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Abstract: Recent developments in the area of condition monitoring research have been targeted
towards predicting machinery health condition for the purpose of preventative maintenance.
Typically, published research uses data collected from rotating components (bearings, cutting tools,
etc.) working in an idealized lab environment as the case study for prognosis algorithm validations.
However, the operational implementation in industry is still very sporadic, mainly owing to the
lack of proper data allowing sufficiently mature development of comprehensive methodologies.
The prognosis methodology presented herein bridges the gap between academic research and
industrial implementations by employing a novel time period for prognosis and implementing
random coefficients regression models. The definition of the remaining maintenance-free operating
period (RMFOP) is proposed first, which helps to transform the usefulness of the degradation data
that is readily available from data short of failure. Degradation patterns are subsequently extracted
from the original degradation data, before fitting into either of two regression models (linear or
exponential). The system residual life distributions are then computed and updated by estimating the
parameter statistics within the model. This RMFOP-based methodology is validated using real-world
degradation data collected from multiple operational railway switch systems across Great Britain.
The results indicate that both the linear model and the exponential model can produce residual life
distributions with a sufficient prediction accuracy for this specific application. The exponential model
gives better predictions, the accuracy of which also improves as more of system life percentage has
elapsed. By using the RMFOP methodology, switch system health condition affected by an incipient
overdriving fault is recognized and predicted.

Keywords: RMFOP; prognosis; remaining useful life; regression models; railway switch

1. Introduction

Prognosis and health management (PHM) is usually carried out by industrial companies to
manage machine reliability that is influenced by faults or failures. In practice, prognosis information
may rely mainly on the knowledge and experience of staff, which is difficult to accumulate and
therefore costly [1]. Moreover, human experience is often not sufficient to accurately determine
prognosis, especially for integrated systems that are influenced by complicated factors. For instance,
wind turbine systems suffer from stochastic loadings due to various wind speeds day by day,
which makes it challenging to determine prognosis. Considering today’s large-scale wind farms
and the long distances from operation centres, the costs of manual maintenance will also be massive [2].
A similar challenge is also experienced by railway asset managers. The increasingly demanding
requirements for efficient and modern asset reliability management cannot be satisfied only by expert
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knowledge, which in the Great Britain’s (GB) railway industry, is becoming more uncertain due to
an ageing engineering workforce [1]. Meanwhile, although a significant number of generic condition
monitoring models has been developed recently to automatically predict the asset health condition
[1,3,4], practical implementations in industry are still very limited due to a lack of data of the required
types, alongside a generic but comprehensive methodology for implementation. Collecting a sufficient
amount of complete run-to-failure degradation data is quite challenging for real-world operational
systems, due to the fact that operational systems are normally repaired before functional failures
occur and thus not allowed to run to failure. Moreover, most research methodologies have specific
mathematical assumptions and simplifications, which limits the implementation success by industry.
Often, the validation data used in the prediction model is collected from an idealized lab environment,
which will increase the level of risk a business has to take when trialling the particular model in
reality. There is still a very limited number of generic prognosis methodologies that can estimate
an operational system’s residual life distributions and validate using real-world degradation data.
This study proposes a comprehensive prognosis methodology for the collection and processing of
degradation data from operational systems. The industrial context is that the performance of a
population of the same type of machines can provide some references but cannot accurately indicate
the health condition of each individual machine, owing to the system’s complex internal physical
structure and variations of external influences, such as weather challenges and usage frequency.
Therefore, the stochastic properties of individual systems among the population of the same type of
machines, as well as the residual life distributions of complex systems will also be investigated in the
proposed methodology. Finally, an industrial case study using operational railway switch systems is
used in order to assess the methodology’s effectiveness.

Strictly speaking, a system can be defined as a cluster of interrelated units that form a unified
whole. A subsystem or a component is a group of elements within the system, which is capable of
interacting with remaining parts of the system [5]. From the perspective of reliability, a system is subject
to failure progression that may have some stochastic properties. Monitoring the behaviour via sensors
that are installed on different components can give indications about the health condition of the whole
system [6]. For example, components within a telecommunication system include signals, transmitters,
and receivers [7]. When the signal component is heavily corrupted with noise, the transmission
quality of the whole communication system will be affected. In terms of a railway switch system that
diverts trains from one line to another at junctions, the main components are the points (movable
rails or switch rails), guard rails (static rails), point machine (switch motor), driving rod and lock rod,
reduction gear box and some bearings. The health condition of a switch system can be estimated by
analyzing the sensor signals collected from its different components [8].

A prognosis is an estimation of an asset’s future health status, found by assessing current and
past monitoring data; it estimates the remaining residual life before failure, which could be either
a determined value or a random variable with an associated probability density function (pdf).
In the determination of asset prognosis, it is currently necessary to set the assumption that the
failure mode is specified. This means that the component/system is assumed to follow a specific
failure progression pattern. However, it is more reasonable to abandon this assumption in reality.
Alternatively, it is more meaningful to identify possible future failure modes and give the worst-case
prognosis results for the affected system since an engineering asset may degrade due to any of
several failure modes in real life, such as a deformed axle or a fully fractured axle. In addition to the
aforementioned singular-failure-mode prognosis and multiple-failure-mode prognosis, the highest
prognosis requirement is called post-action prognosis, which suggests potential actions that can retard
or halt the failure progression of an affected system. Currently, machine PHM research is focused on
fundamental singular failure mode analysis, which is also assumed in this paper.

Usually, condition monitoring data that are collected from installed sensors, as well as historical
installation and maintenance records, are needed for prognosis. Prognosis research methods can be
divided into knowledge-based methods, life expectancy methods, artificial intelligence (AI) methods,
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and physical methods. Knowledge-based methods estimate the residual life by comparing an observed
situation with a databank of previously defined failure events. For example, an expert system is
used to carry out fault prognosis of power plant energy conversion processes by formulating human
expert rules in IF-THEN statements [9]. When the observed performance matches one pre-defined
rule, the result will be given based on a previously encountered expert-described experience. However,
the combination problem will occur when the system structure, external influences and failure
causes get more complicated, because each expert rule can only describe one situation with single
prediction output.

Life expectancy approaches assume that the device being monitored comes from a population
of the same type of devices working under the same conditions with identical statistics. Therefore,
the remaining useful life (RUL) that is given when the monitored data exceeds a pre-defined threshold
is represented by a pdf. The trend evaluation method has been used to analyse the residual life
distributions of a rotating bearing component, combined with Bayesian updating theories. For example,
the exponential trend assumption has been applied to describe an incipient fault degradation of rotating
bearings [10,11]. Later research further predicts a bearing’s residual life without involving historical
degradation data [6]. An autoregressive moving average model is another common prediction
approach in this category. Monitoring data from a methane compressor in a petrochemical plant
was used to demonstrate the method’s effectiveness [12].

Compared with expectancy methods, AI methods can be applied when the amount of degradation
data is sufficient and understanding of the physical degradation process is difficult to obtain. A multiple
convolutional long short-term memory (MCLSTM) network and novel health indicator method
are combined in [13] to address the remaining useful life prediction problems of rolling bearings.
The results of a RUL estimation are given as the network output, with a generated mathematical
expression describing the relationship between the input observations and output predictions.

Physical-based models calculate an estimated output from mathematical expressions describing
component/system physical degradation behaviours. A non-linear model capturing fatigue crack
dynamics was applied to compute the damage ratio with respect to time [14]. A mechanistic defect
propagation model was introduced to estimate the residual life of bearings [15]. Although the
degradation process can be understood easily, detailed knowledge about system behaviours at both
macroscopic and microscopic levels is required for physical-based methods.

It can be observed that current PHM research is mainly focused on rotating components (bearings,
cutting tools, etc.) working in an idealized lab environment. Specific research assumptions and
required data volumes vary depending on the method. In practice, highly complex industrial systems,
such as mining equipment, wind turbines, and railway switches, that are all exposed to external
influences also experience degradation and need RUL estimations. For example, a railway switch that
diverts the trains from one line to another at junctions is a complicated reciprocating system. The health
condition of a switch system is influenced by internal electromechanical component deterioration
and external train loadings, weather and usage frequency. By monitoring and analysing the sensor
signals collected from system components, PHM for the overall railway switch system can potentially
be achieved. The lack of proper fault monitoring over switch components may have catastrophic
consequences, such as the Grayrigg derailment accident in 2007 [16]. Therefore, this paper targets a
solution to the complex system prognosis problem by introducing a novel prognosis definition, which is
based on the type of degradation data more readily available from field maintenance interventions
for model training and validation. Subsequently, two well-developed expectancy regression models
(i.e., linear and exponential) that are adjusted for machines with complex systems, are individually
introduced to calculate and update the system residual life distributions. A comprehensive prognosis
methodology is presented to describe the process of data collection and processing, as well as model
selection and application. The methodology is finally validated using real-world data collected from
multiple operational railway switch systems in Great Britain.
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The remainder of this paper is organized as follows. Section 2 explains the process of data
processing and model application within the proposed remaining maintenance free operation period
(RMFOP)-based prognosis methodology. Section 3 shows the experimental and validation results for a
specific railway switch system implementation. Conclusions are drawn in Section 4.

2. Degradation Modelling for System Signals

Failures in many industrial systems develop very slowly, over months or years. Additionally,
many operational systems including railway switches are not allowed to run to failure in practice.
Thus, it is difficult to collect the complete run-to-failure degradation data from the real world for the
purpose of modelling analysis and result validation. Moreover, most developed prognosis methods
are validated using rotating components that have been tested in an idealized and controllable
experimental environment. Therefore, whether real-world complex system prognosis can be estimated
using the same methods is still unknown. This section puts forward a solution to these problems
by proposing a perspective on the prognosis definition, in terms of the remaining maintenance free
operating period. Subsequently, the two the-state-of-the-art regression-based models to be applied:
the exponential model and the linear model, are described. Because the analysis methodology and
validation process for complex system prognosis are more complicated compared with component
prognosis, an explicit summary of the methodology is also presented.

2.1. Prognosis Definition and Data Preparation

Three approaches were proposed in the literature to overcome the problem of realistic full lifecycle
data shortages. In the first approach, a continuous degradation process is created artificially by fitting
data collected from discrete fault severities into a smooth and continuous mathematical model [17–20].
Subsequently, some time-series processing methods including autoregressive moving average and time
delay neural networks can be applied for RUL predictions. However, it is difficult to verify whether
the model selections and parameter settings are correct and follow natural degradation properties
because the continuous degradation data were created unnaturally without the ability to perform
proper validations of its similarity to real-world data.

The second solution is to build a piece of vulnerable equipment or create bad operating
environments in which to perform experiments. As such, the failure progression is faster than normal,
making it easier to collect full lifecycle degradation data. A selection of thin drill-bits is considered
for RUL estimations [21]. It is noteworthy that this method might be applicable for components with
simple structures, such as drill-bits and bearings. Complex electromechanical systems such as wind
turbines or railway switches, are less likely to find a vulnerable substitution [18].

The third approach simulates the real degradation process by establishing physical models [22].
In the case of a railway switch system, basic components such as the movable rails, the static rails
and the switch motor should be modelled. The influence of train loads and the natural environment
should also be considered. In comparison with the aforementioned two methods, it gives degradation
waveforms that follow a simulated natural degradation. Nevertheless, it places a high demand
on physical structure knowledge and specific mechanism theories. Furthermore, the modelling
methods vary significantly for different machine types and fully realistic models are often difficult to
generate. The lack of robustness and time-consuming nature of this approach make it less adopted in
prognosis analysis.

The data problem can actually be considered from the perspective of the definition of
prognosis. Most published literature argues that prognosis focuses on predicting the time at which
a component/system can no longer achieve its expected function, which is normally caused by a
functional failure. Prognosis is then equivalent to RUL estimation, which indicates the time gap from
normal operation to functional failure. A different point in time at which to provide a prognosis is
proposed here: the remaining maintenance-free operating period (RMFOP), which is defined as the
residual time gap of a component/system being operated normally without maintenance intervention.
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The prediction outcome will therefore show the remaining suggested operating period and propose
the time for the next maintenance intervention. The difficulty of obtaining enough prognosis data is
also addressed since the data collected during normal operations of industrial systems, i.e., relating
to operations between adjacent maintenance interventions is much easier to obtain, compared with
complete life-cycle degradation data. It is noteworthy that fault prognosis instead of failure prognosis
is usually considered to be superior for operational systems because many systems must not be allowed
to run to failure in practice, wherever possible. A failure means the inability of an asset to do what is
expected, of it, while a fault points to the potential for failure at a point when intervention to prevent
the failure actually occurring may be possible [23].

The benefits of the newly proposed prognosis definition, i.e., RMFOP, compared to traditional
life-cycle degradation analysis can be summarized as follows. First, it effectively addresses the
problem of realistic data shortages. Data corresponding to the RMFOP can readily be collected from
industrial systems without interrupting normal operations, which is of great significance in data-driven
modelling analysis, such as in the life-expectancy methods and AI methods that have been introduced
in Section 1. Second, compared with the traditional life-cycle analysis that predicts the time when
the monitored system would experience a functional failure, the proposed RMFOP provides a more
practical observation period. It focuses on the probability that a system can operate without a fault or
failure until the next maintenance intervention. As such, the predicted result is a good reference for
maintenance staff to optimize the maintenance intervals. The cost caused by unnecessary field visits
can also be reduced. Third, it is more desirable to predict the RMFOP in situations when a functional
failure would be catastrophic, e.g., train derailment or nuclear power plant accidents.

2.2. Model Selection

Appropriate model selection for operational systems requires an appreciation of data availability
and of which model types are the best match and could achieve the desired performance under
which specific assumptions. According to the literature, prognosis methods are grouped into
knowledge-based methods, life expectancy methods, AI methods and physical methods. The problem
of an algorithm’s complexity will occur in knowledge-based methods when the failure situation
becomes more complicated, because each expert rule can only explain one failure situation with
single prediction output. Physical-based methods are also not appropriate to describe complex
system degradation behaviours, since it is quite challenging to construct the degradation model for a
system with complex internal electromechanical components from both the macroscopic level and the
microscopic level. AI methods require a huge volume of degradation data, the analysis process of which
is not intuitive, potentially a barrier to adoption by industry. Instead, life expectancy methods can be
clearly presented in mathematical terms. The prognosis methodologies are visualized step by step.
Moreover, the calculated residual life is a random variable with derived pdfs. As such, the probability
of asset failure can be easily calculated at any future time via the integral of the corresponding area
below the pdf line. Therefore, considering industrial implementations and their moderate requirements
for physical system knowledge and progression data, life expectancy methods may frequently be
a suitable choice. Common expectancy methods include regression models, autoregressive models
and hidden Markov models. Among them, regression-based models are introduced and applied
in this research for two reasons. First, the process of curve fitting and regression analysis is simple.
Subsequently, many regression models, such as the linear model and the exponential model that are
applied in this research, can describe monotonically increasing functions, which usually represents
well the incipient fault degradation process. Thus, the application of regression models matches well
with the assumption of singular incipient fault prognosis stated earlier in Section 1. Regression models
involve establishing parametric degradation paths (linear or non-linear) of condition monitoring data
with random effects. An asset failure is considered to have occurred when the monitoring data reaches
a pre-defined threshold. Therefore, a threshold is needed to implement regression methods. It is
assumed that assets of the same type have the same statistical failure characteristics. The behaviour of
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a population of the same type of machines can provide some references but cannot precisely reflect
the health progression of each individual machine, as a result of varying environments and usage
patterns. Therefore, the probability distributions of stochastic parameters within the models are first
estimated from a known group of degradation paths, which will be later adapted individually for each
monitored asset.

Model 1: Linear model

The linear degradation model is usually applied when assuming that the machine degradation
rate does not change dramatically with time. For instance, the wear of a brake pad is modelled by
assuming the brake pad thickness decreases linearly with time. The linear degradation model is
expressed as [6]:

y(ti) = c + θti + ε(ti) (1)

where y(ti) is the monitored degradation signal at time ti. c is a constant representing the initial
condition of the component/system being monitored. θ is assumed to be a random coefficient
following a prior distribution π(θ), which is generally unknown. It is assumed in this paper that
π(θ) follows a Gaussian distribution with mean µθ and variance σ2

θ . The term ε(ti) describes the noise
and transients within the signal, and is assumed to be independent and identically distributed (i.i.d.)
N(0, σ2). Bayesian theory then updates the distribution of θ [6]:

p(θ | y1, · · · , yk) = p(y1, · · · , yk | θ)π(θ) (2)

where yi = y(ti). yi signifies the degradation signal at time t(i). It gives the posterior probability
of random variable θ, accounting for the observations of degradation signals from initial time t1 to
current time tk. From Equation (2), the posterior mean µ̃θ and posterior variance σ̃2

θ can be individually
calculated as [6]:

µ̃θ =
σ2

θ · sum2 + µθσ2

σ2
θ · sum1 + σ2

(3)

σ̃2
θ =

σ2
θ σ2

σ2
θ · sum1 + σ2

(4)

where sum1 = ∑k
i=1(t

2
i ) and sum2 = ∑k

i=1

{
(yi − c)ti

}
. The probability of the residual life TR not

being greater than time t is equivalent to the monitored degradation signal exceeding a pre-defined
threshold D in a future time t, given the observations until current time tk [6]:

P(TR ≤ t | y1, · · · , yk) = P(y(t + tk) ≥ D | y1, · · · , yk) (5)

=
ϕ( c+µ̃θ t−D√

σ̃2
θ t2+σ2

)− ϕ( c−D
σ )

1− ϕ( c−D
σ )

(6)

where ϕ(·) denotes the cumulative distribution function (cdf) of a normalized Gaussian distribution.
Finally, the pdf of residual life is obtained by differentiating Equation (6) with respect to t.
The derivation process, which is omitted here, and detailed results can be found in [6].

Model 2: Exponential model

The exponential degradation model is usually applied when the rate of degradation can be
significantly influenced (accelerated or decelerated) by cumulative damage, such as corrosion and civil
structure deterioration. The exponential degradation model is represented as [6]:
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y(ti) = c · exp(θti + ε(ti)−
σ2

2
), (7)

where c is a constant and θ is a random variable with unknown prior distribution π(θ). Similar to
the aforementioned linear model, it is assumed that π(θ) follows a Gaussian distribution with µθ and
variance σ2

θ . ε(ti) is the noise term with i.i.d. N(0, σ2). A logarithm is then taken on both sides of
Equation (7) to simplify calculations. This yields [6]:

xi = (lnc− σ2

2
) + θti + ε(ti) (8)

The Bayesian updating method shown in Equation (2) is applied to the signal xi with logarithm
amplitude. The posterior mean of θ is represented as [6]:

µ̃θ =
σ2

θ ·∑
k
i=1

{
(yi − lnc + σ2

2 )ti

}
+ µθσ2

σ2
θ ·∑

k
i=1(t

2
i ) + σ2

, (9)

The result of posterior variance σ̃2
θ is the same as for the linear model. It is noteworthy that various

distributions can be applied to model the failure process, such as the Gaussian, Weibull, Normal and
Lognormal functions. The Gaussian distribution is assumed in the aforementioned two models due
to its ability to model monotonic and gradual degradation, which matches well with the assumption
of singular incipient fault prognosis stated earlier in Section 1. However, this is not always true for
data collected from practical systems; the best choice depends on the system operating conditions and
noise type.

2.3. Summary of RMFOP-Based Methodology

A summary of the steps to implement the proposed RMFOP-based methodology is
presented below:

Step 1: Collect N groups of sensor data. Each group of sensor data is a time series, recording
the changes of sensor data for one specific system (machine) over a continuous operating period that
has maintenance included. All sensor data is collected from the same sensor type that is sensitive
to multiple failure mode progressions. The machine type for these N data groups, or equivalently,
N machines should be the same.

Step 2: Choose an appropriate type of characteristic pattern to extract from the sensor data.
As such, among each time-series sensor data group, the original sensor data can be transformed
into the characteristic patterns. The characteristic patterns are also known as degradation signals,
which can directly demonstrate the machine degradation process. Examples of degradation signals
are average, variance, maximum value, minimum value and slope. The problem of whether the
selected degradation signals are appropriate can be considered in two directions. First, whether a
maintenance threshold for the specified degradation signal has been defined by industrial standards
and can be referred to. Second, whether the selected type of degradation signals can be validated in
the following experiment: If the prognosis accuracy is not desirable, an alternative degradation signal
might be considered.

Step 3: Within each data group, extract and plot the degradation signals against the operating
period. Since prognosis estimates the remaining operating period before the next maintenance
intervention (the RMFOP), the complete degradation signals that are collected between two adjacent
maintenance records are regarded as one realization of the fault progression from fault-free to faulty
and is also called a degradation path. It is assumed that every maintenance action can effectively
inspect and repair existing machine faults.

Step 4: Normalize each degradation path and choose a degradation model for the normalized
system signals from the linear and exponential models. It is suggested that a linear model could
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be applied first. Among the N normalized degradation paths, M(M < N) paths are used as prior
information to determine the constant and the stochastic parameter prior distributions, as shown in
Equation (1). Among the M degradation paths, fit each path with the linear expression and obtain
the slope and intersection values for each path. c is then calculated as the average intersection value.
The prior mean and the prior variance of θ are calculated as the mean and variance of the slope values,
respectively. The variance of the error term σ2 is estimated using a sequence of initial observations of
the degradation path that has the highest fluctuation level. Normalization is achieved by subtracting
the mean of the data and dividing by the standard derivation. The importance of normalization is
to adjust measured values to a notionally common scale, which helps reduce the effects caused by
local variables.

Step 5: The prior distributions, which are calculated from the M paths, are regarded as the known
population-wide characteristics for the set of monitored systems. For each remaining (N−M) machine,
the residual life distributions are individually estimated and validated. For example, a random ith
degradation path is chosen from the remaining (N −M) paths. When the degradation observation
time ranges from initial time to for example the 10% life percentage, Equation (3) and Equation (4) are
consecutively applied to update the parameter posterior distributions specifically for the ith system,
according to the Bayesian theory. Then the cdf and pdf of residual life for the ith system can be
calculated using Equation (5) and Equation (6).

Step 6: Repeat Step 5 for the ith system when more observation times are available. Examples of
30%, 50%, 70% and 90% life percentages can be used. The updated residual life distributions for the ith
system under different life percentages can therefore be obtained. The value of the life percentage is
determined by the ratio of the elapsed degradation duration until the observation time to the overall
degradation duration. For example, it takes 100 days for a fault-free machine to degrade to a failure
state. The ratio of 10% life percentage means that by observing and collecting the machine data in the
first 10 days to predict the residual life distributions. Similarly, the ratios of 30%, 50%, 70% and 90%
individually represent collecting the first 30, 50, 70 and 90 days of data to predict residual life. With the
increased life percentage ratios, the residual life distributions are updated with more observation data.

Step 7: Repeat Step 5 and Step 6 for each remaining (N − M − 1) machines. As such,
the individual-specific residual life distributions have been estimated.

Step 8: To check whether the linear expression is appropriate to model the degradation paths,
plot the prediction errors with 95% confidence interval, considering all (N −M) validation paths at
different life percentages.

Step 9: Choose a different model (i.e., exponential model) and proceed through Step 4 to Step 8 as
before. The difference lies in that the statistics within the linear model are obtained directly from the
degradation signal amplitude, while the statistics within the exponential model are obtained from the
logarithm amplitude of the degradation signals.

Step 10: To validate the effectiveness of the Bayesian updating theory for both models as
in Step 4 to Step 9, produce models without parameter updating in both the case of linear and
exponential models. Conduct a comparison among the linear updating model, linear no updating
model, exponential updating model and exponential no updating model in terms of the RMFOP
prediction errors. Make a conclusion about the most suitable degradation model for the application.

The main innovations of the proposed methodology are: a novel prognosis definition that provides
a more practical threshold for useful life estimations; the innovative combination and application
manner with the established regression models; the superior model applicability over traditional
RUL analysis because it can predict the health condition of an industrial complex system using
real-world data.

3. Experiment and Results

To demonstrate and evaluate the RMFOP-based prognosis methodology shown in Section 2.3,
the prediction accuracy is estimated using operational railway switch system degradation data that
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were collected in Great Britain. The data collection and processing methods cannot only be used for
research purposes, it also lays a solid foundation for industrial implementations. The following section
first presents the physical layout and relevant characteristics of a railway switch system, which is used
to validate the proposed methodology. Subsequently, the process of data collection and processing
is demonstrated for the specific implementation case. The performance of the linear model and the
exponential model is also compared with conventional degradation models, which do not apply
Bayesian theory for model parameter updating.

3.1. System Layout

A railway switch, turnout, also known as a (set of) points, is a complex electromechanical
system that enables trains to be diverted from one track to another. As shown in Figure 1, a switch
system is composed of switch rails, stock rails, point machine, driving rod, and lock rod. The points
are also known as the switch rails that can be moved laterally in either of two directions (normal
or reverse). The subsystem depicted on the right is called the point machine, which slides the
points from one position to another through driving rod. Railway switches can be categorised into
electro-mechanical, electro-hydraulic, and electro-pneumatic types in terms of the different power
operations. The electro-mechanical and electro-hydraulic-powered point machines are used more
frequently. They use either mechanical transmission or hydraulic power packs actuated by electric
motors as the operational power to control the mechanics. Before the motor moves the points, the lock
mounted on the switches should be released. Subsequently, the motor actuates the driving rod in
either direction. When completing the movement, the points will be locked in the current position,
so that the passing trains can be safely diverted onto the correct track. The overall movement takes
few seconds. The quality of point machine installation and maintenance has great significance in a
railway performing at high capacity. This paper carries out its case study on the electro-hydraulic type
of switch system.

Figure 1. Railway switch system layout.

3.2. Data Collection

In many applications, condition-based information can be obtained using sensor technology,
the signals of which directly correlate with the physical state evolution during the degradation process.
In terms of a railway switch system, the supply current and voltage of the motor can be monitored
to indicate the system health condition. The tension and compression forces in the driving rod are
often measured via a load pin mounted on the driving rod. The motor current sensor, as shown in
Figure 1, is used in this research. Since electrical current waveforms have distinct characteristics during
failure progression, which helps extract useful degradation signals for prognosis models. Additionally,
current transducers are low-cost and easy to install, compared with other sensors, which reduces the
difficulty for industrial implementations. By following Step 1 of the RMFOP methodology, current data
were collected from fifty hydraulic switches from January 2018 to February 2019. The data obtained
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from each switch system is called a data group, giving a collection of fifty data groups. Specifically,
for reciprocating machines such as the railway switches, each group of data is a series of event-based
data records. Each record is a time series corresponding to one movement of the points.

To find the appropriate type of degradation signal for the railway switch system in Step 2
of the RMFOP methodology, many characteristics such as variance, peak and median have been
calculated and tested. The average amplitude of the time domain signal is chosen to describe the
railway switch deterioration process. A maintenance threshold for average current amplitude per
movement has been well defined by railway infrastructure managers. A further experiment validation
process will also be conducted in Section 3.3. Another degradation signal might be used instead if
the prediction accuracy found using the average amplitude is not satisfactory. The same extraction
method has been previously applied in [18]. It is important to note that a well-defined threshold for
the degradation signal is required to estimate the RMFOP. In the case of a railway switch system on the
Great Britain mainline railway network, the maintenance threshold is defined by Network Rail, which is
the infrastructure manager of most of the railway network in Great Britain. When the monitored
degradation signals exceed the maintenance threshold, a fault alert is reported to the operation centre
for further maintenance instructions and inspections to be carried out [24]. Following the Step 3 of
the RMFOP methodology, for each switch in the dataset, the average time-domain amplitude was
calculated for every switch movement and plotted against the overall operating period. Figure 2 shows
the fluctuations in the average current (i.e., the degradation signal) values over the overall operating
period for one railway switch. The average value of the current signal is calculated each time the point
moves and are labelled as data points. The blue dashed line is drawn to link adjacent data points.
The data points where the average amplitude exceeds the maintenance threshold are marked in red,
while the remaining data points are marked in black. Some gaps in the data can be observed in Figure 2
between adjacent data points because the railway switch did not operate during those time periods.

Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2019 Apr 2019
Operating period

4.5

5

5.5

6

6.5

7

7.5

A
v

er
ag

e 
am

p
li

tu
d

e 
(A

)

Data exceeding threshold

Data below threshold

Connection line

Figure 2. An example of degradation signals.

Subsequently, the degradation signal is truncated to obtain the degradation paths. Four degradation
paths with five maintenance interventions can be observed in Figure 2, when every time truncating
the exceeded threshold and splitting the degradation signals into several degradation paths. It is
assumed that every maintenance alert is solved properly, and the machine faults are diagnosed and
fixed. Therefore, the continuous degradation signal between two adjacent maintenance records is
regarded as one degradation path, which describes the continuous change of average amplitude for
every point movement from fault-free to faulty state. Generally, three types of faults can influence
point machine operations: abrupt faults, intermittent faults and incipient faults [25]. It is usually
difficult to describe the fault progression of abrupt faults and intermittent faults. Conversely, incipient
faults can be monitored and predicted when the parameters and models are appropriate in the system.
In this case, only those degradation paths that show gradually increasing average values can indicate
an incipient fault progression and will be retained for the following research. An example of a single
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degradation path is shown in Figure 3. Unlike the continuous operating time ranging from January
2018 to February 2019 in Figure 2, the switch useful life shown in Figure 3 is represented with respect
to the event (a single switch movement) number, which is a time-free index. Alternatively, the system
failure progression is only recorded when movement events happen. The advantage of this time-free
measurement is that it does not depend on the process of the fault/failure occurrence. The example
railway switch shown in Figure 3 operates approximately 230 times before launching fault alarms.
Among the fifty data groups, one degradation path is generated from each data group. As such,
the original fifty data groups have been processed into fifty degradation paths.
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Figure 3. An example of degradation path.

To determine the fault type, examples of the time-series current waveforms from a single point
movement at different degradation percentages are shown in Figure 4. It can be observed that an
incipient overdriving fault is found to be progressing. Overdriving is a fault condition where the
force between the stock rail and the switch blade is beyond the ideal range (in fault-free condition)
[26]. Because more electric power is needed to lock the points after moving them to the right position,
an increased peak value is observed at the end of each current waveform. The movement duration
is also expected to increase. When the system reaches 100% life, a continuous current supply is
observed since the system overdriving failure occurs and the point can no longer be locked properly.
After analysing each degradation path, it is found that the fifty paths can each represent one realization
of an incipient overdriving fault progression. Among them, thirty-five degradation paths are selected at
random to obtain prior model knowledge. The remaining fifteen paths are used to validate the models.

Figure 4. Current waveforms at different degradation percentages.

3.3. Results

From the two regression-based models that have been introduced in Section 2.2, the linear
degradation model is applied to this railway switch system. By following Step 4 of the RMFOP
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methodology, the normalized thirty-five degradation paths are used as prior information to estimate
the parameters in Equation (1). The constant c is calculated to be 0.096942. The prior mean and
the prior variance of the stochastic parameter θ within the linear model are µθ = 0.0035892 and
σ2

θ = 1.2781 × 10−5, respectively. The error variance estimated from the highest level of fluctuations
is σ2 = 0.006. As such, the population-wide characteristics for the monitored switch system have
been obtained.

Subsequently, the RMFOP distribution is estimated for each of the fifteen remaining validation
switch systems under different life percentages, as described in Step 5 to Step 7. Figure 5 demonstrates
an example of the updated residual life distributions of one validation switch system.
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Figure 5. Updated RMFOP distributions of one validation switch system using the linear model.

Step 8 is to check whether the proposed linear model is appropriate for modelling railway switch
system degradation paths, the prediction errors are calculated at different life percentages for all
validation paths with 95% confidence interval. The prediction error is calculated as the ratio of the
predicted failure time error to the actual failure time, as shown in Equation (10). The predicted failure
time is equal to the time the switch system has been operating, plus the predicted remaining life.
The predicted remaining life is determined as the median of the residual life distribution because the
median is a reasonable measure of the distribution central tendency. The predictions can be further
improved if a close form of distribution function is derived and distribution moments are calculated.

Rj
i =

∣∣∣(tj
o + tj

p,i)− tj
a,i

∣∣∣
tj
a,i

(10)

tj
o represents the system operating time until the jth observation time. tj

p,i represents the predicted

remaining life obtained from the median of the ith system life distribution curve. (tj
o + tj

p,i) therefore

represents the predicted failure time of the ith system at time j. tj
a,i is the actual failure time and |·| takes

the absolute error values. Hence, Rj
i gives the prediction error ratio for the ith system at observation

time j. In Step 9, the exponential degradation model is applied, the statistics of which are obtained
from the logarithm amplitude of the degradation signals. The prediction results of the linear model are
then compared with those of the exponential model, as shown in Figure 6. The linear curve is slightly
offset to the right for a clear comparison.
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Figure 6. A comparison between the linear model and the exponential model regarding residual life
prediction accuracy.

It is clear that the prediction errors will decrease as more life has elapsed, in both the case of
the linear and the exponential model. Moreover, the prediction errors are generally smaller for the
exponential model, when compared with the linear model. It indicates that the exponential functional
form is a better choice for characterizing the degradation process of a real-world railway switch system.
This result can be attributed to the fact that the cumulative damage accelerates the switch’s natural
degradation process. The results show that using the linear or exponential stochastic degradation
models is a reasonable starting point to estimate residual life distributions for complex industrial
applications. Therefore, considering real-world applications that have been recently retrofitted with
sensors, or in which run-to-failure degradation data is difficult to obtain, the proposed RMFOP-based
prognosis methodology can be applied to calculate and update the residual life distributions as more
life percentage has elapsed.

To provide a comprehensive study of the RMFOP-based methodology shown in Section 2.3,
the effectiveness of the Bayesian updating theory is validated, as described in Step 10. A comparison
between the ‘linear with updating model’ and the ‘linear without updating model’ regarding the
residual life prediction accuracy is drawn, the results of which are shown in Figure 7.
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Figure 7. A comparison between the ‘linear with updating model’ and the ‘linear without updating
model’ regarding residual life prediction accuracy.

It can be found that the prediction errors have been effectively decreased when applying the
Bayesian theory to keep updating the parameter statistics. The same conclusion is also drawn from the
comparison between the ‘exponential with updating model’ and the ‘exponential without updating
model’. Figure 8 shows that the prediction errors of the ‘exponential without updating model’
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fluctuate by around 30%. After updating the model parameter distributions, the prediction errors drop
significantly to below 20%.
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Figure 8. A comparison between the ‘exponential without updating model’ and the ‘exponential with
updating model’ regarding residual life prediction accuracy.

As such, a comprehensive validation of the RMFOP-based prognosis methodology has been
conducted upon a railway switch system case study. The overdriving fault type makes up around
9% of Great Britain railway switch systems faults [25]. By applying this RMFOP-based prognosis
methodology, the system health condition that is influenced by an incipient overdriving fault can
be identified and predicted, the failure probability of which can also be calculated at any future
time. However, the K-fold cross-validation could replace the current technique of randomly splitting
data into training and validation. The K-fold approach consists of dividing the data into K partitions,
training each one on K-1 partitions and validating on the remaining partition. The average performance
of different validation results achieved in each run is a more reliable metric than random splitting.

4. Conclusions

This paper introduces a novel prognosis definition that focuses on the system operating period
between maintenance interventions, instead of the life-cycle degradation process, the remaining
maintenance free operating period (RMFOP). Therefore, the problem of appropriate degradation data
shortage was addressed. Two random coefficient degradation models (i.e., linear and exponential)
for calculating and updating the system residual life distributions have been introduced. Specifically,
the prior distributions of the stochastic parameters are estimated based on known population-wide
signals, which will then be updated individually for each validating system at different life percentages
according to Bayesian theories. A comprehensive RMFOP-based prognosis methodology is provided,
which discusses the steps of data collection, processing and model validation for a generic real-world
operational system. The prediction accuracy is validated using real-world railway switch system data
collected from Great Britain as the case study. The results indicate that both models can predict the
residual life distributions for this specific industrial implementation, while the exponential model
performs better in the sense that the calculated prediction errors are smaller. The errors are found
to decrease when more of the RMFOP has elapsed, before dropping below 5% when more than 90%
of the degradation percentage has elapsed. This suggests that the proposed RMFOP methodology
paves a solid foundation for estimating residual life distributions of complex systems. As an extension
in future work, a comparison between different types of characteristic pattern should be made to
determine if further performance improvements are available. A more realistic degradation model
could be investigated when incorporating other parameters that may also influence the prediction
results, such as the operating conditions and background noise.
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