of
the product and process is critical in host selection for an MCF.
Computational modeling can now be used to determine if metabolic
precursors and cofactors are available in certain hosts, given a bio-
synthetic pathway, and host selection is strongly tied to: (i) the
substrate(s) to be converted, (ii) product secretion machinery
required, (iii) genomic tools available for metabolic engineering,
(iv) toxicity of the product, (v) cell growth considerations, and
(vi) biosynthetic pathway activity in the host. Following these
selections, enzyme and metabolic engineering are required to devel-
op a productive MCF. Metabolic engineering can improve flux
through the biosynthetic pathways, but will eventually be stymied
by enzymatic limitations. Enzyme engineering, through rational de-
sign, rational redesign, and directed evolution, can lessen or remove
such limitations. Computational approaches have improved the de-
sign flow for MCFs, and as tools made specifically for the prediction
and improvement of novel biosynthetic pathways evolve, it may be-
come possible to produce any product from virtually any renewable
resource.
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