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Insertional mutagenesis using 
the Sleeping Beauty transposon 
system identifies drivers of 
erythroleukemia in mice
Keith R. Loeb1,2, Bridget T. Hughes1,3,4, Brian M. Fissel5, Nyka J. Osteen1, Sue E. Knoblaugh6, 
Jonathan E. Grim1,7, Luke J. Drury8, Aaron Sarver9, Adam J. Dupuy8 & Bruce E. Clurman1,3

Insertional mutagenesis is a powerful means of identifying cancer drivers in animal models. We 
used the Sleeping Beauty (SB) transposon/transposase system to identify activated oncogenes in 
hematologic cancers in wild-type mice and mice that express a stabilized cyclin E protein (termed cyclin 
ET74AT393A). Cyclin E governs cell division and is misregulated in human cancers. Cyclin ET74AT393A 
mice develop ineffective erythropoiesis that resembles early-stage human myelodysplastic 
syndrome, and we sought to identify oncogenes that might cooperate with cyclin E hyperactivity in 
leukemogenesis. SB activation in hematopoietic precursors caused T-cell leukemia/lymphomas (T-ALL)  
and pure red blood cell erythroleukemias (EL). Analysis of >12,000 SB integration sites revealed 
markedly different oncogene activations in EL and T-ALL: Notch1 and Ikaros were most common in 
T-ALL, whereas ETS transcription factors (Erg and Ets1) were targeted in most ELs. Cyclin E status did 
not impact leukemogenesis or oncogene activations. Whereas most SB insertions were lost during 
culture of EL cell lines, Erg insertions were retained, indicating Erg’s key role in these neoplasms. 
Surprisingly, cyclin ET74AT393A conferred growth factor independence and altered Erg-dependent 
differentiation in EL cell lines. These studies provide new molecular insights into erythroid leukemia and 
suggest potential therapeutic targets for human leukemia.

Insertional mutagenesis is a powerful means of identifying the molecular drivers of cancer initiation and progres-
sion in animal models. Sleeping Beauty (SB) is a transposon/transposase insertional mutagenesis system that is 
designed to either overexpress nearby genes or inactivate genes, depending on the transposon’s integration site 
and orientation1,2. By combining conditional expression of the SB transposase with the T2Onc transposon in var-
ious genetic backgrounds, SB screens have been used extensively to identify\cancer genes and how they cooperate 
with one another in wild type and cancer-sensitizing backgrounds, and across many cancer types3–6.

In this study, we employed SB to identify oncogenes that might promote multi-step carcinogenesis in a 
mouse model engineered to express a stabilized version of the cyclin E protein. Cyclin E, in conjunction with 
its catalytic partner CDK2, has crucial roles in cell division, and cyclin E-CDK2 deregulation causes genome 
instability and contributes to cancer development and progression7. One important means of cyclin E regula-
tion is phosphorylation-dependent degradation by the SCFFbw7 ubiquitin ligase8–12. To study the physiologic 
consequences of abnormal cyclin E degradation, we previously created a knock-in mouse model that ablated 
two cyclin E phosphorylation sites (T74 and T393) that trigger its degradation13,14. The cyclin ET74AT393A 
mutation caused increased cyclin E abundance and epithelial cell hyperproliferation. However, these mice did 
not spontaneously develop epithelial dysplasia or tumors, suggesting that compensatory mechanisms maintain 
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tissue architecture and suppressed tumorigenesis. Cyclin ET74AT393A expression also caused ineffective eryth-
ropoiesis with marked expansion of immature erythroid precursors in the spleen and bone marrow, impaired 
erythroid differentiation, and mild anemia. These features resemble the early stages of human refractory anemia/
myelodysplastic syndrome (MDS).

Because MDS can evolve to leukemia in humans, we speculated that cyclin ET74AT393A mice may provide 
a sensitized background to identify genetic events that cooperate with abnormal cyclin E regulation to promote 
leukemia. We thus used interferon-inducible Mx-Cre to activate the SB transposase in hematopoietic precursors 
to identify genes that might cooperate with abnormal cyclin E regulation to promote leukemia. The stabilized 
cyclin E allele neither predisposed mice to hematologic cancers nor altered gene activations by SB. Strikingly 
however, Mx-Cre-induced SB activation caused highly penetrant hematologic cancers within 8–13 weeks after 
Cre induction. To control for biases in transposon integrations that frequently occur proximal to the T2Onc 
array15,16, we used two different T2/Onc2 strains that contained the transposon array on different chromosomes. 
The most common malignancies were immature T-cell leukemia/lymphomas (T-ALL) and pure red blood cell 
erythroleukemias (EL), and there was a non-significant trend towards more EL in the cyclin ET74AT393A mice.

To identify activated oncogenes in these neoplasms, we determined the transposon insertion sites in all ELs 
and T-ALLs. Transposon insertions that are shared by multiple independent tumors, termed common insertion 
sites (CIS), often occur in the vicinity of cancer-associated genes, which provides the selective pressure for these 
shared insertions. We identified CIS using two different statistical methods and found that the CIS profile of ELs 
and T-ALLs differed markedly. Whereas Notch and Ikaros insertions were most common in T-ALL, ETS family 
transcription factors (Erg and Ets1) were the most commonly activated genes in ELs and were activated in the 
almost all of these tumors.

While T-ALL is common in SB screens performed in blood cells, EL has not, and we thus examined EL in 
more detail by developing 5 transplantable EL cell lines. Transposon analyses indicated that the vast majority 
of CISs found in primary ELs were lost during culture of EL cell lines, suggesting that they were not required 
for their proliferation and maintenance in vitro. However, all EL lines retained their Erg insertions and over-
expressed ERG protein, further supporting the key role of Erg activation in EL. Insertions near the Bach2 
transcription factor were also retained in several cell lines, and one EL line also retained a Flt3 insertion and 
exhibited FLT3-dependence. Finally, although cyclin ET74AT393A expression did not impact leukemogenesis 
or CIS involvement, we found two phenotypic differences between EL cell lines derived from WT and cyclin 
ET74AT393A mice. First, while WT EL lines remained dependent on exogenous growth factors (GFs), the cyclin 
E mutant cell lines did not and proliferated in the absence of GFs. Next, Erg knockdown resulted in erythroid dif-
ferentiation of the WT but not the cyclin ET74AT380A cell lines. These findings suggest that properly regulated 
cyclin E activity influences both growth factor requirements and differentiation in EL cells.

Results
Development and Characterization of SB-induced hematologic cancers.  We performed a 
SB insertional mutagenesis screen in WT and cyclin ET74AT393A mice. Mice homozygous for the cyclin 
ET74AT393A mutation and Rosa26SB11 LSL SB transposase and containing one of two different T2/Onc2 arrays 
were crossed with mice homozygous for cyclin ET74AT393A and expressing the Mx1-Cre transgene, which 
generated the experimental cohort (cyclin ET74AT393A; Rosa26SBLSL; T2/Onc2+; Mx1-Cre1) (Fig. 1a). The 
matched control cohort was wild-type cyclin E; Rosa26SBLSL; T2/Onc2+; Mx1-Cre1. Parallel crosses were made 
using two separate T2/Onc2 lines with transposon arrays on different chromosomes (strain 6113- chromosome 
1, strain 6070 -chromosome 4)17,18 Mice (7–10 weeks old) were injected with poly I:C to activate Cre recombinase 
expression and subsequent transposase expression. Mx1-Cre induction and SB expression was monitored by loss 
of GFP expression in peripheral blood leukocytes from a subset of study mice, which demonstrated 71–86% loss 
of GFP-expressing cells following induction (Table S1).

SB insertional mutagenesis in immature hematopoietic cells resulted in progressive serious illness, including 
weight loss, poor grooming, and hunched posture, leading to euthanasia within 3 months of Mx-Cre induction. 
Necropsy showed hematologic malignancies in all animals, including lymphoid, myeloid, erythroid and megakar-
yocytic tumors (Fig. 1c, Table S2). Surprisingly, rather than accelerating tumorigenesis, the cyclin ET74AT393A 
allele imparted a non-significant trend towards longer survival (11.6 weeks post injection for wild-type and 12.9 
weeks for cyclin ET74T393A mice, p = 0.08) (Fig. 1b). The most frequent neoplasm was immature T-cell lympho-
blastic lymphoma with leukemia (T-ALL), which usually presented with a massively enlarged thymus. T-ALL typ-
ically involved the spleen and bone marrow and in some instances, disseminated to the liver, kidneys and lungs. 
Leukemia was also noted with leukocytosis and circulating lymphoblasts. Histologic sections of affected organs 
revealed homogeneous tumors composed of tightly packed lymphoblasts with a high mitotic rate and scattered 
apoptotic cells admixed with phagocytic histiocytes (Fig. S1). Immunophenotyping by flow cytometry showed 
expression of CD3 and CD8 with frequent variable co-expression of CD4, findings consistent with immature 
T-cell lymphoblastic leukemia (Fig. 2f,g, Fig. S1, Table S2).

Many (40%, n = 100) mice developed EL with intermixed megakaryocytic differentiation, which caused 
prominent splenomegaly and involved the bone marrow and sometimes the liver (Figs 1c, 2a,b,e and Table S2). 
The mice with EL exhibited peripheral involvement with leukocytosis consisting of a prominent population of 
circulating erythroblasts with dark basophilic cytoplasm (Fig. 2c,d). Multiparameter flow cytometry studies 
revealed immature erythroblasts (as shown by CD45/side scatter) with dim CD45 expression, variable CD117 
(c-Kit) expression, bright CD71 (transferrin receptor) expression, and occasional Ter119 (glycophorin associ-
ated protein) expression (Fig. 2f,g, Table S2). ELs varied somewhat with respect to their degree of erythroid 
differentiation, with variable expression of CD117 (immature immunophenotype) and Ter119 (mature immu-
nophenotype) (Fig. S2). The immunophenotype of the neoplastic population was identical in samples isolated 
from peripheral blood, spleen and bone marrow (Fig. S3). Some ELs showed megakaryocytic differentiation with 
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scattered enlarged cells with abundant cytoplasm and multilobulated nuclei, morphologically consistent with 
megakaryocytes (Fig. 2e). Additional flow cytometry studies showed variable expression of CD41, consistent 
with megakaryocytic differentiation in these cases (Fig. S4). Overall, these tumors displayed many features resem-
bling those of pure red blood cell EL in humans (see Discussion)19. Some mice (7%) contained mixed tumors of 
both lymphoid and erythroid lineages identified by parallel flow cytometry studies (Table S2). The spectrum of 
hematologic malignancies was similar in the cyclin E-T74AT393A and wild-type mice, with a small trend toward 
increased EL in the mutant cyclin E mice (Fig. 1c).

Common Insertion Site (CIS) Identification in T-ALL and EL.  To identify CIS, we isolated DNA 
from 40 ELs (spleens) and 53 T-ALLs (thymus or lymph node), amplified the transposon integration sites via 
ligation-mediated PCR, and identified the transposon integration sites by next generation sequencing. We 
mapped 5002 EL insertion sites and 7012 T-ALL sites (Table S3). Each tumor contained between 50 and 150 
unique insertions, presumably representing both driver and passenger insertions. We identified CIS by using 
two different statistical methods that differ in the parameters used to identify CIS and their associated genes: (1) 
gene-centric common insertion site analysis (gCIS), and (2) TAPDANCE20,21.

gCIS identified 74 total CIS in T-ALLs (Table S4). The chromosome that contains the transposon concate-
mer (the “donor chromosome”) is disproportionately targeted by transposon insertions (“local hopping”) in SB 
screens. As expected, many CIS were mapped to the donor chromosome. Although these insertions could repre-
sent true genetic drivers of cancer, we initially filtered these CIS from subsequent analyses, resulting in 25 T-ALL 
CIS (Table 1). This analysis identified many established drivers of T-ALL, including Notch1, Ikzf1, Rasgrp1, and 
Akt26. The presence of the cyclin E mutation did not impact the spectrum of CIS observed. Since T-ALLs have 
been well studied in insertional mutagenesis studies, we focused on the ELs for the remainder of our study4,22–24.

gCIS identified 36 CIS genes in ELs prior to filtering out the donor chromosome CIS (Table S5), and 13 CIS 
after donor chromosome filtering (Table 2). Many of the EL CIS thus fell within the donor chromosomes. We 
observed a very high insertion rate in the ETS family of transcription factors (TFs), with insertions in Erg and 
Ets1 in 65% and 44% of ELs, respectively. In fact, only 4 of the 40 ELs lacked insertions targeting either Erg or Ets1 
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Figure 1.  Breeding scheme, survival, and tumor spectrum of Mx-1 sleeping beauty mice. (a) Breeding scheme 
for transposon mutagenesis in cyclin ET74AT393A and wild-type mice. Cyclin ET74AT393A or wild-type 
mice homozygous for both a T2/Onc transposon array and Cre recombinase-inducible SB transposase allele 
(T2/Onc2/T2/Onc2; RosaSBLSL/RosaSBLSL) were mated with cyclin ET74AT393A mice heterozygous for 
Mx-1 Cre to generate cyclin ET74AT393A or wild-type mice with T2/Onc transposon array and Mx-1 Cre 
recombinase. (b) Kaplan Myer survival curve of SB-Cyclin ET74AT393A and SB-wild-type mice following 
induction of Mx-1 Cre and transpose expression by poly I/C injection. Time indicates intervention due to illness 
related to hematologic malignancy. Induction of malignancy was completely penetrant in both backgrounds 
with a median survival of 11.9 weeks post-injection for wild-type and 12.9 weeks for cyclin ET74AT393A mice 
(p = 0.08). (c) Spectrum of hematologic neoplasms that arise in Mx-1 Sleeping beauty mice. Diagnosis was 
made by a combination of histology and flow cytometry (see text).
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(Table S4). Interestingly, a previous SB insertional mutagenesis study performed in Jak2 mutant mice also identi-
fied ETS transcription factors as CIS in EL, and Erg has been implicated in human EL (see discussion), highlight-
ing the importance of ETS TFs in EL25. Many CIS occurred near genes implicated in hematologic cancers and 
hematopoietic development (Erg, Ets1, Epo, Il2rb, Flt3, Kras, Stat5b, Fli1). While CIS within donor chromosomes 
were filtered from our analyses, some of the CIS found within donor chromosomes have been reported in other 
transposon-mediated insertion studies targeting hematologic neoplasms, and thus may represent physiologically 
significant gene alterations rather than local hopping. Examples of these types of CIS (on chromosome 4) that are 
likely to have contributed to EL in our study include Csf3r (35% of ELs), Bach2 (41% of ELs) and Cdkn2a/Arf (5% 
of ELs). Because we found each of these CIS in both T2Onc strains, these insertions were not restricted to poten-
tial local hops. TAPDANCE, an alternate statistical method that eliminates donor chromosome insertions, was 
also used to annotate CIS and gene associations in T-ALL and EL. The most frequent CIS found by TAPDANCE 

Figure 2.  Morphology and immunophenotype of hematopoietic neoplasms in Mx-1 sleeping beauty mice. 
(a,b) Histologic sections (H&E) of erythroleukemia involving spleen (A: 20X objective) and liver (B: 40X 
objective). (c) Bone marrow cytospin preparations (Wright Giemsa) of erythroleukemia with block-like 
clumped chromatin and dark blue basophilic cytoplasm characteristic of erythroid precursor cells (63X 
objective). (d) Peripheral blood smear (Wright Giemsa) with circulating erythroblasts (40X objective). (e) 
Histologic section (H&E) of erythroleukemia with prominent megakaryocytic differentiation (large atypical 
cells) involving the liver (20X objective). (f) Representative immunophenotype of immature T-cell leukemia in 
blue (top row) and erythroleukemia in red (bottom row). (g) Summary of T-cell leukemia and erythroleukemia 
immunophenotype.
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in T-ALL included Notch1, Ikzf1, Rasgrp1, Akt2, Runx1, FoxP1, whereas the most frequent CIS present in EL were 
Erg and Ets1, followed by Epo, Gata1, Pik3ca and Fli1 (Tables S6 and S7).

CIS evolution in EL cell lines.  We used marrow transplantation to demonstrate that ELs were truly neo-
plastic and capable of self-replication. Five primary ELs were transplanted into sub-lethally irradiated mice, and 
recipient mice developed signs of progressive leukemia with a latency of 10–20 days post-injection. Analysis of 
peripheral blood revealed similar features to the parental tumors, including circulating erythroblasts with the 
same immunophenotypes as the original tumor, albeit more homogeneously (Fig. 3a). Necropsy of the trans-
planted mice demonstrated splenomegaly, similar to that seen in the original model. Stable EL cultures were 
established from five of these transplanted mice using murine erythroblast cell culture media containing c-Kit 
ligand and erythropoietin. No major immunophenotypic or morphologic changes occurred during the prolonged 
cell culture (Fig. 3a, Table S2).

Gene Symbol # Tumors Chromosome

Notch1 40 2

Ikzf1 28 11

Erg 21 16

Rasgrp1 19 2

Akt2 16 7

Runx1 10 16

Zmiz1 9 14

Foxp1 8 6

Akt1 7 12

Zbtb42 7 12

Kras 6 6

Sfi1 5 11

Stat5b 5 11

chr2:98502863-98506672 5 2

Nedd9 4 13

Ptger4, Ttc33 4 15

Crebbp 4 16

chr17:33611661-33655856 4 17

Scai 4 2

Sik3 4 9

Pik3r5 3 11

Nfil3 3 13

Sos1 3 17

Itpr1 3 6

Myo16 3 8

Table 1.  T-cell Lymphoma/Leukemia GCIS (53 tumors total).

Gene Tumors Chromosome

Erg 27 16

Ets1 18 9

Eras 8 X

Il2rb 4 15

Dyrk1a 4 16

Pop7 4 5

chr6:31014767–31108367 4 6

Stat5b 3 11

Jarid2 3 13

Gigyf1 3 5

Flt3 3 5

Kras 3 6

Fli1 3 9

Table 2.  Erythroleukemia GCIS (40 tumors total).
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We used these long-term EL cultures to further identify putative driver insertions that promote EL. Since the 
SB transposase is constitutively active in these cell lines, we predicted that serial passage might result in the loss 
of irrelevant or passenger transposon insertions that were not required for EL proliferation or maintenance in 
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Figure 3.  Immunophenotypic change and loss of insertion sites of erythroleukemia following transplantation 
and cell culture models. (a) Flow cytometry results from primary leukemia (top), transplanted leukemia 
(middle), and cell culture (bottom). The abnormal erythroblasts are CD45 dim/low side scatter/high CD71/
variable CD117/variable Ter119 (red). (b) Loss of insertion sites following cell culture. Number of total 
insertion sites and common insertion site (CIS) identified in primary tumor (blue and green) and cell lines  
(red and purple) in five separate tumors and derived cell lines. (c) Quantification of inserts and CIS in tumor-
derived cell lines.
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culture, and conversely, that insertions required for tumor maintenance would be preserved. All five EL primary 
cultures were cultured for 12 weeks in the presence of growth factors and then analyzed for transposon inser-
tions as described above (Table S3). Long-term cell culture dramatically altered the number and identity of the 
insertions. On average, 113 unique insertions (ranging between 57–143) were identified from the original ELs. 
Following long-term culture, the number of insertions decreased to an average of 24 unique insertions (ranging 
from 13–39) per cell line, and only a few of these (1–4) had been previously identified as CIS (Fig. 3b,c). The loss 
of insertions may result from continued transposon hopping and tumor evolution in culture, or may alternatively 
reflect clonal selection from an initially heterogeneous population of cells in primary ELs. In all cases, just a few 
previously identified CIS were maintained during long-term culture (Fig. 3b,c and Table S8). In one cell line, we 
detected an Erg insertion that had not been found in the primary tumor, which may reflect either a small sub-
clonal population present in the original tumor that was not detected in the initial sequencing, or alternatively, 
clonal evolution in vitro. Of the previously identified CIS, only Erg insertions were retained in all the cell lines 
tested, suggesting that persistent Erg deregulation is required for EL proliferation and/or maintenance in culture. 
Interestingly, Bach2, a chromosome 4 insertion site that was found in both T2Onc strains, was identified as a CIS 
in 3/5 cell lines, suggesting that this hematopoietic TF may have an important role in EL24,26.

Effects of Erg insertions and cyclin ET74AT393A expression on EL differentiation and growth fac-
tor requirements.  Erg was the most common EL CIS in our study, with 65% of tumors containing at least one 
Erg insertion. These integrations were found in the same transcriptional orientation as the ERG gene and upstream 
of exons 3 and 4, suggesting that the insertions led to overexpression of truncated Erg mRNAs and proteins (Fig. 4a). 
Erg overexpression drives murine erythroid-megakaryocytic leukemia and has been associated with various human 
leukemias and poor outcomes27–29. We used shRNA to reduce ERG protein expression to study the role of persistent 
Erg deregulation in long-term EL cultures. Primary EL cell lines expressed variable levels of ERG protein, and Erg 
shRNA only partially reduced ERG abundance (Fig. 4b). The inability to fully silence Erg expression may reflect the 
essential role of Erg deregulation in these cells. Partial Erg knockdown induced immunophenotypic differentiation 
in the cell lines derived from the WT background, with decreased CD117 (cKit) expression and increased Ter119 
(glycophorin B), consistent with erythroid maturation (Fig. 4b,c). These results are consistent with prior studies that 
have shown that ERG expression in human and murine leukemias inhibits differentiation30–32. Surprisingly, unlike 
WT EL cell lines, EL lines derived from cyclin ET74AT393A mice did not exhibit immunophenotypic markers of 
differentiation after partial ERG knockdown (Fig. 4c). Even more unexpectedly, both cell lines derived from the 
cyclin E mutant mice proliferated without growth factor supplementation, while the three cell lines derived from 
wild-type mice required erythropoietin and c-Kit supplementation (Fig. 4d). These results suggest that inappro-
priate cyclin E regulation confers growth factor independence. This is reminiscent of observations with the related 
cell cycle protein, cyclin D2, which promotes growth factor independence in B-cell lines33. Thus, despite the similar 
disease spectrum in both strains, cyclin ET74AT393A expression overcame normal growth factor dependency, indi-
cating that cyclin E may be a key mediator of mitogenic signaling in EL cells.

Flt3 (FMS-like tyrosine kinase 3) is a receptor tyrosine kinase that is mutated in AML and confers a poor 
clinical prognosis34. We identified three Flt3 insertions in ELs, all of which were located downstream of exon 9 
(Fig. 5a). These insertions are predicted to result in overexpression of a truncated FLT3 protein containing only 
the tyrosine kinase domain without the receptor domain. One of the tumors selected for culture (4489) had 
the Flt3 insertion and retained this insertion after serial passage. Western blot analysis shows that this cell line 
over-expressed a truncated ~65 kDa form of FLT3 protein without apparent expression of endogenous full length 
Flt3 (Fig. 5b). To test if the Flt3 insertion is required for proliferation of this EL line, we treated all five of the 
tumor-derived cell lines with three different pharmacologic inhibitors that target the FLT3 kinase and have been 
used in clinical trials of patients with FLT3 mutant AML (Lestaurtinib, PKC412, and Sorafenib). Compared with 
the other cell lines, line 4489 (with the Flt3 insertion) was exquisitely sensitive to all three inhibitors, showing that 
this EL cell line remained dependent on FLT3 activity for proliferation (Fig. 5c–e).

Discussion
Based on our previous work showing that mice with a stabilized cyclin E protein develop proliferative and 
differentiation anomalies in hematopoietic cells, we undertook this study to use SB to identify putative cyclin 
E-cooperating oncogenes. In light of the phenotypic consequences of cyclin ET74AT393A expression in mice, as 
well as the roles for cyclin E in human cancer and murine cancer models7,14,35–37, it was surprising to find that the 
cyclin ET74AT393A allele did not alter the incidence, latency, or spectrum of hematologic cancers, or the gene 
activations observed. The reasons why cyclin ET74AT393A failed to contribute to multistep tumorigenesis in this 
model remain unclear. The T74AT393A mutation only stabilizes cyclin E in catalytically active complexes, and 
because many cyclin E-CDK2 complexes are inactive, this mutation has a greater impact on cyclin E-CDK2 activ-
ity than cyclin E abundance. In contrast, cyclin E amplifications in human tumors elevate cyclin E abundance, 
which may or may not increase cyclin E activity (due to compensatory mechanisms that suppress CDK2 activity). 
Because cyclin E has non-catalytic activities (e.g. replication origin licensing), one possibility is that mutations 
that differentially impact cyclin E abundance versus activity may lead to different biologic outcomes38. However, 
we do not have evidence to directly support this speculation from this study.

While cyclin ET74AT393A expression did not alter carcinogenesis, it did impact growth factor requirements 
and differentiation of EL cell lines. Cyclin E-CDK2 activation has previously been proposed to be a crucial fea-
ture of the G1 restriction point, which is defined at the point in the G1 phase of the cell cycle after which cells 
no longer require extracellular mitogens for S-phase entry39,40. Our findings that cyclin ET74AT393A rendered 
two EL cell lines growth factor independent supports this notion, although these studies involved a limited num-
ber of cell lines. Of note, our attempts to convert WT-EL cell lines to GF independence through ectopic cyclin 
ET74AT393A expression were unsuccessful because ectopic cyclin ET74AT393A expression was toxic.
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SB activation by Mx-Cre caused two distinct hematologic neoplasms, T-ALL and EL, that differed morpholog-
ically, immunophenotypically, and with respect to the identified CIS associated with each disease. While T-ALL 
has been extensively described in SB models22, EL is much less common25. In humans, acute erythroleukemia 
(EL) is a rare and relatively poorly characterized form of acute myeloid leukemia19. Until recently, the diagnostic 
criteria for EL encompassed a diverse set of hematopoietic malignancies that share some degree of erythroid 
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Figure 4.  Erg over-expression inhibits erythroid differentiation. (a) Transposon insertion sites within Erg 
are predicted to promote the expression of a truncated transcript containing the full ETS domain. All of 
the insertions are in the same transcriptional orientation as the Erg gene. (b) Immunoblot showing partial 
knockdown of ERG with mErg-specific shRNA in EL cell lines. (c) ERG knockdown in erythroleukemia cell 
lines induces immunophenotypic maturation (decreased CD117 and increased Ter119 expression) in wt EL 
cell lines (4230 and 4460) but not in cyclin ET74AT393A EL cell lines (3945 and 4489). (d) Growth factor 
dependence of the erythroleukemia-derived cell lines. Two cell lines (3945 and 4489) from cyclin ET74AT393A 
mice are growth factor independent, and three cell lines (4230, 4456, 4460) from wt mice are growth factor 
dependent (EPO and c-Kit ligand).
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hyperplasia, ranging from an expanded abnormal myeloid blast population with erythroid hyperplasia to a pure 
erythroid leukemia with erythroid blasts encompassing greater than 80% of the marrow cellularity (2008 WHO; 
see below). The prior diagnostic criteria for acute erythroleukemia thus included both erythroleukemia (eryth-
roid/myeloid) and pure erythroid leukemia, which occurs less commonly. Because erythroleukemia (erythroid/
myeloid) frequently arises from pre-existing MDS (and shares many clinical features of MDS), the WHO recently 
modified the diagnostic criteria for EL: the more common erythroleukemia (erythroid/myeloid) is now classi-
fied as MDS or AML based on the percentage of myeloid blast population, irrespective of the erythroid compo-
nent41,42. Therefore, many cases that had been previously diagnosed as EL are now reclassified as low grade MDS. 
Pure erythroid leukemia (PEL) remains a distinct diagnostic entity per WHO criteria and is characterized by 
malignant immature erythroid cells that represent greater than 80% of the marrow. Because of its rare occurrence 
and previously imprecise diagnostic criteria, our understanding of PEL remains limited. A few small-scale clini-
cal studies on PEL have demonstrated that the leukemic cells usually have complex chromosomal abnormalities, 
frequent p53 mutations, and extremely poor overall survival43,44.

The murine EL that developed in this study most resembled human PEL, with an expanded erythroid blast 
population (>80% of the marrow cellularity) associated with peripheral cytopenia, circulating erythroid blasts 
and frequent extramedullary involvement of the liver and spleen. We identified many insertion sites in ELs that 
target genes involved in myeloproliferative disorders, growth factor signaling, and signal transduction. In accord-
ance with previous work on murine and human EL27–29, our studies support a crucial role for ETS transcription 
factors in the development and maintenance of EL. Most of the ELs that we studied (90%) had inserts in one of the 
ETS transcription factors (ERG, ETS, or FLI1) and it is tempting to speculate that the few ELs without these inser-
tions may have activated these pathways through other mechanisms. However, we do not have direct evidence to 
support this speculation. Strikingly, ERG-associated SB insertions were retained in each of the five EL cell lines 

100

120

80

60

40

20

0

Vi
ab

ili
ty

 (%
)

100 105104103102101

Lestaurtinib (nM)

3945 CycE-Mutant

4460 CycE-WT
4456 CycE-WT
4230 CycE-WT

4489 CycE-Mutant 
         + FLT3 Insert

100

120

80

60

40

20

0

Vi
ab

ili
ty

 (%
)

100

140

105104103102101

Sorafenib (nM)

160

4460 CycE-WT

39
45

42
30

44
56

44
60

44
89

250

37

50

37

50

75

100

150

FLT3

Tubulin

1 2 11109876543 23222120191817
16

15
14

13
12

24
FLT3

start stop

a.

b. c.

100

120

80

60

40

20

0

Vi
ab

ili
ty

 (%
)

100

140

105104103102101

PKC412 (nM)

d. e.
3945 CycE-Mutant

4456 CycE-WT
4230 CycE-WT

4489 CycE-Mutant 
         + FLT3 Insert

4460 CycE-WT

3945 CycE-Mutant

4456 CycE-WT
4230 CycE-WT

4489 CycE-Mutant 
         + FLT3 Insert

Figure 5.  (a) Transposon insertion site within the gene encoding Flt3. All of the insertions are in the same 
orientation of the gene and are predicted to result in overexpression of a truncated protein containing the 
tyrosine kinase domain of Flt3. (b) Immunoblot showing over-expression of truncated FLT3 protein (65 kDa) 
in the 4489 cell line that contained an insertion in the Flt3 gene. Endogenous FLT3 was not detected (113 KDa). 
(c–e) Over-expression of the truncated FLT3 in 4489 imparts increased sensitivity to a panel of FLT3 tyrosine 
kinase inhibitors including Lestaurtinib (c), PKC412 (d), and Sorafenib (e).

https://doi.org/10.1038/s41598-019-41805-x


1 0Scientific Reports |          (2019) 9:5488  | https://doi.org/10.1038/s41598-019-41805-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

that we derived from primary ELs, while the vast majority of other CIS found in the primary tumors were not 
(Fig. 3c). This supports the idea that EL cell lines depend upon continued ERG deregulation, which is consistent 
with the differentiation caused by partial ERG knockdown (Fig. 4c). Our studies also suggest that Erg may be a 
good therapeutic target for several forms of AML, including PEL.

The other CIS that was retained in multiple EL cell lines was Bach2 (B-lymphoid transcription factor, BTB and 
CNC Homology 1 Basic Leucine Zipper Transcription Factor 2), a transcriptional repressor that regulates anti-
body class switching and has been implicated in B-cell neoplasm45,46. Bach1 and Bach2 are highly regulated and 
homologous proteins with key functions in iron hemostasis, erythropoiesis, megakaryopoiesis, and autoimmun-
ity47. Our finding that Bach2 insertions were retained in EL cell lines suggests a biologic selection for persistent 
Bach2 deregulation and perhaps a role for Bach2 in EL development and/or maintenance. During erythropoiesis, 
elevated levels of free heme bind to and inhibit Bach1, thereby activating the expression of Beta-globin and other 
genes involved in erythroid differentiation48. Although Bach2 functions as a transcriptional repressor during 
B-cell maturation and has been implicated in B-cell neoplasms, other studies have shown the Bach2 is also regu-
lated by heme binding and that overexpression of Bach2 in hematopoietic stem cells promotes erythroid commit-
ment, suggesting it may also play an early role in directing erythroid lineage fate decisions49.

Finally, pure erythroid leukemia is an aggressive poorly characterized form of AML. Now that the WHO has 
redefined PEL as a distinct form of AML, new clinical studies are needed to identify the molecular pathways that 
promote PEL. The functional studies presented here provide candidate genes and pathways that should serve as 
a resource for future studies of human PEL and help define altered pathways that promote this rare, but highly 
aggressive, leukemia.

Materials and Methods
Mice.  All mice used in these studies were previously described. Homozygous cyclin ET74AT393A mice 
were developed and maintained as described13. The Cre inducible RosaSBase-LSL transposase and the T2/Onc2 
transposon (Lines 6113 and 6070) mice were obtained from N. Copeland17,18. Mx1-Cre transgenic mice were 
obtained from Jackson Laboratories (Bar Harbor, ME). The breeding schemes to generate study mice are shown 
in Fig. 1a. For Mx1-Cre induction, mice received intraperitoneal injections of polyinosinic: polycytidylic acid 
(pIpC) (10 μg/g body weight) every other day for a total of five injections. For transplant studies, erythroleu-
kemia cells were expanded in vitro prior to injection. Recipient C57/Bl6 mice were sublethally irradiated (700 Gy) 
24 hours prior to transplantation and infused with 1 × 106 cultured erythroleukemia cells. Each cell line was trans-
planted into five recipient mice. Mice were monitored daily using institutional standard procedures and eutha-
nized when indicated. Animal studies and all animal procedures were approved by the Institutional Animal Care 
and Use Committee (IACUC) and were carried out at the Fred Hutchinson Cancer Research Center (FHCRC). 
All methods were performed in accordance with the guidelines and regulation established by FHCRC IACUC, 
Institutional Review, and Institutional Biosafety Committees.

Histopathological and Hematological Analysis.  Mice were euthanized via carbon dioxide inhalation 
and necropsies were performed. All tissues were harvested and fixed in 10% formalin for 5–7 days and stored in 
70% ethanol until submitted for pathological evaluation. Sternums for bone marrow analysis were decalcified 
in Formical-4 (Decal Chemical Corp) for 24 hrs. after fixation in formalin. After fixation, all samples were sub-
mitted to the Experimental Histopathology Core Facility at FHCRC where tissues were processed, embedded 
in paraffin, cut into slides, and stained with H&E according to standard techniques. Tissues were reviewed by a 
board-certified hematopathologist (KRL) and a board-certified veterinary pathologist (SEK). Peripheral blood 
was harvested and analyzed via Siemens Advia 2120i with multispecies software and a manual differential analy-
sis. Lymphomas and leukemias were classified using the Bethesda recommendations for mice50,51.

Flow cytometry.  Primary splenocytes and thymocytes were recovered by crushing excised spleen or thymic 
tissue between glass microscope slides, washing with PBS + 2% FBS, and passing through an 80 µm mesh filter 
(Sefar, Nitex 03-80/37). Cells were washed once in PBS + 2% FBS and were resuspended in PBS + 2% FBS and 
kept on ice until analysis. For analysis of bone marrow, marrow was extracted from femurs using a mortar and 
pestle and processed as above. For analysis of peripheral blood, red blood cells were lysed (155 mM NH4CL, 12 mM 
NaHCO3, 0.13 mM EDTA) at room temperature and washed twice in PBS + 2% FBS. Flow cytometry analysis 
included a 4-color T-cell panel (CD8a-PE, CD4-APC, CD19-APC-Cy7and CD45r/B220-PerCP (BD Biosciences)) 
and a 6-color erythroid/myeloid panel (CD45-APC-Cy7, CD71-FITC, CD117-PE-Cy7, Ter119-APC, Ly-6G/Ly-6C 
(Gr1)-PerCP-Cy5.5, and B220-FITC (BD Biosciences) and CD3e Alexa Fluor 488 (BioLegend). Cells were also 
stained with DAPI to determine cell viability. Flow cytometry was performed on a Canto 2 (Becton Dickinson) or a 
custom designed LSR2 (Becton Dickinsin, Franklin Lakes, NJ) and analyzed using either FlowJo Software (FlowJo, 
Ashland, OR) or Woodlist, a noncommercial software program developed in our clinical laboratory52.

Ligation-mediated PCR to amplify transposon junction sequences.  Genomic DNA was extracted from 
frozen tissue using the Puregene Core Kit A (Qiagen) according to manufacturer’s instructions. Five μg of genomic 
DNA in a volume of 100 μl of ddH2O was sheared to 300 bp lengths using the Covaris E-series sonicator according to 
the manufacturer’s protocol. One μg of DNA (20 μl) was end-repaired in a reaction containing T4 DNA polymerase 
and polynucleotide kinase and incubated at 20°C for 30 minutes. Then 1 μl of 0.5 M EDTA was added and enzymes 
were heat-inactivated at 75°C for 20 minutes. Blunt/Alu adaptors were ligated to ends of repaired DNA and amplifi-
cation of transposon junctions was conducted using a ligation-mediated PCR approach as previously described20,22. 
Individual sample library quality was analyzed by running an aliquot via agarose gel electrophoresis. Remaining PCR 
products were purified, pooled (20–25 ng per sample), and submitted for direct sequencing on an Illumina HiSeq 2000. 
Sequencing reads were analyzed using gene-centric common insertion site analysis (gCIS) or TAPDANCE20,21.
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Cell lines.  Primary tumor cell lines were derived by plating splenocytes in IMDM media containing 20% 
FBS, 4.5 × 10−5 M monothioglycerol, 2 U/ml erythropoietin (Epoetin alpha; Amgen Biotechnology), and 50 ng/
ml mouse stem cell factor. Cell lines were then maintained in culture as indicated in the text. Lentivirus infection 
with Erg-specific shRNA, and retroviral infection with cyclin ET74AT393A and wildtype cyclin E were per-
formed as previously described53.

Western Blotting.  Western blotting was performed as described11. Anti-ERG antibody (CM421AC) was 
from Biocare Medical (Pacheco, CA) and anti-FLT3 antibody (8F2) was from Cell Signaling (Danvers, MA).

Cytotoxicity Assays.  Cell lines were incubated with the indicated concentrations of drugs and incubated for 
72 hours. Viability was measured using a resazurin-based assay and % viability was normalized to the untreated 
control.
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