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Abstract: Deniable ring signature can be regarded as group signature without group manager, in
which a singer is capable of singing a message anonymously, but, if necessary, each ring member
is allowed to confirm or disavowal its involvement in the signature via an interactive mechanism
between the ring member and the verifier. This attractive feature makes the deniable ring signature
find many applications in the real world. In this work, we propose an efficient scheme with signature
size logarithmic to the cardinality of the ring. From a high level, we adapt Libert et al.’s zero-
knowledge argument system (Eurocrypt 2016) to allow the prover to convince the verifier that its
witness satisfies an additional condition. Then, using the Fait-Shamir transformation, we get a
non-interactive deniable ring signature scheme that satisfies the anonymity, traceability, and non-
frameability under the small integer solution assumption in the random oracle model.

Keywords: deniable ring signature; zero-knowledge protocols; accumulators

1. Introduction

Ring signature was first formalized by Rivest et al. [1] to deal with situations, such
as leaking secrets anonymously. Specifically, a signer first picks up several public keys
to form a ring; then, it generates a signature anonymously on behalf of the ring using its
secret key. Any verifier is unable to get any information about the real signer, except that
the message is signed by one of the ring member. This appealing feature has made the ring
signature find various applications in cryptography [1–3]. In some situations, however, the
anonymity feature is not always desirable, as it allows a user who signs a false message to
shift the blame to other ring members.

It is well-known that group signature [4–9] can prevent its members from abusing
anonymity, in which users are able to sign messages anonymously, but, when a dispute
occurs, the group manager possessing a group master secret key is capable of revoking the
anonymity of misbehaving signers. However, group signature cannot handle the leaking
secrets scenario, as the the manager is always able to trace the real signer who leaks a piece
of invaluable information. Besides, group signature has much higher costs on managing a
dynamic group. Finally, the members are anxious that their anonymity will be or has been
violated by the manager without notification.

In 2006, Komano et al. [10] formalized the notion of Deniable Ring Signature (DRS),
which is as flexible as the ring signature and allows the members to confirm whether they
are the real signer or not. Specifically, by using an interactive mechanism between the
ring member and the verifier, it enables the real signer to confirm its signed action and
allows other ring members to deny their involvement. In short, DRS can be regarded as a
‘lightweight’ group signature, i.e., group signature without the manager. For the security
requirements, the DRS should satisfy:
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• Anonymity: Any adversary should not get any information from the signature, un-
less the ring members are required to confirm or disavow their involvement in
the signature.

• Traceability: Any adversary should not generate a valid ring signature such that no
member will be detected as the real signer via the confirmation/disavowal protocol.
In other words, the real singer cannot deny its signature.

• Non-frameability: Any adversary should not produce a valid ring signature such that a
ring member, whose secret key is unknown to the adversary, will be detected as the
real signer via the confirmation/disavowal protocol. In other words, any adversary
cannot frame an honest member.

In their pioneering work, Komano et al. [10] also presented a concrete scheme under
the Decisional Diffie–Hellman (DDH) assumption. However, this assumption does not
hold in the quantum world [11].

1.1. Contributions and Technical Overview

In this work, we propose an efficient lattice-based Non-interactive Deniable Ring
Signature (NDRS) scheme. The notion NDRS, first formalized in Reference [12], means
that the confirmation or disavowal of a signature is achieved in a non-interactive manner,
instead of the interactive mechanism between the ring member and the verifier. In terms of
effiency, our construction is efficient in the sense that the signature size is only logarithmic to
the cardinality of the ring. In the aspect of security, our construction satisfies the anonymity,
traceability, and non-frameability under the Small Integer Solution (SIS) assumption in the
random oracle model.

From a high level, our scheme is a natural extension of the ring signature scheme
in Reference [8] to the NDRS setting. In more detail, we adapt their argument system for
a tree-based accumulator [8] to allow the prover to convince the verifier that the prover
knows a witness which not only accumulates to the root of a Merkle tree but also satisfies
some additional conditions. Specifically, compared with the ring signature scheme in
Reference [8], we add one more additional condition, an non-interactive identification
scheme used by the ring members to prove their identity. Combining zero-knowledge
argument systems for two or more NP relations is a general strategy widely used in
previous works, such as group signatures [8,9], policy-based signatures [13], compact
e-cash [14], etc.

The starting point of our construction is the Zero Knowledge Argument of Knowledge
(ZKAoK) for the Merkle tree-based accumulator [8]. Specifically, the underlying hash
function is defined by hA(x) = bin(A · x mod q) ∈ {0, 1}m/2, where the uniformly random
matrix A ∈ Zn×m

q serves as the common reference string, x ∈ {0, 1}m is the input vector,
and bin(·) denotes the coordinate-wise binary decomposition of its input. Then, by using
the framework of Stern’s protocol [15], Libert et al. [8] can prove knowledge of hash chain
in a zero-knowledge fashion. Besides, through the Fait-Shamir transformation, they also
build ring signature with logarithmic size in the number of ring. Note that their ring
signature enjoys complete anonymity. To achieve our goal that each ring member is able to
generate a piece of evidence demonstrating whether it is the real signer or not, we need
another matrix B ∈ Zn×m

q which acts as the public key of an identification scheme. In more
detail, to sign a message M, a signer possessing his secret x generates a zero-knowledge
argument system to show that:

Fact 1 d = hA(x).

Fact 2 d is properly accumulated into the root of the Merkle tree.

Fact 3 B · x = b mod q.

We first use the procedure in Reference [8] as a sub-protocol to prove Fact 1 and Fact 2
in zero knowledge. The key point in our construction is to prove the secret in Fact 1
simultaneously satisfies Fact 3. To this end, we employ again the framework of Stern’s
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protocol [15] as a sub-protocol, such that it is compatible with the proof in Reference [8].
The details are presented in Section 3.

Then, we apply the Fait-Shamir transformation to our interactive protocol and obtain
a signature scheme in the random oracle by repeating it κ = ω(log n) times to make the
soundness error negligibly small. Generally, the anonymity of our NDRS scheme is based
on the zero-knowledge property of the underlying argument system, while the traceability
and the non-frameability are built on the fact that the underlying argument system is
indeed an argument of knowledge. The description of the construction and its proof are
described in Section 4.

1.2. Related Works

In 2006, Komano et al. [10] first introduced the notion of DRS and proposed a concrete
DRS construction based on the DDH assumption. Recently, Gao et al. [12] put forward the
NDRS notion, which is a direct generalization of DRS to the non-interactive setting. Besides,
they proposed a concrete NDRS scheme under lattice assumptions, which is conjectured
resistance against quantum computers. Their scheme, however, is shown to be insecure
in Reference [16], as the scheme does not meet the ‘Traceability’ and ‘Non-frameability’
security requirements.

1.3. Organizations

We start in Section 2 by providing some background regarding NDRS and useful
tools developed in Reference [8]. Then, in Section 3, we present an interactive protocol,
which is the key component of our construction. In Section 4, we show the concrete scheme
and its efficiency analysis and security proof. Finally, we conclude the paper with the
obtained results.

2. Preliminaries

The set of integers {1, . . . , k} is denoted by [k]. If S is a finite set, x ← S means that
x is chosen uniformly at random from S. For b ∈ {0, 1}, let b̄ = 1− b. ⊕ denotes the bit
XOR operation. For any positive integer q, denote by Zq the quotient ring Z/(qZ). Vectors,
denoted by bold lowercase letters, are in column form. Matrices are represented in bold
uppercase letters, and the concatenation of two matrices, say A ∈ Zn×m1

q and B ∈ Zn×m2
q , is

denoted by [A | B] ∈ Zn×(m1+m2)
q . The tensor product is denoted by ⊗. Let Bm

2m be the set
of all vectors in {0, 1}2m with Hamming weight m, and S2m be the set of all permutations
of 2m elements. The abbreviation PPT means “probabilistic polynomial time”.

Throughout the paper, we denote by n the security parameter and define: q =
Õ(n); k = dlog qe; m = 2nk. Let G = In ⊗ gt ∈ Zn×nk

q , where gt is the row vector

gt = [1 2 4 · · · 2k−1] ∈ Z1×k
q .

Note that, for any v ∈ Zn
q , we have v = G · bin(v), where bin(v) ∈ {0, 1}nk denotes the

binary representation of v.

2.1. Non-Interactive Deniable Ring Signature (NDRS)

For any positive integer N ≥ 2, the ring R, formed by N users’ public keys, is denoted by
R = {pki0 , pki1 , . . . , pkiN−1}. For ease of notation, we simply let R = {pk0, pk1, . . . , pkN−1}
with ring size N. Now, we recall the definition and security requirements for the NDRS
presented in Reference [12].

• Setup(1n): Take as input n and output the system parameter pp.
• KeyGen(pp): Take as input pp and output a public/secret key pair (pk, sk).
• Sign(pp, R, sk, M): Take as inputs pp, a set of N public keys R = {pk0, pk1, . . . , pkN−1},

a secret key sk for which its corresponding pk ∈ R and a message M to be signed, and
output a ring signature Σ.
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• Verify(pp, R, M, Σ): Take as inputs pp, R, M, and Σ, and output 1 if Σ is valid or
0 otherwise.

• EvidenceGen(pp, R, ski, Σ): Take as inputs pp, R, user i’s secret key ski, M, and Σ, and
output a piece of evidence ξi.

• EvidenckCheck(pp, R, i, ξi, Σ): Take as inputs pp, R, an identity index i of a user, M and
Σ, and output “confirmation”, “disavowal”, or “reject”.

The correctness requirements for an NDRS scheme are formalized as follows:

1. The signature Σ generated by the Sign algorithm is properly accepted by the Verify
algorithm, i.e., Verify(pp, R, M, Σ) = 1 for any pp ← Setup(1n), any (pk, sk) ←
KeyGen(pp), any R such that pk ∈ R and any M ∈ {0, 1}∗.

2. The real signer of the signature Σ will generate a piece of evidence such that the
evidence check algorithm outputs “confirmation”, i.e.,

EvidenckCheck
(
pp, R, i,EvidenceGen(pp, R, ski, Σ), Σ

)
= “confirmation”

for any valid signature Σ generated by user i.
3. The non-real signer should generate a piece of evidence such that the evidence check

algorithm outputs “disavowal”, i.e.,

EvidenceCheck
(
pp, R, j,EvidenceGen(pp, R, sk j, Σ), Σ

)
= “disavowal”

for any ring member j 6= i.

For the security requirements, we adopt the notions and games in References [10,12].
Suppose each user has a public/private key pair supported by the Public Key Infrastructure
(PKI). Let List be a public key content issued by PKI, and let MList be a list of malicious
signers. Let GSet be a list of message-signature pairs generated through a challenge oracle
query Chb(·). An adversary is able to make the following queries.

• Add(i): on input i, this oracle generates a key pair (pki, ski) for user i, adds i together
with the key pair to List, and returns pki.

• Reg(i, pki): on inputs i and pki, this oracle registers a new signer i with the given
public key pki in List and adds user i to MList.

• Crpt(i): on input i, this oracle returns the secret key ski and adds user i to MList.
• DRSig(ik; M, i1, . . . , ik−1, ik+1, . . . , it): on inputs a specified user ik, a message M, and a

set of identities, this oracle returns a signature Σ associated with the ring formed by
the input identities, by using the secret key of user ik.

• Chb(i0, i1, M): on inputs a pair of identities (i0, i1) and M, this oracle returns the
signature Sign(pp, {pki0 , pki1}, skib , M) for a challenge bit b ← {0, 1}, and adds it to
GSet. This oracle is only used in the definition of anonymity.

• EGen(i, M, Σ): on inputs i, M, Σ, this oracle returns a piece of evidence demonstrating
whether the entity i is the real signer or not. This oracle will reject the query if the
input signature is an output from the challenge oracle in the experiment of anonymity.

• Hash(·): this oracle outputs a random string with a fixed length for an arbitrary input.

As mentioned before, an (N)DRS scheme should satisfy anonymity, traceability, and
non-frameability. Each of these security requirements is formalized by an experiment, as
shown in Figure 1.

Anonymity

For an NDRS scheme, a security parameter n, and a PPT adversary A, the property
of anonymity is formalized using the experiment Expanon−b

NDRS,A(n), as described in Figure 1.
The advantage Advanon

NDRS,A(n) is defined as

Advanon
NDRS,A(n) =

∣∣∣2Pr[Expanon−b
NDRS,A(n) = b]− 1

∣∣∣.
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An NDRS has anonymity if Advanon−b
NDRS,A(n) is negligible for any PPT adversary A and

security parameter n.

• Experiment Expanon−b
NDRS,A(n)

List← ∅; MList← ∅; GSet← ∅;
b′ ← A(Add(·),Reg(·),Crpt(·),Chb(·),DRSig(·),EGen(·));
IF i ∈ GSet and i ∈ MList THEN return 0 ELSE return b′

• Experiment Exptrace
NDRS,A(n)

List← ∅; MList← ∅; GSet← ∅;
(M, Σ, {pki1 , . . . , pkit})← A(Add(·),Reg(·),Crpt(·),DRSig(·),EGen(·));
IF Verify(pp, {pki1 , . . . , pkit}, M, Σ) = 0 THEN return 0;
ξik ← EvidenceGen(pp, {pki1 , . . . , pkit}, skik , M, Σ);
IF ∀ ij ∈ i1, . . . , iN
EvidenceCheck(pp, {pki1 , . . . , pkit}, ij, ξik , M, Σ) = 0

THEN return 1 ELSE return 0
• Experiment Expnf

NDRS,A(n)
List← ∅; MList← ∅; GSet← ∅;
(M, Σ, {pki1 , . . . , pkit})← A(Add(·),Reg(·),Crpt(·),DRSig(·),EGen(·))
IF Verify(pp, {pki1 , . . . , pkit}, M, Σ) = 0 THEN return 0
IF the following two conditions are satisfied THEN return 1
ELSE return 0

– For some k ∈ [t],
ξik = EvidenceGen(pp, {pki1 , . . . , pkit}, skik , M, Σ),
EvidenceCheck(pp, {pki1 , . . . , pkit}, ik , ξik , M, Σ) =“confirmation”

– A did not query DRSig(ik ; M, i1, . . . , ik−1, ik+1, . . . , it), Reg(ik) or Crpt(ik)

Figure 1. Experiments of anonymity, traceability, and non-frameability.

Traceability

The property of traceability is formalized using the experiment Exptrace
NDRS,A(n), as

shown in Figure 1. The advantage of the adversary is given by:

Advtrace
NDRS,A(n) = Pr[Exptrace

NDRS,A(n) = 1].

An NDRS is said to hold traceability if Advtrace
NDRS,A(n) is negligible for any PPT adversary

A and security parameter n.

Non-frameability

The property of non-frameability is formalized using the experiment Expnf
NDRS,A(n),

as shown in Figure 1. The advantage of the adversary is defined as:

Advnf
NDRS,A(n) = Pr[Expnf

NDRS,A(n) = 1].

An NDRS is said to hold non-frameability if Advnf
NDRS,A(n) is negligible for any PPT

adversary A and security parameter n.

2.2. Average-Case Lattice Problems

In this subsection, we briefly recall the average-case Small Integer Soulution (SIS)
problem (in the infinity norm version) and its hardness guarantees. For more details,
see References [17–20].

Definition 1 (Reference [17]). Given uniformly random matrix A ∈ Zn×m
q , the SIS∞

n,m,q,β
problem asks to find a non-zero vector x ∈ Zm such that A · x = 0 mod q and ‖x‖∞ ≤ β.

The hardness of the SIS problem is guaranteed by a certain lattice problems in the
worst case, such as the Shortest Independent Vector Problem (SIVP).
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Theorem 1 (References [18–20]). If m, β = poly(n), and q > β · Õ(
√

n), then the SIS∞
n,m,q,β

problem is at least as hard as the worst-case problem SIVPγ for some γ = β · Õ(
√

mn). Specifically,
for β = 1, q = Õ(n), m = 2ndlog qe, the SIS∞

n,m,q,1 problem is at least as hard as SIVPÕ(n).

2.3. Statistical Zero-Knowledge Argument Systems

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be an NP relation. The interaction 〈P ,V〉 between a
prover P and a verifier V is called an interactive argument system for the relation R if the
following two conditions hold:

Completeness

If R(x, w) = 1, then
Pr[〈P(x, w),V(x)〉 = 1] = 1.

Soundness

If R(x, w) = 0, then, for every PPT P∗:

Pr[〈P∗(x, w), V(x)〉 = 1] ≤ e,

where e ∈ [0, 1] is called the soundness error.
In this work, we will employ the Stern-type ZKAoK [15], which is a Σ-protocol from a

generalized point of view in References [21,22]. Besides, we will utilize the lattice-based
string commitment scheme in Reference [23] COM : {0, 1}∗ × {0, 1}m/2 → Zn

q , which is
statistically hiding and computationally binding under the assumption that SIVPÕ(n) is
hard.

2.4. Lattice-Based Accumulator

We first recall a certain family of collision-resistant hash functions presented in
Reference [8].

Definition 2. The function family H : {0, 1}nk × {0, 1}nk → {0, 1}nk is given by H = {hA :
A ∈ Zn×m

q }, where

hA(u0, u1) = bin(A0 · u0 + A1 · u1 mod q) ∈ {0, 1}nk.

for any (u0, u1) ∈ {0, 1}nk × {0, 1}nk, and A = [A0 | A1] with A0, A1 ∈ Zn×nk
q .

Then, we recall the Merkle tree accumulator with N = 2l leaves based on the hash
function familyH above.

• TSetup(1n): On input n, output pp = A← Zn×m
q .

• TAcc(A, R}): Given R = {dj ∈ {0, 1}nk}N−1
j=0 , let uj1,...,jl = dj, where j1, . . . , jl ∈ {0, 1}

is the l bits of j. Define the tree of depth l for the leaves u0,...,0, . . . , u1,...,1 as follows:

1. The nodes ub1,...,bi
at depth i ∈ [l] is given by hA(ub1,...,bi ,0, ub1,...,bi ,1).

2. The root u ∈ {0, 1}nk is defined as hA(u0, u1).

Output u as the accumulator value.
• TWitness(A, R, d): If d /∈ R, output ⊥; otherwise, ∃ j ∈ [0, N − 1] such that d = dj.

Return the witness w defined by:

w =
(
(j1, . . . , jl), (uj1,...,jl−1, j̄l , . . . , uj1, j̄2 , u j̄1)

)
∈ {0, 1}l × ({0, 1}nk)l ,

where uj1,...,jl−1, j̄l , . . . , uj1, j̄2 , u j̄1 are computed by TAcc(A, R).
• TVerify(A, u, d, w): Given witness
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w =
(
(j1, . . . , jl), (wl , . . . , w1)

)
∈ {0, 1}l × ({0, 1}nk)l ,

let vl = d, and recursively compute vl−1, . . . , v1, v0 ∈ {0, 1}nk for i ∈ {l − 1, . . . , 0}
as follows:

vi =

{
hA(vi+1, wi+1), if ji+1 = 0;
hA(wi+1, vi+1), if ji+1 = 1.

Return 1 if v0 = u; otherwise, return 0.

In Reference [8], the authors also design an argument system for the prover P to con-
vince the verifier V thatP knows a value-witness pair (d, w) such that TVerify(A, u, d, w) =
1. Toward this goal, they develop the following supporting techniques, which are necessary
in our construction, as well.

• Extension of A = [A0 | A1] to A∗ = [A0 | 0n×nk | A1 | 0n×nk] ∈ Zn×2m
q .

• Extension of G to G∗ = [G | 0n×nk] ∈ Zn×m
q .

• Extensions of v1, . . . , vl , w1, . . . , wl to v∗1 , . . . , v∗l , w∗1 , . . . , w∗l ∈ Bnk
m by appending to

each vector a length-nk vector with suitable Hamming weight.
• For i ∈ {nk, m}, b ∈ {0, 1} and v ∈ {0, 1}i, let ext(b, v) denote the vector z ∈ {0, 1}2i

of the form z =

(
b̄ · v
b · v

)
.

• For b ∈ {0, 1} and π ∈ Sm, define the permutation Fb,π that transforms z =

(
z0
z1

)
∈

Z2m
q consisting of 2 blocks of size m into Fb,π(z) =

(
π(zb)
π(zb̄)

)
.

Observe that, for all c, b ∈ {0, 1}, π, φ ∈ Sm and v, w ∈ {0, 1}m,

z = ext(c, v) ∧ v ∈ Bnk
m ⇐⇒ Fb,π(z) = ext(c⊕ b, π(v)) ∧ π(v) ∈ Bnk

m ;

y = ext(c̄, w) ∧w ∈ Bnk
m ⇐⇒ Fb̄,φ(y) = ext(c⊕ b, φ(w)) ∧ φ(w) ∈ Bnk

m .

3. The Underlying Zero-Knowledge Argument System

In this section, we present an interactive protocol, upon which our NDRS scheme is
built. This protocol bears much resemblance to that in Section 4.2 of Reference [8], except
that one more layer is added. Specifically, in our protocol, the prover P is able to convince
the verifier V on input (A, B, u, b) that P knows a secret tuple (d, w, x) such that:

• d = hA(x) ∈ {0, 1}nk,
• TVerify(A, u, d, w) = 1,
• B · x = b mod q ∈ Zn

q .

More formally, the associated relation RNDRS is given by

RNDRS =
{(

(A, B, u, b) ∈ Zn×m
q ×Zn×m

q × {0, 1}nk ×Zn
q ;

d ∈ {0, 1}nk, w ∈ {0, 1}l × ({0, 1}nk)l , x ∈ {0, 1}m) :

A · x = G · d mod q ∧ B · x = b mod q ∧ TVerify(A, u, d, w) = 1
}

.

3.1. Description of the Interactive Protocol

The public parameters are n, m, q, k, l, G, G∗, Â, and B̂, where

Â = [A | 0n×m], B̂ = [B | 0n×m] ∈ Zn×2m
q .

The prover P , using its witness, prepares, according to Section 2.4, the following
vectors:

v∗i , w∗i ∈ Bnk
m , zi = ext(ji, v∗i ), yi = ext( j̄i, w∗i ),
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for all i ∈ [l] such that {
A∗ · z1 + A∗ · y1 = G · u mod q;
A∗ · zi+1 + A∗ · yi+1 = G∗ · v∗i mod q

, (1)

for all i ∈ [l − 1]. Observe that G∗ · v∗l = G · d. First, P extends x into x∗ ∈ Bm
2m. Clearly,

Â · x∗ = A · x and B̂ · x∗ = B · x. In Stern’s framework, a random permutation τ ← S2m
and a random ‘mask’ rx ← Z2m

q give a ZKAoK of the secret x according to the equivalence
x∗ ∈ Bm

2m ⇔ τ(x∗) ∈ Bm
2m.

After these preparations, P ’s goal is to convince V that it knows the vectors v∗i , w∗i ,
zi, yi for all i ∈ [l] and x∗ ∈ B2m such that:

• Equation (1) holds;
• Â · x∗ = G∗ · v∗l mod q and B̂ · x∗ = b mod q.

The interaction between P and V is detailed as follows.

1. Commitment. P firstly picks the following randomness:

ρ1, ρ2, ρ3 ∈ {0, 1}m/2 for COM

τ ← S2m; b1, . . . , bl ← {0, 1}; π1, . . . , πl , φ1, . . . , φl ← Sm

rx ← Z2m
q ; rv1 , . . . , rvl ← Zm

q ; rz1 , . . . , rzl , ry1 , . . . , ryl ← Z2m
q .

Then, the commitment CMT=(C1, C2, C3) is sent to V , where

C1 = COM
(
τ; Â · rx −G∗ · rvl ; B̂ · rx; {bi, πi, φi}l

i=1; A∗ · rz1 + A∗ · ry1 ;

{A∗ · rzi+1 + A∗ · ryi+1 −G∗ · rvi}
l−1
i=1; ρ1

)
C2 = COM

(
τ(rx); {πi(rvi ), Fbi ,πi

(rzi ), Fb̄i ,φi
(ryi )}

l
i=1; ρ2

)
C3 = COM

(
τ(x∗ + rx); {πi(v∗i + rvi ), Fbi ,πi

(zi + rzi ), Fb̄i ,φi
(yi + ryi )}

l
i=1; ρ3

)
.

2. Challenge. V sends to P a challenge Ch← {1, 2, 3}.
3. Response. P sends the response RSP depending on Ch as follows:

• Ch = 1: Let x̃∗ = τ(x∗), r̃x = τ(rx), and, for each i ∈ [l], let:

b̃i = ji ⊕ bi; ṽ∗i = πi(v∗i ); w̃∗i = φi(w∗i )

r̃vi = πi(rvi ); r̃zi = Fbi ,πi
(rzi ); r̃yi = Fb̄i ,φi

(ryi ).

Set RSP=
(
x̃∗; r̃x; {b̃i, ṽ∗i , w̃∗i , r̃vi , r̃zi , r̃yi}l

i=1; ρ2; ρ3
)
.

• Ch = 2: Let τ′ = τ, sx = x∗ + rx, and, for each i ∈ [l], let:

b′i = bi; π′i = πi; φ′i = φi;

svi = v∗i + rvi ; szi = zi + rzi ; syi = yi + ryi .

Set RSP=
(
τ′; sx; {b′i , π′i , φ′i , svi , szi , syi}l

i=1; ρ1; ρ3
)
.

• Ch = 3: Let τ′′ = τ, r′x = rx, and, for each i ∈ [l], let:

b′′i = bi; π′′i = πi; φ′′i = φi;

r′vi
= rvi ; r′zi

= rzi ; r′yi
= ryi .

Set RSP=
(
τ′′; r′x; {b′′i , π′′i , φ′′i , r′vi

, r′zi
, r′yi
}l

i=1; ρ1; ρ2
)
.

4. Verification. Given RSP, V proceeds as follows.
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• Ch = 1: Check that x̃∗ ∈ B2m for i ∈ [p], ṽ∗i , w̃∗i ∈ Bnk
m for i ∈ [l] and that

C2 = COM
(
r̃x; {r̃vi , r̃zi , r̃yi}

l
i=1; ρ2

)
,

C3 = COM
(
x̃∗ + r̃x; {ṽ∗i + r̃vi , ext(b̃i, ṽ∗i ) + r̃zi , ext(b̃i, w̃∗i ) + r̃yi}

l
i=1; ρ3

)
.

• Ch = 2: Check that

C1 = COM
(
τ′; Â · sx −G∗ · svl ; B̂ · sx − b; {b′i , π′i , φ′i}l

i=1;

A∗ · sz1 + A∗ · sy1 −G · u; {A∗ · szi+1 + A∗ · syi+1 −G∗ · svi}
l−1
i=1; ρ1

)
,

C3 = COM
(
τ′(sx); {π′i(svi ), Fb′i ,π

′
i
(szi ), Fb̄′i ,φ

′
i
(syi )}

l
i=1; ρ3

)
.

• Ch = 3: Check that

C1 = COM
(
τ′′; Â · r′x −G∗ · r′vl

; B̂ · r′x; {b′′i , π′′i , φ′′i }l
i=1; A∗ · r′z1

+ A∗ · r′y1
;

{A∗ · r′zi+1
+ A∗ · r′yi+1

−G∗ · r′vi
}l−1

i=1; ρ1
)
,

C2 = COM
(
τ′′(r′x); {π′′i (r′vi

), Fb′′i ,π′′i
(r′zi

), Fb̄′′i ,φ′′i
(r′yi

)}l
i=1; ρ2

)
.

V outputs 1 only if all the conditions hold in each cases. Otherwise, output 0.

3.2. Analysis of the Interactive Protocol

We summarize several properties of the above protocol in the following theorem.
Since the proof of the properties of the protocol is similar with that of Reference [8], we
omit the details. (See Appendix A)

Theorem 2. The given interactive protocol has perfect completeness and communication cost
Õ(l · n). If COM is a statistically hiding and computationally binding string commitment scheme,
then it is an ZKAoK for the relation RNDRS.

4. Our Non-Interactive Deniable Ring Signature Scheme from Lattices

We now construct an NDRS scheme for rings with N = 2l users (It can be easily
adapted for any other values of N as in Reference [8].) and prove that our construction
satisfies the security requirements: anonymity, traceability, and non-frameability. We use a
public Pseudo-random Generator (PRG), and a random oracleHFS : {0, 1}∗ → {1, 2, 3}κ .

• Setup(1n): On input n, output pp = A← Zn×m
q .

• KeyGen(pp): On input pp, output (pk, sk) = (d, x), where x ← {0, 1}m, and d =
bin(A · x mod q).

• Sign(pp, R, sk, M): On inputs pp, R = {d0, . . . , dN−1}, sk, and M, it works as follows
(Notice that, for the public key pk corresponding to the input sk, we have pk ∈ R.) to
output the signature Σ.

1. Run TAcc(A, R) and obtain u ∈ {0, 1}nk. Recall that u is the root of the Merkle
tree defined on R.

2. Run TWitness(A, R, d) and obtain

w =
(
(j1, . . . , jl) ∈ {0, 1}l , (wl . . . , w1) ∈ ({0, 1}nk)l).

Recall that w is a witness to the fact that d ∈ R.
3. Sample a seed s← {0, 1}n, generate a matrix B = PRG(s) ∈ Zn×m

q and compute
b = B · x mod q. Then, produce an NIZKAoK Π by repeating our interactive
protocol κ = ω(log n) times. By using the Fiat-Shamir heuristic, we transform Π
to the triple

Π =
(
{CMTi}κ

i=1, CH, {RSPi}κ
i=1
)
,
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where

CH = HFS

(
M, {CMTi}κ

i=1, A, B, u, b, R
)
= (Ch1, . . . , Chκ) ∈ {1, 2, 3}κ .

4. Output Σ = (s, b, Π).

• Verify(pp, R, M, Σ): Pm inputs pp, R, M, Σ, the verification procedure is detailed as follows:

1. Run TAcc(A, R) and obtain u.
2. Parse Σ =

(
s, b, {CMTi}κ

i=1, CH, {RSPi}κ
i=1
)
. Let B = PRG(s). Output 0 if

(Ch1, . . . , Chκ) 6= HFS

(
M, {CMTi}κ

i=1, A, B, u, b, R
)
.

3. For i = 1, . . . , κ, check the validity of RSPi w.r.t. CMTi and Chi. If all the
conditions hold, output 1; otherwise, output 0.

• EvidenceGen(pp, R, ski, Σ): On inputs pp, R, a secret key ski = x′, and the pair (s, b)
contained in Σ, the algorithm produces a piece of evidence ξi as follows:

1. Run TAcc(A, R) and obtain the Merkle tree’s root u ∈ {0, 1}nk.
2. Let pki = d′ = bin(A · x′ mod q). Generate a witness

w′ =
(
(j′1, . . . , j′l) ∈ {0, 1}l , (w′l . . . , w′1) ∈ ({0, 1}nk)l)

to the fact that d′ ∈ R by running TWitness(A, R, d′), i.e., d′ was properly
accumulated in u.

3. Let B = PRG(s). Compute b′ = B · x′ mod q and generate a NIZKAoK Π′ as in
the signing algorithm to demonstrate the possession of a valid pair (pki, ski) =
(d′, x′) such that b′ = B · x′ mod q and that d′ ∈ R, i.e.,

Π′ =
(
{CMT′ i}κ

i=1, CH′, {RSP′ i}κ
i=1
)
,

where
CH′ = HFS

(
{CMT′ i}κ

i=1, A, B, u, b′, R
)
∈ {1, 2, 3}κ .

4. Output ξi = (s, b′, Π′). Note that ξi can be seen just as a signature on the
empty message with the given seed s (instead of choosing a random seed by the
algorithm itself).

• EvidenceCheck(pp, R, i, ξi, Σ): On inputs pp, R, i, ξi, Σ, the evidence ξi is checked as follows:

1. Check the validity of ξi and Σ by verifying the underlying protocols. If either is
invalid, then output “reject”.

2. If (s, b′) = (s, b), then output “confirmation”; otherwise, output “disavowal”.

Analysis of Our NDRS Scheme

We first briefly analyze the correctness and efficiency properties.

Theorem 3 (Correctness and Efficiency). The NDRS scheme described in the previous section is
correct and produces signatures of bit-size Õ(n · log N).

Correctness. It is easy to check that:

• By the perfect completeness of the argument system presented in the previous section,
each member of a ring is always capable of obtaining a tuple (x, d, w) such that(

(A, B, u, b), d, w, x
)
∈ RNDRS.

Thus, by the Fiat-Shamir heuristic, the ring signature on M is valid.
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• Meanwhile, for any signature Σ = (s, b, Π), the real signer can always produce a piece
of valid evidence ξ = (s, b′, Π′) such that b = b′, i.e., EvidenceCheck outputs ‘confirmation’.

• By the randomness of the secret keys x, x′ ← {0, 1}m, the non-real signer can always
produce a piece of valid evidence ξ̃ = (s, b̃, Π̃) such that b = B · x mod q 6= b′ =
B · x′ mod q with overwhelming probability.

Efficiency. It is not hard to check that the underlying interactive procedure in previous
section has communication cost Õ(l · n); therefore, the resulting signature has bit-size
Õ(κ · l · n + n) = Õ(n · log N).

Now, we analyze the security requirements: anonymity, traceability, and non-frameability.

Theorem 4 (Anonymity). Assume that COM is a statistical hiding commitment scheme. Then,
our NDRS scheme provides statistical anonymity in the random oracle model.

Proof. We consider a sequence of games. The challenger C runs experiment Expanon−0
NDRS,A(n)

in the first game, while, in the last one, it runs Expanon−1
NDRS,A(n).

Game G(b)
0 : Exactly, it is the real experiment Expanon−b

NDRS,A(n), where the adversary is given
a challenge signature Σ∗ ← Sign(pp, {pki0 , pki1}, skib , M∗). Namely, given (i0, i1, M∗),
the challenger C chooses a random b← {0, 1} and computes a legitimate signature
Σ∗ using the secret key skib = xib of user ib:

1. Run TAcc(A, R) and obtain u ∈ {0, 1}nk, where R = {pki0 , pki1}.
2. Run TWitness(A, R, dib) and obtain a witness wib to the fact that dib = A · xib

mod q ∈ R.
3. Sample a seed s← {0, 1}n, generate matrix B = PRG(s) ∈ Zn×m

q and compute
b = B · xib mod q. Then, produce a NIZKAoK Π with public input (A, B, u, b)
and prover’s witness (dib , wib , xib), i.e.,

Π =
(
{CMTi}κ

i=1, CH, {RSPi}κ
i=1
)
,

where
CH = HFS

(
M∗, {CMTi}κ

i=1, A, B, u, b, R
)
∈ {1, 2, 3}κ .

4. Output Σ∗ = (B, b, Π).

Game G1: Generally, this game is identical to G(b)
0 , except that the challenge signature Σ∗

is made independent of the coin b, while preserving the statistical closeness to G(b)
0 .

In more detail, the following modifications are introduced with respect to G(b)
0 :

1. In Step 3, we change how the vector b is generated. Specifically, C samples
b← Zn

q uniformly at random, instead of computing b = B · xib mod q.
2. In addition, in Step 3, the proof Π contained in the challenge signature Σ∗ is

produced in the simulation manner by C’s programming on the random oracle
HFS(·).

(a) For each j ∈ [κ], choose a ‘fake challenge’ Chj ← {1, 2, 3} and prepare
the ‘commitment’ CMTj according to Chj. Then, randomly pick a ‘real
challenge’ Chj ← {1, 2, 3}\{Chj}.

(b) Program the random oracle and set

CH = {Chj}κ
j=1 = HFS

(
M∗, {CMTj}κ

j=1, A, B, u, b, R
)
.
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(c) Prepare the ‘response’ {RSPj}κ
j=1 in accordance with the normal procedure.

(d) Output

Σ∗ = (s, b, Π) =
(
s, b, {CMTi}κ

i=1, CH, {RSPi}κ
i=1
)
.

Observe that, for each j ∈ [κ], Chj is uniformly distributed in {1, 2, 3}, satisfying
the requirement on the output of the random oracle. Besides, CMTj and RSPj are
prepared in the same way as in Lemma A2 for proving the zero-knowledge property,
implying that the challenge signature is valid. Finally, notice that the vector b in this
game or G(b)

0 follows a uniform distribution over Zn
q . As a result, G(b)

0 and G1 are
statistically indistinguishable.

Now, we obtain a sequence of indistinguishable games G(0)
0 , G1 and G(1)

0 . Since G1
is independent of the random coin b, the advantage of A in G1 is 0. Then, we have the
advantage of A in G(0)

0 and G(1)
0 is negligible. This completes the proof.

Next, we prove the traceability and the non-frameability. Before doing so, we first
recall two useful lemmas.

Lemma 1 (Reference [8]). For any matrix A ∈ Zn×m
q and a uniform random x ∈ {0, 1}m, the

probability that there exists another x′ ∈ {0, 1}m\{x} such that A · x = A · x′ mod q is at least
1− 2n·log q−m.

Lemma 2 (Reference [13]). Let SS be a signature scheme with security parameter n. Let
A be a PPT algorithm whose input consists only of public data and which can ask qH > 0
queries to the random oracle. Assume that A produces within time bound T a valid signature(
{CMTi}κ

i=1, CH, {RSPi}κ
i=1
)

of message M with probability ε. Then, within time 32 · T · qH/ε
and with probability ε′ > 1/2, a replay of A outputs 3 valid signatures of M:(

{CMTi}κ
i=1, CH(1), {RSP(1)

i }
κ
i=1
)
,
(
{CMTi}κ

i=1, CH(2), {RSP(2)
i }

κ
i=1
)
,(

{CMTi}κ
i=1, CH(3), {RSP(3)

i }
κ
i=1
)

for the same {CMTi}κ
i=1 such that CH(1), CH(2), CH(3) are pairwise distinct.

Theorem 5 (Traceability and Non-frameability). Our NDRS scheme provides traceability and
non-frameability in the random oracle model if the SIVPÕ(n) is hard.

Proof. Assume that there exists a PPT A has nonnegligible advantage ε in the experiment
Exptrace

NDRS,A(n) or Expnf
NDRS,A(n), i.e., A is able to output a valid signature Σ∗ on message

M∗ under some ring R∗ = (pki0 , . . . , pkir ) = (d0, . . . , dr) such that

• either EvidenceCheck(pp, R∗, ij, ξij , Σ∗) will output ‘disavowal’ for each j ∈ {0, . . . , r},
where ξij is a piece of evidence generated by user ij;

• or EvidenceCheck(pp, R∗, ij∗ , ξij∗ , Σ∗) will output ‘confirmation’ for some honest user ij∗ .

We construct an algorithm B that solves the SIVPÕ(n) problem with nonnegligible proba-
bility. Let pp = A. During the game, B generates the secrets of all the queried users as in
the real scheme. With these secret keys, B is capable of faithfully answering all the queries.
For the random oracle HFS(·), we assume without loss of generality that: (1) A makes
any given query toHFS(·) only once; (2) if A outputs a signature, then A had previously
queriedHFS(·).

When A halts, it outputs a valid triple (R∗, M∗, Σ∗), where

Σ∗ =
(
s∗, b∗, {CMT∗ i}κ

i=1, CH∗, {RSP∗ i}κ
i=1
)
.
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We denote by qH the upper bound on the number of queries that Amakes toHFS(·).
Then, by Lemma 2, when B runs up to 32 · qH/ε extra executions of A with the same

random tap and inputs as in the first execution, with probability at least 1/2, A will get a
3-fork responses CH(1), CH(2), CH(3) (pairwise distinct) from the oracleHFS(·).

With probability 1 − (7/9)κ , there exists some j ∈ [κ] for which the j-th bits of
CH(1), CH(2), and CH(3) are {Ch(1)j , Ch(2)j , Ch(3)j } = {1, 2, 3}. By the soundness of the
argument system for the relation RNDRS, B is able to extract a tuple (d∗, w∗, x∗) from the
responses RSP(1)

j , RSP(2)
j , RSP(3)

j such that

A · x∗ = G · d∗ mod q, TVerify(A, u∗, d∗, w∗) = 1.

According to the value of d∗, there are two cases:

• d∗ /∈ R∗ = (d0, . . . , dr). This means B can use (R∗, d∗, w∗) to break the security of the
underlying accumulator, whose security is based on the assumption that SIVPÕ(n) is
hard [8].

• d∗ ∈ R∗ = (d0, . . . , dr), i.e., d∗ = dj∗ . Note that the secret key skij∗ consists of a
vector xij∗ ∈ {0, 1}m such that A · xij∗ = G · dj∗ mod q. If xij∗ 6= x∗, then xij∗ − x∗ ∈
{−1, 0, 1}m is a valid solution for the SISn,m,q,1 instance A.
According to the experiments with respect to traceability and non-frameability, we
distinguish the following two cases to discuss the probability that xij∗ 6= x∗.

– In the experiment Exptrace
NDRS,A(n), A has corrupted user ij∗ , acts as the real mali-

cious signer, and manages to evade the traceability. We claim that xij∗ 6= x∗, since
A will otherwise be detected as the real singer by the algorithm EvidenceCheck
(pp, R∗, ij∗ , ξij∗ , Σ), where ξij∗ contains an element b = B∗ · xij∗ mod q.

– In the experiment Expnf
NDRS,A(n),A did not corrupt user ij∗ , and temps to produce

a valid signature such that the target victim ij∗ will be detected as the real signer.
We claim that xij∗ 6= x∗ with probability greater than 1/2 by the following two
facts: (1) There exists another vector x∗ ∈ {0, 1}m such that A · x∗ = A · xij∗ mod q
by Lemma 1. (2) The underlying argument system is zero-knowledge, which
implies witness indistinguishability; thus, A can hardly get useful information
from the signing queries.

In conclusion, in the experiment Exptrace
NDRS,A(n) or Expnf

NDRS,A(n), a successful attacker A
implies an attacker B that either defeats the soundness of the argument system, or breaks
the security of the accumulator, or directly solves an SIS∞

n,m,q,1 instance A. Thus, our scheme
provides traceability and non-frameability in the random oracle model, assuming that the
SIVPÕ(n) problem is hard.

5. Conclusions

In this work, we propose an efficient lattice-based NDRS scheme by using the tech-
niques developed in Reference [8]. Our scheme has signature size only logarithmic to the
ring size, and we prove its security in the random oracle model under the SIS assumption.
Notice that, in our NDRS scheme, each secret key can only be used, at most, k− 1 times for
producing ring signatures, where k = log q; otherwise, the secret key will be figured out
from B’s and corresponding b’s. The direct way to increase the number of ring signatures
for each user is to increase the parameter q, which will reduce efficiency. A better way is to
develop new techniques that is able to authenticate the user’s identity while producing the
ring signature for relative small q. We leave it as a future work.
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Appendix A. Proof of Theorem 2

Our proof follows closely from that of Lemma 4 in Reference [8].

Completeness and Efficiency. It can be checked that the protocol has perfect completeness:
if P is honest and follows the protocol, then V always outputs 1. The communication cost
of the protocol is of order Õ(l ·m · log q) = Õ(l · n).

Lemma A1 (Zero-Knowledge Property). Assume that COM is a statistical hiding commitment
scheme, then the protocol is a statistical zero-knowledge proof.

Proof. To show the zero-knowledge property, we construct an efficient simulator S that
outputs a simulated transcript statistically indistinguishable from the one produced by the
honest prover.

The simulator S first randomly samples Ch← {1, 2, 3}, which serves as a prediction
of the challenge value that V̂ will not choose.

Ch = 1 First, S computes x′ ∈ Z2m
q , v′1, . . . , v′l ∈ Zm

q and z′1, . . . , z′l , y′1, . . . , y′l ∈ Z2m
q such

that

Â · x′ = G∗ · v′l mod q;

B̂ · x′ = b mod q;

A∗ · z′1 + A∗ · y′1 = G · u mod q;

A∗ · z′i+1 + A∗ · y′i+1 = G∗ · v′i mod q ∀ i ∈ [l − 1].

Then, sample randomness ρ1, ρ2, ρ3 for COM and

τ ← S2m; b1, . . . , bl ← {0, 1}; π1, . . . , πl , φ1, . . . , φl ← Sm

rx; rv1 , . . . , rvl ← Zm
q ; rz1 , . . . , rzl , ry1 , . . . , ryl ← Z2m

q .

Finally, send to V the commitment CMT=(C′1, C′2, C′3), where

C′1 = COM
(
τ; Â · rx −G∗ · rvl ; B̂ · rx; {bi, πi, φi}l

i=1; A∗ · rz1 + A∗ · ry1 ;

{A∗ · rzi+1 + A∗ · ryi+1 −G∗ · rvi}
l−1
i=1; ρ1

)
C′2 = COM

(
τ(rx); {πi(rvi ), Fbi ,πi

(rzi ), Fb̄i ,φi
(ryi )}

l
i=1; ρ2

)
C′3 = COM

(
τ(x′ + rx); {πi(v′i + rvi ), Fbi ,πi

(z′i + rzi ), Fb̄i ,φi
(y′i + ryi )}

l
i=1; ρ3

)
.

After receiving Ch from V̂ , Ŝ responds as follows:
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• If Ch = 1: Output ⊥ and abort.
• If Ch = 2: Send

RSP =
(
τ; x′ + rx; {bi, πi, φi, v′i + rvi , z′i + rzi , y′ryi}

l
i=1; ρ1; ρ3

)
.

• If Ch = 3: Send

RSP =
(
τ; rx; {bi, πi, φi, rvi , rzi , ryi}

l
i=1; ρ1; ρ2

)
.

Ch = 2 First, S samples

x′ ← Bm
2m; j′1, . . . , j′l ← {0, 1}; v′1, . . . , v′l ; w′1, . . . , w′l ← Bnk

m ;

τ ← S2m; b1, . . . , bl ← {0, 1}; π1, . . . , πl , φ1, . . . , φl ← Sm

rx; rv1 , . . . , rvl ← Zm
q ; rz1 , . . . , rzl , ry1 , . . . , ryl ← Z2m

q .

Then, compute z′i = ext(j′i , v′i), y′i = ext( j̄′i , w′i) for each j ∈ [l]. Finally, send the
commitment CMT computed as in case Ch = 1.

After receiving Ch from V̂ , Ŝ responds as follows.

• If Ch = 1: Send

RSP =
(
τ(x′); τ(rx); {j′i ⊕ bi, πi(v′i), φi(w′i), πi(rvi ), Fbi ,πi

(rzi ), Fb̄i ,φi
(ryi )}

l
i=1; ρ1; ρ3

)
.

• If Ch = 2: Output ⊥ and abort.
• If Ch = 3: Send RSP computed in the same manner as in the case (Ch = 1, Ch =

3).

Ch = 3 : First, S sample randomness as in the case Ch = 2. Then, send the commitments
CMT=(C′1, C′2, C′3), where C′2, C′3 are computed as in Ch = 1, and C′1 is computed as

C′1 = COM
(
τ; Â · (x′ + rx)−G∗ · (v′l + rvl ); B̂ · (x′ + rx); {bi, πi, φi}l

i=1;

A∗ · (z′1 + rz1) + A∗ · (y′1 + ry1)−G · u;

{A∗ · (z′i+1 + rzi+1) + A∗ · (y′i+1 + ryi+1)−G∗ · (v′i + rvi )}
l−1
i=1; ρ1

)
.

After receiving Ch from V̂ , Ŝ responds as follows.

• If Ch = 1: Send RSP computed as in the case (Ch = 2, Ch = 1).
• If Ch = 2: Send RSP computed as in the case (Ch = 1, Ch = 2).
• If Ch = 3: Output ⊥ and abort.

Because COM is statistically hiding, we have that, whenever S does not halt, it will
output an accepting transcript, whose distribution is statistically close to that of the real
prover. Besides, S halts with probability 1/3. Therefore, S can successfully emulate the
honest prover with probability 2/3.

To show the argument of knowledge property, it is enough to show that the protocol
has the special soundness property [24].

Lemma A2 (Argument of Knowledge Property). Assume that COM is a statistical hiding
commitment scheme, and then there exists an efficient knowledge extractor K that, given 3 valid
responses (RSP1, RSP2, RSP3) to the same commitment CMT, outputs a triple (d′, w′, x′) such
that

(
(A, B, u, b); d′, w′, x′

)
∈ RNDRS.
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Proof. Denote the 3 valid responses (RSP1, RSP2, RSP3) to the same commitment CMT
as follows:

RSP1 =
(
x̃∗; r̃x; {b̃i, ṽ∗i , w̃∗i , r̃vi , r̃zi , r̃yi}

l
i=1; ρ2; ρ3

)
,

RSP2 =
(
τ′; sx; {b′i , π′i , φ′i , svi , szi , syi}

l
i=1; ρ1; ρ3

)
,

RSP3 =
(
τ′′; r′x; {b′′i , π′′i , φ′′i , r′vi

, r′zi
, r′yi
}l

i=1; ρ1; ρ2
)
.

The validity of RSP1 implies that x̃∗ ∈ Bm
2m and ∀ i ∈ [l] : ṽ∗i , w̃∗i ∈ Bnk

m . Besides, we have:

τ′ = τ′′; τ′′(r′x) = r̃x; τ′(sx) = x̃∗ + r̃x,

Â · sx −G∗ · svl = Â · r′x −G∗ · rv′l
mod q,

B̂ · sx = b + B̂ · r′x mod q,

A∗ · sz1 + A∗ · sy1 −G · u = A∗ · r′z1
+ A∗ · r′y1

mod q,

and, for each i ∈ [l − 1]:

A∗ · szi+1 + A∗ · syi+1 −G∗ · svi = A∗ · r′zi+1
+ A∗ · r′yi+1

−G∗ · r′vi
mod q,

and, for all i ∈ [l]:

b′i = b′′i ; π′ = π′′; φ′ = φ′′,

π′i(sx) = x̃∗ + r̃x; π′′i (r
′
v) = r̃vi ,

Fb′i ,π
′
i
(szi ) = ext(b̃i, ṽ∗i ) + r̃zi ; Fb′′i ,π′′i

(r′zi
) = r̃zi ,

Fb̄′i ,φ
′
i
(syi ) = ext(b̃i, w̃∗i ) + r̃yi ; Fb̄′′i ,φ′′i

(r′yi
) = r̃yi .

Now, the knowledge extractor K takes the following steps to extract the secret.

First, let x∗ = τ′−1(x̃∗), and, for each i ∈ [l], let

ji = b̃i ⊕ b′i ; v∗i = π′−1
i (ṽ∗i ); w∗i = φ′−1

i (w̃∗i ); zi = szi − r′zi
; yi = syi − r′yi

.

Note that x∗ ∈ Bm
2m, and, for each i ∈ [l], v∗i , w∗i ∈ Bnk

m . Besides,

• Fb′i ,π
′
i
(zi) = ext(b̃i, ṽ∗i ) = ext

(
ji ⊕ b′i , π′(v∗i )

)
⇔ zi = ext(ji, v∗i ),

• Fb̄′i ,φ
′
i
(yi) = ext(b̃i, w̃∗i ) = ext

(
j̄i ⊕ b′i , φ′(w∗i )

)
⇔ yi = ext( j̄i, w∗i ).

Further more, Â · x∗ = G∗ · v∗l mod q, B̂ · x∗ = b mod q and

A∗ · z1 + A∗ · y1 = G · u mod q,

A∗ · zi+1 + A∗ · yi+1 = G∗ · v∗i mod q ∀ i ∈ [l − 1],

which are equivalent to

A∗ · ext(j1, v∗1) + A∗ · ext( j̄1, w∗1) = G · u mod q,

A∗ · ext(ji+1, v∗i+1) + A∗ · ext( j̄i+1, w∗i+1) = G∗ · v∗i mod q ∀ i ∈ [l − 1].

Then, K drops the last m coordinates from x∗ and obtains x′ ∈ {0, 1}m. In addition, by
dropping the last nk coordinates of v∗1 , . . . , v∗l , w∗1 , . . . , w∗l , it obtains v′1, . . . , v′l , w′1, . . . , w′l ∈
{0, 1}nk. Observe that A · x′ = G · v′l mod q, B · x′ = b mod q. Thus, the following rela-
tions holds:

A · ext(j1, v′1) + A · ext( j̄1, w′1) = G · u mod q,

A · ext(ji+1, v′i+1) + A · ext( j̄i+1, w′i+1) = G · v′i mod q ∀ i ∈ [l − 1],
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which are equivalent to

v′0 = u,

v′i = j̄i+1 · hA(v′i+1, w′i+1) + ji+1 · hA(w′i+1, v′i+1).

Finally, let d′ = v′l and w′ =
(
(j1, . . . , jl), (w′l , . . . , w′1)

)
, then Verify(A, u, d′, w′) = 1,

and output d′, w′, x′, which satisfy(
(A, B, u, d), d′, w′, x′

)
∈ RNDRS.

This concludes the proof.
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