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COVID-19 is a contagious disease that has infected over half a billion

people worldwide. Due to the rapid spread of the virus, countries are

facing challenges to cope with the infection growth. In particular, healthcare

organizations face difficulties efficiently provisioning medical staff, equipment,

hospital beds, and quarantine centers. Machine and deep learning models

have been used to predict infections, but the selection of the model

is challenging for a data analyst. This paper proposes an automated

Artificial Intelligence-enabled proactive preparedness real-time system that

selects a learning model based on the temporal distribution of the

evolution of infection. The proposed system integrates a novel methodology

in determining the suitable learning model, producing an accurate

forecasting algorithm with no human intervention. Numerical experiments

and comparative analysis were carried out between our proposed and state-

of-the-art approaches. The results show that the proposed system predicts

infections with 72.1% less Mean Absolute Percentage Error (MAPE) and

65.2% lower Root Mean Square Error (RMSE) on average than state-of-the-

art approaches.
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Introduction

More than 2 years after the outbreak of the COVID-19
disease, the containment of this virus still represents a serious
challenge to the world community.1 Over half a billion people
have been infected worldwide, including more than 6.27 million
deaths as of 20 May 2022.2 Studies have revealed that COVID-
19, caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), not only affects the lungs of the infected
person but also negatively impacts other vital organs such as
the brain, heart, liver, pancreas, and kidney (1–3). Effect on the
brain can lead to muscular pain and headaches in individuals
with a mild infection, whereas in severe cases it could lead to
stroke (2). Heart complications due to SARS-CoV-2 include
inflammation and dysfunction of muscles and may cause the
death of patients suffering from cardiovascular diseases (2).
Furthermore, the SARS-CoV-2 virus could lead to pancreatic
islet-cell dysfunction (3) causing diabetes (4–6). In addition, it
causes liver impairment and acute kidney injury (2). To reduce
the spread of the virus, countries have imposed several strict
policies and practices, such as travel bans, home confinement,
and business closures. These measures showed to be effective
in reducing the infection and death rates during this pandemic
(7–9). However, too strict measures may lead to income loss,
anxiety, and depression on an individual scale, and cause
longer-term economic and social hardship on the national scale
(10–12). A survey conducted in the United States of America
among 5,412 adults showed that 31% of the respondents
suffered from anxiety/depression symptoms, 26% from stressor-
related disorder symptoms, and 11% considered suicide during
the COVID-19 pandemic (13). Strict confinement measures
have also shown an adverse effect on students’ mental health.
A survey conducted on 69,054 university students during
the lockdown in France revealed that 27.5 and 24.7% of the
respondents had a high level of anxiety and stress, respectively,
16.1% had severe depression, and 11.4% had suicidal thoughts
(14). In addition, individuals often miss routine medical
checkups and tests due to confinement, leading to severe health
issues, especially in patients suffering from chronic diseases (15).
Discontinued daily exercises have been leading to obesity and
associated health risks (16). Consequently, it becomes crucial to
predict infections to gain a better understanding of the growth of
the infection curve, and deeper insight into when to enact, relax
or terminate these strategies. In addition, infection forecasting
allows healthcare organizations to effectively plan the required
medical resources enabling smart healthcare (17, 18).

Artificial Intelligence (AI) algorithms have been widely
adopted in the medical sector to enable smarter, effective,

1 https://www.who.int/emergencies/diseases/novel-coronavirus-
2019 (last accessed on May 23, 2022).

2 https://covid19.who.int/ (last accessed on May 23, 2022).

and efficient healthcare (19). Different AI-based algorithms
are used for screening, diagnosing, and monitoring COVID-
19 (20–22) as well as for predicting the number of infections
(23–29). Recent studies have used machine/deep learning time
series models to predict the spread of COVID-19 infections,
based on previous infections, in a few countries. These studies
use different prediction models (30). However, considering
the difference in the geographical characteristics and social
behaviors of the countries under study, we argue that the use
of a single prediction model becomes questionable (31). This
is because the model is not capable to capture the infection
evolution, leading to inaccurate prediction. Such a failure may
lead to greater distress and more deaths. Furthermore, these
models need to be constantly updated and fail to capture the
evolving COVID-19 variants such as omicron.

To address these shortcomings, in this paper, we propose
an automated AI-enabled proactive preparedness system for
accurate prediction of COVID-19 infection growth in real-time,
with no human intervention. The proposed system incorporates
an intelligent agent that analyses the temporal distribution of
the infection evolution for a city/state/country and maps the
prediction model to the corresponding trend using a novel
trend-to-model mapping approach. The prediction results by
the system aid government and healthcare organizations to
be well prepared and proactively tackle the chaotic pandemic
situation. For instance, the measures can be relaxed if the
prediction shows a decrease in COVID-19 infections, whereas
they can be made stricter if an increase in the number of
infections is predicted. A detailed real-time infection data
acquisition, preprocessing framework, and request-response
flow are presented. The performance of the proposed system is
compared with state-of-the-art approaches to predict COVID-
19 infections in fifteen countries based on the literature.

Related work

Time series prediction is a useful method that considers
the influence of previous infection data to predict future data
(31). Different machine learning algorithms have been used to
analyze the data of epidemic and pandemic diseases such as
influenzas A (H1N1),3 B,4 measles childhood disease (32), SARS,
MERS, and COVID-19 outbreaks, at the country, regional or
global level (31). Though any machine learning algorithm can
produce reliable results at some level, time series algorithms
are the most accurate approaches to studying epidemic and
pandemic diseases because of their dynamic and temporal

3 https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-
pandemic.html (last accessed on May 16, 2022).

4 https://www.cdc.gov/flu/pandemic-resources/pandemic-
timeline-1930-and-beyond.htm (last accessed on May 16,
2022).
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nature (33). Several studies in the literature have proposed
the use of different time series machine learning and deep
learning algorithms for the prediction of COVID-19 infections
in different countries (23–29).

As shown in Table 1, the selection of machine learning
algorithms is either not justified (23–26), or based on the
popularity of the prediction algorithm (27, 28), or the
performance of the algorithm when implemented for some
other country (29). However, given the significant difference
in the geographical characteristics and social behaviors of
the countries, the use of a single algorithm to predict
disease spread becomes questionable, as it is highly likely
that the algorithm fails to generate accurate predictions (31).
Consequently, an algorithm should be selected based on
the temporal distribution of the infection evolution data
for a country. In this paper, we propose an intelligent
agent, integrated within an automated AI system, that will
analyze the trend of infection growth in a country, and
selects the most accurate learning algorithm. This algorithm
predicts COVID-19 infections with the least error for that
country than other state-of-the-art algorithms. We compare
the performance of our selected algorithm for each country in
Table 1 with the outperforming algorithm(s) for that country
in the literature.

Materials and methods

Automated artificial
intelligence-enabled proactive
preparedness real-time system for
accurate COVID-19 infection
prediction

This section presents the workflow of our proposed system
for predicting COVID-19 infections along with the steps
involved. It explains the method used to select the most accurate
model for prediction based on the infection’s trend. The use of
a systematic workflow for the problem of infection prediction
is the most important for the accurate infection prediction for
a given country. Figure 1A shows the seven stages involved
in the proposed system. In the following, we explain each
stage in detail.

Infection data collection
The city-level, state-level, and/or country-level infection

data can be collected from a data source that can be either
an online repository (such as Johns Hopkins), healthcare
organizations, and/or specialized national/international

TABLE 1 Summary of COVID-19 infection prediction using time series machine learning and deep learning algorithms.

Work Considered
countries

Considered
algorithms

Justification for
algorithm
selection

Considered
period for

developing the
algorithm

Considered period for
validating the

algorithm

Outperforming
algorithm

Ahmar and Del
Val (23)

Spain ARIMA and SutteARIMA NR 02/12–04/02 2020 04/03–04/09 2020 SutteARIMA

Gecili et al. (24) United States and
Italy

HLT, ARIMA, TBATS, and
cubic smoothing spline

02/22–04/29 2020 02/22–04/29 2020 ARIMA

Shahid et al. (25) Brazil, Germany,
Italy, Spain,

United Kingdom,
China, India, Israel,

Russia, and
United States

ARIMA, SVR, LSTM,
Bi-LSTM, GRU

01/22–05/10 2020 05/11–06/27 2020 Bi-LSTM

Ayoobi et al.
(26)

Australia and Iran LSTM, Bi-LSTM,
Convolutional LSTM,

Bi-Convolutional LSTM,
GRU, Bi-GRU

(Australia)
01/25–05/20 2020

(Iran)
01/03–06/06 2020

(Australia)
05/21–06/18 2020

(validation)
06/19–08/19 2020 (testing)

(Iran)
06/07–07/15 2020

(validation)
07/16–10/06 2020 (testing)

LSTM (Australia)
Bi-GRU (Iran)

Ceylan (27) Italy, Spain, and
France

ARIMA Widely used in
literature

02/21–04/15 2020 NA ARIMA

Singh et al. (28) Malaysia ARIMA 01/22–03/31 2020 04/01–04/17 2020 ARIMA

Alzahrani et al.
(29)

Saudi Arabia AR, MA, ARMA, ARIMA Accurate for other
countries

03/02–04/20 2020 NA ARIMA

AR, AutoRegressive; ARIMA, AutoRegressive Integrated Moving Average; ARMA, AutoRegressive Moving Average; Bi-LSTM, Bidirectional Long Short-Term Memory; GRU, Gated
Recurrent Unit; HLT, Holt’s Linear Trend; LSTM, Long Short-Term Memory; MA, Moving Average; NR, Not Reported; NA, Not Applicable; SVR, Support Vector Regression; TBATS,
Trigonometric Exponential smoothing state-space model with Box-Cox transformation.
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FIGURE 1

(A) Workflow of the proposed automated artificial intelligence-enabled system for infection prediction, (B) architecture of long short-term
memory (LSTM) cell and Bidirectional-LSTM network used in the proposed system for infection prediction, and (C) request-response workflow
in the proposed system.

agencies for public health such as World Health Organization
(WHO). In this study, we used the Johns Hopkins dataset
which includes COVID-19 infections, recoveries, and deaths
data from different provinces/states and countries/regions since
22 January 2020. The data fetcher module in our framework
sends an HTTP request to a data source for accessing the
infection data. A request contains information regarding the
city/state/country and the period for which the data is required.
In response to the request, the source sends the queried
infection data to the fetcher module. The data is fetched at a
periodic interval, which can be seconds, minutes, hours, or days
depending on the frequency the data is updated in the data
source and is stored in a cloud database (34–38).

Data preprocessing
The retrieved infection data is preprocessed to make it

ready for the machine/deep learning algorithm. This is done
by removing irrelevant attributes. As our system predicts the
number of infections, the deaths and recoveries data are
removed. In addition, preprocessing involves the identification

and removal of outliers if any, as well as the identification
and handling of missing values. The identification of outliers
in infection prediction is important as the learning algorithms
are sensitive to outliers and could produce unexpected results
(39). The outliers, if present, can be removed using visualization
of the infection data plot and/or machine learning approaches
based on bagging, boosting, and local outlier factor algorithm
(39). The missing values in infection data, if any, can be handled
either by removing the corresponding timestamp from the
dataset or adding synthetic values. The synthetic values can be
generated using statistical methods such as mean, median, and
mode, or machine learning approaches such as kNN imputation
and rpart (39).

Infection trend-to-model mapping
The trend of the preprocessed infection data is analyzed to

select the most accurate prediction model that is adaptive to
the dynamicity of the evolution of the infection spread. The
most accurate model predicts the infections with the least error
compared to other models. To analyze the distribution of the
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infection spread, the infection data is first divided into intervals
of equal length as shown in Figure 1A. The slope between
each interval is then determined by constructing a linear model
between the interval endpoints. If all the data points between the
interval endpoints lie below the data points on the linear model,
then the slope between the interval endpoints is convex. On the
other hand, if all the points between the interval endpoints lie
above the points on the linear model, then the slope between
the endpoints is concave. The slope is straight if the data points
between the interval points lie on the constructed linear model.
The distribution of the infection’s trend is then determined
based on the slopes, and a corresponding prediction model
is selected. ARIMA model is selected to model the infection
data following an exponential trend with a constant rate. This
is because ARIMA is best suited to capture the exponential
behavior of the infection growth (31). For the infection’s data
having an exponential trend with varying rates, the Long Short-
Term Memory (LSTM) and Bidirectional-LSTM (Bi-LSTM)
models are selected as it is capable of capturing the variability
in the data (31). The infection data that increase linearly over
time are modeled using the Linear Trend (LT) model. For
data evolving in a polynomial fashion, the Quadratic Trend
(QT) model is selected. HLT model is selected for exponential
+ linear infection trend. This is because the HLT model is
a linear function of trend and slope that captures well the
linearity in an exponential trend over time. For the infection’s
data with an exponential + damping trend, Damped Trend
(DT) model is selected as the damping parameter used by
the model provides an accurate prediction of infections for
a trend that dampens over time. Figure 1B represents the
architectures for the LSTM cell and Bi-LSTM network. The
main components of LSTM are the cell state and gates. The
cell state transfers the significant previous infection data to the
chain of LSTM cells. Gates in LSTM are responsible for storing
relevant and removing irrelevant infection data. LSTM consists
of three gates: forget, input, and output. All the gates have a
sigmoid activation function except the input gate which utilizes
a hyperbolic tangent activation function. In LSTM, the forget
gate is responsible for removing irrelevant infection data based
on the prediction output of the previous cell. The input gate
adds the new infection data to the memory cell state. Finally, the
output gate generates the output of the cell, i.e., the predicted
infections for the next time step based on the current infections
and cell state. Bi-LSTM is a recurrent neural network that
consists of two LSTM networks, one in the forward direction
and another in the backward.

Model calibration
The selected prediction model is calibrated for

hyperparameter tuning. It is an important stage as non-
optimal parameters’ values may increase the resource utilization
and execution time for model development and can degrade the
model’s convergence and prediction performance.

Model development
The dataset is split into training and validation. The most

common approach is splitting the dataset into 70 and 30% for
training and validation, respectively. The selected algorithm,
with the optimal values of the parameters, is then developed
using the training dataset.

Model validation
The developed model is validated using the validation

dataset in terms of Mean Absolute Percentage Error (MAPE)
and Root Mean Squared Error (RMSE).

Model implementation
The model is implemented in real-time for predicting

infections for a city, state, and/or country. The infections trend-
to-model mapping, model calibration, and model development
are iterative stages. These stages are repeated based on updated
and/or new data.

Figure 1C shows the request-response workflow used in
the proposed system. The healthcare organizations and the
government users interact with the front-end interface of the
system. They are authorized based on their Access Control
List (ACL) or Role-Based Access Control (RBAC) which is
defined by policy. The Certificate Authority (CA) (40–42)
generates a pair of public-private keys (43) for all the users. We
suggest to use asymmetric cryptosystem such as Elliptic Curve
Cryptography (ECC) (44) with the key length of at least 384
bit,5 which is equivalent to 7,680 bit RSA (45), for exchanging
the key and then 256 bit key of Advanced Encryption Standard
(AES), recommended by National Security Agency (NSA), for
encryption and decryption ensuring secure communication.
In addition, to ensure the integrity of data received from
an external source, the SHA3-256 algorithm is used which
guarantees that the data has not been modified.

The front-end runs on the user’s premises and
communicates with the back-end that consists of our proposed
intelligent agent. The prediction request from a user, i.e., the
country for which the prediction is required, the prediction
period, and the certificate, are sent to the encryptor. The
encryptor encrypts the prediction request using the user’s
private key. The encrypted request is sent to the intelligent
agent in the back-end. The agent decrypts the request using the
public key of the request initiator. Once successfully decrypted,
the agent analyzes the trend of the infection data for the country
and selects the most accurate prediction model. The results of
the prediction model are then encrypted by the agent using the
initiator’s public key. The encrypted prediction response is sent
to the user at the front-end. The response is then decrypted
using the user’s private key.

5 https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-
suite.cfm (last accessed on May 16, 2022).
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Implementation of the proposed
automated artificial
intelligence-enabled system for
real-time infection prediction

In this section, the implementation of the real-time
system is discussed. The suggested implemented diagram
is shown in Figure 2. The infection data is collected from
different data sources Dsrc such as the Ministry of Health,
Hospitals, and public health agencies (for example WHO).
The infection data Inf is stored using the data storage
component. The raw infection data is stored as a data
frame df inf is fed as an input to the data transformation
component. The preprocessed data frame df ′inf is again
stored. The transformed data is constantly updated in the
storage in real-time using a data update feedback loop.
The preprocessed data is then divided into training df tr

inf

and validation df vd
inf datasets. A model is selected by the

intelligent agent based on the temporal distribution of
the infection data evolution. The selected model f

(
inf
)

is
developed using df tr

inf . The performance of the model

is evaluated using df vd
inf . The model development is a

feedback control process where the model is tuned using
hyperparameter tuning unless the desired performance is
obtained. The infection prediction error einf obtained from
the evaluation is fed back to tune the hyperparameters.
The tuned model f ∗

(
inf
)

is deployed for predicting
infections accurately. The deployed model is updated
in real-time using the model feedback loop when the
infection data is updated. The healthcare organizations
and the government then use the deployed model to predict
the infections. This is by providing the input arguments,
country for which the prediction is required, and the
duration of prediction C, t. The number of infections for
the prediction period Inft is sent to the healthcare organizations
and the government.

Dataset

To evaluate the performance of our proposed system, we
developed the prediction models for fifteen countries based on
the literature (Table 1). We used the Johns Hopkins COVID-
19 dataset that is updated daily.6 Table 2 presents the countries
for which the prediction models are developed, the features of
the dataset, data update frequency, and the period for which
the COVID-19 infections data are extracted for the countries
under study. The dataset has no outliers and missing values.
We used the number of confirmed cases for each country to
develop the models. Figure 3 shows the infection trend for the
considered countries. As shown in the figure, the distribution
of the infection growth for each country is different. In this
paper, we use country-level data for the evaluation as the dataset
does not include city-level or state-level data for the countries
under study. However, the system can be used for city-level or
state-level infection data as well.

Experiments and evaluation metrics

To predict the COVID-19 infections for the countries under
study, we used our proposed system that selected the most
accurate machine/deep learning model based on the temporal
distribution of the infection evolution for a country (31) as
stated in Figure 1. For each country under study, we compared
the performance of the model selected using our proposed
system with the outperforming model(s) in the literature for
that country (Table 1). Table 3 presents the selected model
and the models used for the comparison for each country. The
description and the parameters for the models are listed in
Table 4.

6 https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-
cases (last accessed on May 16, 2022).

FIGURE 2

Implementation of the proposed real-time prediction system.
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TABLE 2 Characteristics of the COVID-19 dataset used in the experiments.

Countries Features Update
frequency

Considered period for
the Covid-19 infections

Australia, Brazil, China, France, Germany, India, Iran,
Israel, Italy, Malaysia, Russia, Saudi Arabia, Spain,
United Kingdom, and United States

Province/state, country/region, last update,
number of confirmed cases, number of recovered
cases, and number of deaths

Daily 22/01/2020–08/01/2022

To develop the prediction models, we create a separate
dataset for each considered country. We use 70% of the
dataset (i.e., 22/01/2020—06/06/2021) for training (develop) the
model and 30% of the dataset (i.e., 07/06/2021–08/01/2022) for
validating the developed model. We first developed a model
for each country using the training dataset for that country.
We then validated the developed model by predicting the
number of infections for the validation period, i.e., 07/06/2021–
08/01/2022, and comparing the predicted values with the actual
ones. In addition, we developed the outperforming model(s)
for each country under study based on the literature (Table 1)
and predicted the infections using the developed model(s). We
evaluate the performance of the models in terms of RMSE
and MAPE that are computed using Equations (1) and (2),
respectively.

RMSE =

√√√√∑n
T=1

(
Infectionsactual

T − Infectionspredicted
T

)2

n
(1)

MAPE =

 1
n

∑n

T=1

∣∣Infectionsactual
T

− Infectionspredicted
T

∣∣
Infectionsactual

T

×100% (2)

where n is the total number of days for which the infections are
predicted

To tune the hyperparameters for the considered models,
we implement each model with varying parameters’ values and

FIGURE 3

COVID-19 infections’ data trend for the countries under study.

select the values that result in the least MAPE. In particular,
to obtain the values of α and β parameters for HLT model,
we implement the model with varying values of the parameters
between [0, 1] at an interval of 0.1, i.e., (α = 0, β = 0),
(α = 0, β = 0.1), . . ., (α = 0.2, β = 0), (α = 0.2, β = 0.1),...
(α = 1, β = 1). The combination of values that return the
minimum MAPE is selected. For QT, we implement the model
for varying degrees of polynomial between [1, 10] and selected
the degree resulting in the least MAPE value. To obtain the
values of α, β, Ø parameters for the DT model, we implement
the model with varying values of the parameters between [0,
1] at an interval of 0.1 and selected the combination of values
that return the minimum MAPE. To obtain the values of
input size, number of neurons, epochs, activation function, and
optimizer for LSTM, Bi-LSTM, and Bi-GRU models, we first
determine the values of input size, number of neurons, and
epochs by brute-force method while using Rectified Linear Unit
(ReLU) activation function and Adaptive Movement Estimation
(Adam) optimizer. We then vary the activation function and
optimizer by keeping other parameters constant at their optimal

TABLE 3 Prediction models used for the countries under study.

Country Infection’s
trend

Automated AI
selected model

Model(s) used
for comparison

China Exponential + linear HLT Bi-LSTM (25)

France ARIMA (27)

Germany Bi-LSTM (25)

Italy ARIMA (24, 27) and
Bi-LSTM (25)

Malaysia ARIMA (28)

Australia Polynomial QT LSTM (26)

Iran Bi-GRU (26)

Russia Bi-LSTM (25)

Spain SutteARIMA (23),
Bi-LSTM (25) and

ARIMA (27)

UK Bi-LSTM (25)

US Linear LT ARIMA (24) and
Bi-LSTM (25)

Israel Bi-LSTM (25)

Brazil Exponential +
damping

DT Bi-LSTM (25)

India Bi-LSTM (25)

Saudi Arabia ARIMA (29)
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TABLE 4 Description and parameters of the prediction models used in the experiments.

Model Description Parameter

HLT Allows forecasting of data with a trend. It is exponential smoothing applied to both
the average value in the series (level) as well as the trend (47).

Smoothing parameters for level (α) and trend (β)

QT Develops a polynomial relationship between time and the infection data (31). Degree of polynomial

LT Develops a linear relationship between time and the infection data (31). It is suitable
for the time series where the local mean is increasing gradually over time at a
constant rate.

Not applicable

DT Extends the HLT model by adding a damping parameter that dampens the steep
increasing forecast of HLT to a flat trend in the future (46).

Smoothing parameters for level (α), trend (β), and damping
parameter (8)

LSTM LSTM is a recurrent neural network that is capable of learning long-term
dependencies. The main concepts of LSTM are the cell state and the gates. The cell
state acts as a data transmission channel that transfers relative information to the
chain of neural networks. Gates are the way to decide on what information to keep or
forget based on the relevance during the training.

input size, number of neurons, epochs, activation function, and
optimizer

Bi-LSTM A recurrent neural network model consisting of two LSTM networks, one in forward
direction (previous timestamp to future) and backward direction (future to previous
timestamps).

Bi-GRU A neural network model consisting of two GRU networks, one taking input in
forward direction and the other in backward direction. It is a bidirectional recurrent
neural network consisting of input and forget gates. GRU are similar to LSTM cells
but do not maintain an internal cell state

ARIMA Combines the autoregressive (AR) and the moving average (MA) models (29). AR
develops a linear regression model with lagged infections as the independent
variables and the MA develops a linear regression model using lagged prediction
errors as the independent variables. A non-stationary time series data trend should
be transformed into a stationary one, using differencing, to apply ARIMA.

Orders of lag observations (p), differencing (d), and moving
average (q)

SutteARIMA Averages alpha-Sutte and ARIMA prediction models (23). Alpha-Sutte is based on
the moving average method and uses the infection’s data for the past 4 timestamps to
predict infection for the next timestamp.

Orders of lag observations (p), differencing (d), and moving
average (q)

values. The input sizes of 10, 50, 100, 200, and 250 are considered
for the experiments. The different values used for epochs are
100, 200, 300, 400, and 500. However, for Italy, 1500 epochs
are used as the model did not converge with 500 epochs. The
number of neurons is varied from 100 to 1,000 at an interval of
100. The different activation functions used are ReLU, Softplus,
Softmax, Softsign, Scaled Exponential Linear Unit (SELU),
Linear, Hard_sigmoid, Sigmoid, Hyperbolic Tangent (Tanh),
and Exponential Linear Unit (ELU). The optimizers used for
tuning are Adam, Adadelta, Adaptive Gradient (AdaGrad),
Adamax, Nesterov-accelerated Adaptive Moment Estimation
(Nadam), Stochastic Gradient Descent (SGD), and Root Mean
Square Propagation (RMSprop). The Mean Squared Error
(MSE) loss function is used for LSTM, Bi-LSTM, and Bi-
GRU models. To yield parameters’ values for the ARIMA
and SutteARIMA models, we first check the stationarity of
the infection data and determine the value of d. This is
by performing the statistical augmented Dickey-Fuller (ADF)
test (33, 46) that checks the null hypothesis that the data is
non-stationary and returns a probability score (p-value). A p-
value < 0.05 indicates that the time series is stationary. If the
p-value ≥ 0.05 (non-stationary time series), then the time series
is differenced and the ADF test is performed again. This is
repeated until the time series becomes stationary. The value of

d is then equal to the number of times the series is differenced.
After determining the value of d, we plot the Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF)
plots for the differenced time series to determine the values of
q and p, respectively. The number of lags for which the ACF
is outside the significant threshold represents the value of the
parameter “q” value and the number of lags for which the PACF
is outside the significant threshold represents the value of “p.”

Results

Hyperparameter tuning

Figure 4 shows the MAPE obtained by the HLT models,
for different values of α and β, when developed for the
infection data of China, France, Germany, Italy, and Malaysia.
It shows that the minimum MAPE is obtained for (α, β)
values of (0.1, 1.0), (0.3, 0.9), (1.0, 0.1), (1.0, 0.1), and
(0.1, 0.4) for China, France, Germany, Italy, and Malaysia,
respectively. We use these values to develop the prediction
model for the corresponding countries. Figure 5 shows the
MAPE obtained by the DT model, for different values of α and
β, when developed for the infection data in Brazil, India, and
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FIGURE 4

Performance of Holt’s linear trend (HLT) model with varying parameters’ values for the infection data in (A) China, (B) France, (C) Germany, (D)
Italy, and (E) Malaysia.

FIGURE 5

Performance of damped trend (DT) model with varying parameters’ values for the infection data in (A) Brazil, (B) India, and (C) Saudi Arabia.

Saudi Arabia. It shows that the minimum MAPE is obtained
for (α, β) values of (1.0, 0.2), (1.0, 0.1), and (0.5, 0.1) for
Brazil, India, and Saudi Arabia, respectively. We use these
values to develop the prediction model. Figure 6 shows the
training and validation losses over epochs for LSTM, Bi-LSTM,
and Bi-GRU models for China, Germany, Italy, Australia, Iran,
Russia, Spain, the United Kingdom, the United States, Israel,
Brazil, and India. As shown in the figure, both training and
validation losses converge, indicating a good fit. However, for
Australia (Figure 6D), there is a gap between the training and
validation losses indicating unrepresentative training dataset.
This is because the number of infections for Australia increased
rapidly during the validation period, as shown in Figure 3,
which is not captured by the model develop using the training

dataset. For the ARIMA model, we first perform the ADF
test to check the stationarity of time series data for France,
Italy, Malaysia, Spain, the United States, and Saudi Arabia. The
p-values obtained for Malaysia, Spain, the United States, and
Saudi Arabia after the second-order are 0.000000, 0.000000,
0.000092, and 0.000117, respectively. The p-values < 0.05 for
these countries indicate that the time series becomes stationary
after second-order differencing. Consequently, the value of d is
set to 2 for these countries. For France and Italy, p-values < 0.05,
i.e., 0.003894 and 0.048181, respectively, are obtained after
first order differencing. However, the ACF plots for the first
ordered differenced infection data of France and Italy do
not converge to zero. Consequently, we differenced the time
series for these countries one more time and select d = 2 for
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FIGURE 6

Training and validation loss vs. epochs for long short-term memory (LSTM), bidirectional-LSTM (Bi-LSTM), and bidirectional gated recurrent unit
(Bi-GRU) models after hyperparameter tuning for infection data in (A) China (Bi-LSTM), (B) Germany (Bi-LSTM), (C) Italy (Bi-LSTM), (D) Australia
(LSTM), (E) Iran (B-GRU), (F) Russia (Bi-LSTM), (G) Spain (Bi-LSTM), (H) United Kingdom (Bi-LSTM), (I) United States (Bi-LSTM), (J) Israel (Bi-LSTM),
(K) Brazil (Bi-LSTM), and (L) India (Bi-LSTM).

France and Italy after obtaining a p-value of 0.000000 and
0.001730, respectively. Figure 7 shows the ACF and PACF
plots for the stationary infection data, i.e., after second-order
differencing, for France, Italy, Malaysia, Spain, the United States,
and Saudi Arabia. As depicted in Figure 7A, 1 lag value is outside

the significant threshold in the ACF plot for France indicating
q = 1. Moreover, 10 values in the PACF plot are outside the
threshold indicating p = 10. Similarly, (p, q) values for Italy,
Malaysia, Spain, the United States, and Saudi Arabia are (5,
7), (5, 2), (6, 8), (9, 1), and (3, 1) as shown in Figures 7B–F),
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FIGURE 7

Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots for the stationary infection data in (A) France, (B) Italy, (C)
Malaysia, (D) Spain, (E) United States, and (F) Saudi Arabia.

respectively. Table 5 shows the optimal values of parameters for
the developed models.

COVID-19 predictions

Figure 8A shows COVID-19 confirmed cases for the
training and validation datasets for China. In addition, it
indicates the number of infections forecasted by the HLT model
selected using the proposed automated AI system and the Bi-
LSTM model from the literature (25). It shows that HLT model
predicts the infections with more accuracy compared to Bi-
LSTM. This is because HLT fits well the exponential + linear
infection trend for China. The (MAPE, RMSE) values using
HLT and Bi-LSTM models for China are (1.29, 1934.36) and
(11.39, 13331.86), respectively. Figure 8B shows the predicted
infections for France using the proposed automated AI-selected
HLT model and state-of-the-art ARIMA model (27). It shows

that HLT outperforms ARIMA. As depicted in Figure 8B,
HLT model predicts with lower error for the validation period
where the infection’s trend is linear than where the trend is
exponential. The prediction error for HLT increases as the
infection grows exponentially toward the end of the validation
period, which is not captured by the model. The (MAPE,
RMSE) values using HLT and ARIMA models for France
are (3.87, 702931.85) and (9.39, 1155417.17), respectively. The
prediction for Germany using automated AI-selected HLT and
state-of-the-art Bi-LSTM (25) is shown in Figure 8C. HLT
outperforms Bi-LSTM as it can capture the exponential + linear
infection trend for Germany. However, similar to Figure 8B,
the prediction error by HLT for Germany (Figure 8C) increases
when the validation infection data exhibits an exponential trend.
The (MAPE, RMSE) values using HLT and Bi-LSTM models
for Germany are (9.37, 967916.97) and (28.01, 1321353.74),
respectively. Figure 8D shows COVID-19 prediction for Italy
using automated AI-selected HLT and state-of-the-art ARIMA
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TABLE 5 Optimal values of parameters obtained after hyperparameter tuning for the models used in the experiments.

Model Country Optimal parameters’ values

HLT China α = 0.1, β = 1.0

France α = 0.3, β = 0.9

Germany α = 1.0, β = 0.1

Italy α = 1.0, β = 0.1

Malaysia α = 0.1, β = 0.4

QT Australia Degree = 5

Iran Degree = 2

Russia Degree = 2

Spain Degree = 3

United Kingdom Degree = 2

DT Brazil α = 1.0, β = 0.2, 8 = 0.99

India α = 1.0, β = 0.1, 8 = 0.99

Saudi Arabia α = 0.5, β = 0.1, 8 = 0.99

LSTM Australia Input size = 250, neurons = 100, epochs = 500, activation function = ReLU, optimizer = SGD

Bi-LSTM China Input size = 250, neurons = 100, epochs = 500, activation function = SELU, optimizer = Adamax

Germany Input size = 250, neurons = 100, epochs = 500, activation function = SELU, optimizer = Adadelta

Italy Input size = 250, neurons = 100, epochs = 1,500, activation function = ReLU, optimizer = SGD

Russia, Spain, United States, and Brazil Input size = 250, neurons = 100, epochs = 500, activation function = ReLU, optimizer = Adadelta

United Kingdom Input size = 250, neurons = 100, epochs = 500, activation function = Softsign, optimizer = Adadelta

Israel Input size = 250, neurons = 100, epochs = 500, activation function = ReLU, optimizer = Adam

India Input size = 250, neurons = 100, epochs = 500, activation function = ReLU, optimizer = Nadam

Bi-GRU Iran Input size = 250, neurons = 100, epochs = 500, activation function = ReLU, optimizer = Adam

ARIMA France p = 10, q = 2, d = 1

Italy p = 5, q = 2, d = 7

Malaysia p = 5, q = 2, d = 2

Spain p = 6, q = 2, d = 8

United States p = 9, q = 2, d = 1

Saudi Arabia p = 3, q = 2, d = 1

(24, 27) and Bi-LSTM (25) models. The HLT model outperforms
ARIMA and Bi-LSTM models. The (MAPE, RMSE) values
using HLT, ARIMA, and Bi-LSTM models for Italy are
(2.84, 389747.98), (6.56, 581053.16), and (12.41, 837410.43),
respectively. The prediction results for Malaysia using our
automated AI-selected HLT model and state-of-the-art ARIMA
model (28) are presented in Figure 8E. HLT captures the
infection trend for Malaysia and outperforms ARIMA in
predicting COVID-19 infections. The (MAPE, RMSE) values
using HLT and ARIMA models for Malaysia are (16.37,
412523.95) and (23.23, 617834.31), respectively.

Figure 8F shows the prediction results for Australia using
automated AI-selected QT and state-of-the-art LSTM (26).
The (MAPE, RMSE) values using QT and LSTM models
for Australia are (20.64, 80417.79), and (68.60, 181145.56),
respectively. Figure 8G shows the prediction results for Iran
using automated AI-selected QT and Bi-GRU (26). The
(MAPE, RMSE) values using QT and Bi-GRU models for Iran
are (8.54, 579794.14) and (31.90, 2086139.84), respectively.
Figure 8H shows COVID-19 predictions for Russia using

automated AI-selected QT and Bi-LSTM (25). It depicts that
QT outperforms Bi-LSTM as it can capture the polynomial
trend of the infection data in Russia. The (MAPE, RMSE)
values using QT and Bi-LSTM models for Russia are (12.87,
941065.72) and (23.58, 2536117.98), respectively. Figure 8I
shows the prediction results for Spain using automated AI-
selected QT and state-of-the-art ARIMA (27), SutteARIMA
(23), and Bi-LSTM (25). The (MAPE, RMSE) values using
QT, ARIMA, SutteARIMA, and Bi-LSTM models for Spain are
(5.77, 497155.75), (13.26, 825509.28), (56.48, 2804433.84), and
(16.48, 1047913.19), respectively. Figure 8J shows the prediction
results for the United Kingdom using automated AI-selected
QT and Bi-LSTM (25). The (MAPE, RMSE) values using QT
and Bi-LSTM models for the United Kingdom are (16.57,
1167306.58) and (27.40, 3450595.03), respectively. Figure 8K
shows the COVID19 infection prediction for the United States
using LT, ARIMA (24), and Bi-LSTM (25). The (MAPE,
RMSE) values using LT, ARIMA, and Bi-LSTM models for the
United States are (3.79, 2197376.04), (15.5, 9450564.22), and
(10.99, 6337067.40) respectively. Figure 8L shows the prediction
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FIGURE 8

(A) Forecasting of COVID-19 infections in China using automated artificial intelligence-enabled system selected Holt’s linear trend (HLT) and
state-of-the-art Bidirectional long short-term Memory (Bi-LSTM) models. (B) Forecasting of COVID-19 infections in France using Automated
Artificial Intelligence-enabled system selected HLT and state-of-the-art Autoregressive Integrated Moving Average (ARIMA) models. (C)
Forecasting of COVID-19 infections in Germany using Automated Artificial Intelligence-enabled system selected HLT and state-of-the-art
Bi-LSTM models. (D) Forecasting of COVID-19 infections in Italy using Automated Artificial Intelligence-enabled system selected HLT and
state-of-the-art ARIMA and Bi-LSTM models. (E) Forecasting of COVID-19 infections in Malaysia using Automated Artificial Intelligence-enabled

(Continued)
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FIGURE 8 (Continued)

system selected HLT and state-of-the-art ARIMA models. (F) Forecasting of COVID-19 infections in Australia using Automated Artificial
Intelligence-enabled system selected QT and state-of-the-art LSTM models. (G) Forecasting of COVID-19 infections in Iran using Automated
Artificial Intelligence-enabled system selected QT and state-of-the-art Bi-GRU models. (H) Forecasting of COVID-19 infections in Russia using
Automated Artificial Intelligence- enabled system selected Quadratic Trend (QT) and state-of-the-art Bi-LSTM models. (I) Forecasting of
COVID-19 infections in Spain using Automated Artificial Intelligence-enabled system selected QT and state-of-the-art ARIMA, SutteARIMA, and
Bi-LSTM models. (J) Forecasting of COVID-19 infections in the United Kingdom using Automated Artificial Intelligence-enabled system selected
QT and state-of-the-art Bi-LSTM models. (K) Forecasting of COVID-19 infections in the United States using Automated Artificial
Intelligence-enabled system selected Linear Trend (LT) and state-of-the-art ARIMA and Bi-LSTM models. (L) Forecasting of COVID-19 infections
in Israel using Automated Artificial Intelligence-enabled system selected LT and state-of-the-art Bi-LSTM models. (M) Forecasting of COVID-19
infections in Brazil using Automated Artificial Intelligence-enabled system selected Damped Trend (DT) and state-of-the-art Bi-LSTM models.
(N) Forecasting of COVID-19 infections in India using Automated Artificial Intelligence-enabled system selected DT and state-of-the-art
Bi-LSTM models, and (O) forecasting of COVID-19 infections in Saudi Arabia using Automated Artificial Intelligence-enabled system selected DT
and state-of-the-art ARIMA models.

FIGURE 9

Mean absolute percentage error (MAPE) and normalized root mean squared error (RMSE) of the Automated Artificial Intelligence-enabled
system selected and state-of-the-art models for the countries under study.
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TABLE 6 Limitations of time series algorithms.

Algorithm Limitation

Autoregressive Integrated Moving Average (ARIMA) Not suitable for infection’s trend that becomes linear or dampens over time

SutteARIMA Not suitable for infection’s trend that increases exponentially

Holt’s linear trend Not suitable for infection’s trend with seasonality

Trigonometric Exponential smoothing state-space model with Box-Cox
transformation

Not suitable for infection’s trend that increases exponentially

Cubic smoothing spline Not suitable for infection’s trend having a high difference in the number of infections
between consecutive time intervals

Support vector regression Not suitable for infection’s trend with randomness

Long short-term memory (LSTM), Bi-LSTM, gated recurrent unit (GRU), and
Bi-GRU

Time consuming, memory-intensive and the performance is sensitive to the initial
values of hyperparameters

Autoregressive and Autoregressive Moving Average Not suitable for infection’s trend whose average varies over time

Moving average Can only predict a consistent change in infections over time

results for Israel using automated selected LT and Bi-LSTM (25).
The (MAPE, RMSE) values using LT and Bi-LSTM models for
Israel are (9.06, 119886.19) and (20.91, 335433.23), respectively.
Figures 8M,N) show the prediction results for Brazil and India,
respectively, using automated AI-selected DT models and Bi-
LSTM models (25). They show that DT outperforms Bi-LSTM
for both Brazil and India as it can accurately DT capture the
exponential + damping trend of infection growth. The (MAPE,
RMSE) values using DT and Bi-LSTM models for Brazil are
(0.73, 175627.67) and (14.02, 3313775.77), respectively. The
(MAPE, RMSE) values using DT and Bi-LSTM models for India
are (4.79, 1732187.64) and (36.89, 12906730.59), respectively.
Figure 8O shows the prediction results for Saudi Arabia using
automated AI selected DT and ARIMA (29). The (MAPE,
RMSE) values using DT and ARIMA models for Saudi Arabia
are (1.54, 9909.39) and (6.37, 47768.10), respectively. Figure 9
show the MAPE and RMSE obtained by the model selected
using the proposed system and state-of-the-art approaches for
each country under study. It shows that the selected models
outperform the approaches in the literature for each country. In
summary, the proposed system predicts COVID-19 infections
with an average MAPE and RMSE of 7.87 and 665052.14,
respectively. The average MAPE values for state-of-the-art Bi-
LSTM, ARIMA, LSTM, Bi-GRU, and SutteARIMA models are
20.21, 12.38, 68.60, 31.90, and 56.48, respectively, whereas the
average RMSE values are 3209972.92, 2113024.38, 181145.57,
2086139.84, and 2804433.85, respectively.

Discussion

Time series prediction is a useful method to predict the
dynamics of future infection data by using the influence of the
trends, seasonality, and randomness of the historical data (31).
Different machine learning algorithms have been used to analyze
the data of epidemic and pandemic diseases such as influenzas
A (H1N1), B, measles childhood disease (32), SARS, MERS,

and COVID-19 outbreaks, at the country, regional or global
level (31). Though any machine learning algorithm can produce
reliable results at some level, time series algorithms are the
most accurate approaches to studying epidemic and pandemic
diseases because of their dynamic and temporal nature (33).
Several machine learning and deep learning time series
algorithms have been used in the literature to predict COVID-
19 infections (23–29). The dominant concern in predicting
infections for a country is the prediction’s accuracy, optimal
resource management, and effective development of strategies.
Our main goals are to (1) decide on an accurate time series
learning algorithm for predictions, and (2) hyperparameter
tuning for the selected algorithm. These algorithms are data-
driven and are only suitable for a particular trend of the
infection’s growth. Consequently, a single algorithm cannot be
applied to predict infections’ spread in different countries. For
instance, Autoregressive Integrated Moving Average (ARIMA)
(29) cannot be used for prediction when the trend of infection’s
growth linearizes/dampens over time. Furthermore, Holt’s
Linear Trend (HLT) (47) model gives inaccurate prediction
results if there exists a seasonality behavior in the infection’s
growth. Table 6 presents the limitations of the models used
in the literature (Table 1). In summary, Table 6 shows
that no single algorithm can be used to accurately predict
infections for all the countries in the world. This is because
the infection trend is different from one country to another.
Our proposed automated AI-enabled proactive preparedness
real-time system analyzes a country’s infection trend and
selects a time-series model which captures that particular
trend. Our numerical experiments and comparative analysis
show that the proposed system outperforms the state-of-
the-art approaches for COVID-19 prediction. In particular,
the proposed system predicts the number of infections with
68.60, 58.79, 69.90, 73.21, and 89.78% less MAPE, and
65.8150.18, 55.60, 72.20, and 82.27% lower RMSE than Bi-
LSTM, ARIMA, LSTM, Bi-GRU, and SutteARIMA used in the
literature, respectively.
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Conclusion

Considering the dynamicity in the temporal distribution
of infections over time among different countries, a single
machine learning infection prediction algorithm cannot solely
yield high accuracy for all the countries, and hence different
models should be adopted for predicting infections in different
countries. The selection of the model for a country is the main
challenge as evaluating the performance of all the algorithms
for a country and then selecting the most accurate model
is a complex and inefficient process. For selecting the most
accurate model the trend of the infection’s evolution for a
country should be taken into consideration. Incorporating all
these factors, a novel automated artificial intelligence-enabled
proactive preparedness real-time system for accurate prediction
of COVID-19 infection is proposed. We present the design,
development, and implementation of the system. The proposed
system selects the most accurate model based on the infection
trend for a country, whereas the models in the literature are
selected based on the popularity of the model or based on
the performance of a models when used for other countries.
The developed system performs efficiently, with an average
reduction of 72.1% in MAPE and 65.2% in RMSE compared to
state-of-the-art approaches. Consequently, the system will aid
governments to tailor the precautionary measures in place to
tackle a pandemic, such as COVID-19, and develop an effective
plan to manage the medical resources efficiently. For future
research work, a large spectrum of countries will be considered
to evaluate the proposed system. In addition, efficient methods
for models’ calibrations will be investigated.
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