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The theory of medicine and its complement systems biology are intended to explain the
workings of the large number of mutually interdependent complex physiologic networks
in the human body and to apply that understanding to maintaining the functions for which
nature designed them. Therefore, when what had originally been made as a simplifying
assumption or a working hypothesis becomes foundational to understanding the operation
of physiologic networks it is in the best interests of science to replace or at least update
that assumption. The replacement process requires, among other things, an evaluation of
how the new hypothesis affects modern day understanding of medical science. This paper
identifies linear dynamics and Normal statistics as being such arcane assumptions and
explores some implications of their retirement. Specifically we explore replacing Normal
with fractal statistics and examine how the latter are related to non-linear dynamics and
chaos theory. The observed ubiquity of inverse power laws in physiology entails the need
for a new calculus, one that describes the dynamics of fractional phenomena and captures
the fractal properties of the statistics of physiological time series. We identify these
properties as a necessary consequence of the complexity resulting from the network
dynamics and refer to them collectively as The Network Effect.

Keywords: physiologic networks, statistical extrema, complexity and disease, fractional calculus, complexity
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1. INTRODUCTION

As scientists we measure things; the position of stars in the sky,
the amount of rainfall in a region over the year or the number of
heart beats per minute of a patient in our care. These numbers tell
us about the phenomena we want to understand. An astronomer
deduces whether the faint dot over head is a fixed star, a moving
planet or a rocketing comet using the physical theories of cosmol-
ogy. The numbers tell the meteorologist if there is a pattern of
increasing or decreasing rainfall and whether that pattern indi-
cates an organized change in the weather. A physician determines
whether the pattern in the heart beats reveals if the patient has a
cardiovascular problem that requires intervention or s/he is hav-
ing an anxiety attack. Each science organizes measurements in
ways that communicate the most to the practitioner and taken
as a group they constitute the scientific view of the world, which
is to say that if it is a matter of science it can be measured.

In keeping with the data-based perspective, the measurements
in and theories of molecular biology and genetics in the latter half
of the twentieth century produced a shift in medical outlook from
the pathologies of the cardiovascular, respiratory and motor con-
trol networks to the influence of molecules on health and well
being. However, in the past decade or so the pendulum has begun
to swing back from the concentration on individual molecules to
a focus on the properties of networks of molecules and a deter-
mination of the emergent properties of such complex interactive
networks. This is particularly true in physiological networks,
which, as Bashan et al. (2012) point out, under neural regulation
exhibit complex, non-stationary, intermittent, scale-invariant and
non-linear behavior.

Herein we do not trace the various mechanisms (or the devel-
opment of mathematical models) that produce scale-free micro-
scopic (Barabasi and Oltvai, 2004) or macroscopic (Newman,
2010) networks, since such efforts exist in large number. Instead
we examine the properties of physiologic time series and iden-
tify those properties that emerge from the underlying network
dynamics. In particular we focus on the inverse power-law (IPL)
statistics that result from the temporal complexity generated by
network dynamics, separate and distinct from the topological
complexity that is the result of the connectivity of such networks,
see for example Turalska et al. (2009), West et al. (2014) and ref-
erences therein. Note that there is probably some nomenclature
adopted in this paper that is not familiar and therefore a Glossary
is provided in Appendix 6.1 for handy reference.

In medicine it is often the outlier that determines the out-
come of an intervention because its influence on the process may
be irreversible as, for example, in the damage caused by a heart
attack. In complex phenomena these extrema have recently been
called “black swans,” a name coined by Taleb (2007), and this
name has captured the imagination of the scientific and lay com-
munities alike. Black swans are the unpredictable extrema that
lead to flash crashes, bursts and catastrophic failures in health care
systems (West and Clancy, 2010), physical phenomena such as
earthquakes and wildfires (Sahs et al., 2012); medical phenomena
such as epileptic seizures (Osorio et al., 2010) and cardiac mortal-
ity (Hayano et al., 2011); economic systems such as the financial
market (Taleb, 2007), and so on.

These outliers have also been called “dragon kings” by Sornette
(1998, 2009). The dragon kings are distinguished from black
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swans in that dragon kings are assumed to not share the statistics
of the other data in the process but have an unrelated, possibly
deterministic, mechanism for their generation. Consequently, it
has been argued that such dragon kings can be predictable even
though black swans cannot. However, we are less interested in the
names of these various extrema than we are in how they can be
used to distinguish among various phenomena.

Then there is the question of how long one must wait
for the occurrence of these outliers. In statistics it is argued
that the average waiting time for an event of a given size
to occur is proportional to the inverse of the probability of
that event occurring (Gumbel, 1954). Consequently, the lower
the probability of an event the longer the wait. Thus, we
should have to wait a very long time for a black swan or
dragon king—but is that true in real world data, particularly
in medicine? The answer to that question appears to be that
although rare these extrema occur much more frequently than
one would predict for a process with Normal statistics. Herein
we present a calculus that is able to take such a distinction
into account and form a new hypothesis concerning the nature
of the statistics of physiological time series data and what they
entail.

1.1. LAW OF ERRORS

The present essay addresses those elusive patterns in the med-
ical data that distinguish between the healthy and pathologi-
cal and how such patterns might be pinned down in order to
describe the properties of complex medical phenomena. From
a brief historical review it will become apparent that the work-
ing assumption that the statistics of physiologic time series are
Normal, an assumption made in the nineteenth century, has
become the implicit and often the explicit foundation for much
of the formal theory of medicine. Here we motivate abandon-
ing this assumption and initiate the exploration of a theory
entailed by formulating a new hypothesis based on the insights
into complexity made in the past few decades.

Complexity was first dealt with in the rapidly developing
physics of the eighteenth century by recognizing that no exper-
iment ever gives the same result twice. No matter how skilled
the experimenter, how carefully the experiment is prepared, how
precise the instruments used, an experiment repeated N times
and prepared in “exactly” the same way each time will yield N
different numbers. Scientists in the seventeenth and eighteenth
centuries struggled with the best way to characterize the scat-
ter in the data associated with this ensemble of measurements
from ostensibly the same experiment, see for example West and
Grigolini (2011) for a somewhat more extended discussion.

A breakthrough in empiricism was made at the end of the
eighteenth century by introducing the arithmetic average of N
measurements X, X5, ..., XN :

1 N
N 2K (1)

as “the” way to characterize an ensemble of measurements. This
was accompanied by introducing an arbitrary measure of the
quality of the average as a way to characterize the scattered data,

that being the deviation of the second moment from the square
of the average:

1N R
2 2 T
0_——EX—X, 2
Nk—lk 2)

the variance, or its square-root the standard deviation o. This
treatment of data was published independently in 1809 by the
German polymath Johann Carl Friedrich (Gauss, 1809) and the
American mathematician (Adrian, 1809) both of whom provided
the bell-shaped curve as the representation of the Normal dis-
tribution of statistical variability. This approach evolved into the
Law of Frequency of Errors as a consequence of the proof of the
Central Limit Theorem provided a year later by Laplace (1810).

The Law of Errors is an interesting name for the variabil-
ity in experimental data since it implies that the average is the
“proper” description of the data and deviations from that value
constitute errors. Consequently the Law of Errors and the Normal
distribution are consistent with the mechanical laws of motion
formulated by Newton. These laws of motion predict certain out-
comes for experiments; the measurements of those outcomes
reveal a variation about the predicted value and the Normal
distribution gives the degree of variability in the measurements
about the predicted or average value. The narrower the bell-
shaped curve the closer the measured value is to the predicted
one. Put simply, the Normal distribution implies that there is a
right answer to the question being experimentally asked. Thus,
even through no theory of medicine existed at the time the aver-
age value was assumed to provide the predication of that theory if
and when it would be formulated.

Many phenomena are described by the Normal distribution
or Normal statistics, but it is often forgotten that the measure-
ment error in such phenomena must satisfy the four criteria of
the Central Limit Theorem in order to be Normally distributed.
Expressed in the language of the Law of Errors these criteria are:
(1) the errors are independent; the error in a given experiment
does not depend on the error in any other experiment; (2) the
errors are additive; the total error made is the sum of the separate
errors; (3) the statistics of each error is the same; the statistical
process producing the error does not change from experiment
to experiment; and (4) the width of the distribution is finite;
the standard deviation converges to a finite value as the num-
ber of measured errors increases. These criteria are recorded here
because complex medical phenomena often violate one or more
of these conditions necessary to satisfy the mathematical proof of
the Central Limit Theorem and it is here that the real world devi-
ates from the expected variability imposed by Normal statistics
(West, 2006).

There is a wide array of medical phenomena that manifest
Normal statistics including height (Quetelet, 1835), birth weight
(O’Cathain et al.,, 2002), body temperature (Mackowiak et al.,
1992), and the logarithm of blink rate (Bentivoglio et al., 1997).
On the other hand, there is an even greater list of non-Normal
statistical medical phenomena including heart rate variability
(Peng et al., 1993), neuronal avalanches (Plenz, 2012), inter-
breath and interstride interval variability (West, 2006), to name
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a few. It is the latter physiologic phenomena that we are inter-
ested in understanding and this requires the study of how the
statistical properties modify our understanding. Of particular
importance is our understanding of extrema and how these
extrema change with increasing variability of the underlying
statistics.

1.2. THE NETWORK EFFECT

Recently the identification of emergent phenomena across multi-
ple disciplines, from the swarming of insects (Yates et al., 2009),
the schooling of fish (Katz et al., 2011) and the flocking of birds
(Cavagna et al., 2010) observed in animal groups by naturalists;
to the spatiotemporal activity of the brain (Beggs and Plenz, 2003,
Fraiman et al., 2009, Chialvo, 2010) observed by neurophysiolo-
gists; to the collective and cooperative behavior observed in social
groups studied by psychologists and sociologists; all demonstrate
collective behavior reminiscent of particle dynamics near the crit-
ical phase transitions studied by physicists (Stanley, 1971). Each
of these disciplines has demonstrated the need to investigate the
dynamics of complex networks across scales in order to develop a
deeper understanding of how large-scale behavior emerges from
microscale dynamics and the sensitivity of the observed behavior
to those dynamics.

Of particular interest to us here are the medical fields in which
we observe a need for a system wide approach (Richardson and
Goldstein, 2010). The recent discoveries in medicine were pro-
pelled by the successes of molecular biology and genetics that
have made available genomic blueprints of numerous organisms,
which are complemented by extensive experimental data describ-
ing cell functions. At the same time however the realization came
that biological function emerges out of the interaction of numer-
ous molecular components, making the detailed knowledge of
specific components at any level of organization insufficient to
capture macroscopic functionality. One example of this limitation
that we return to subsequently is the study of the cardiovascular
systems in order to understand, predict and ultimately modify (in
order to heal) cardiac function.

Despite experimental developments, the ability of science to
make theoretical predictions of the behavior of complex net-
works is still in its infancy. The adoption of methods from
non-equilibrium  statistical physics have demonstrated limita-
tions, resulting from the fact that living networks, in contrast
to inert physical materials, are extremely heterogeneous, non-
generic, highly specialized and operate far from an equilibrium
state (Elsasser, 1981). We hypothesize that “The Network Effect”
(TNE) is to impose a level of complexity that eludes ana-
lytic dynamic descriptions based on systems of ordinary and/or
stochastic differential equations, as well as the equivalent par-
tial differential equations describing the phase space evolution of
probability density functions (PDF’s).

Herein we demonstrate that what was for a very long time a
niche branch of mathematics, the fractional calculus, might very
well be able to span the gap between the inert materials of physics
and the living networks of medicine. Consequently TNE may well
be summarized as the need for a system of fractional differen-
tial equations to describe the dynamics of complex networks. The
support for this hypothesis is primarily empirical as we show, with

the exception of the connection established by West et al. (2014)
for a model non-linear dynamic network.

Although developed along side the classical calculus, fractional
differential equations have only recently been shown to be a con-
venient way to describe the dynamics of complex phenomena
characterized by long-term memory and spatial heterogeneity
(Podlubny, 1999, West et al., 2003). Fractional differential equa-
tions have been demonstrated to capture the time evolution of
fractal processes, such as in anomalous diffusion, viscoelastic-
ity and turbulent fluid flow, as reviewed by West and Grigolini
(2011). In spite of the success of the mathematical descriptions of
such processes there has been a lack of identification and interpre-
tation of mechanisms that entail fractional dynamic equations in
the context of complex physiological networks. Herein we suggest
how this barrier might be either overcome or circumvented.

1.3. STATISTICS OF EXTREMA
An extreme event may be thought of as the occurrence of an
incident which in some phenomenon exhibits itself outside the
typical region of fluctuation as measured by some appropriately
chosen variable—wind gust loads on airplanes in flight, the high-
est temperatures or lowest pressures in meteorology, floods, and
droughts in hydrology, and human life spans, all fall in this
category. A perhaps even longer list of phenomena of medical
importance, including heart attacks, the falling of the elderly,
epileptic seizures, traumatic brain injury, could be drawn up. To
be adequately prepared for such occurrences knowledge of the
underlying statistical behavior of such events must be in hand.

In 1935 Emil Gumbel derived an expression for a PDF of the
maxima in data sets (Gumbel, 1954, Reiss and Thomas, 1997)

P(x) =exp[—exp[—x (x —w)]]: —00 < x < 00,  (3)

where u is related to the mean and x to the standard deviation of
the extrema variable x. In the original derivation of this cumu-
lative distribution the variable was the oldest ages in human
life spans. Subsequently, the Gumbel PDF was applied to other
extreme events, such as those cited above. The derivation of the
PDF was based on the two assumptions: (1) given a random
variable X, such as the height of a river or the magnitude of an
earthquake, the successive measurements are statistically inde-
pendent of one another; (2) the statistics are stationary in time,
that is, the PDF is independent of an overall shift in time. The
domain of attraction of this PDF encompasses most of the com-
monly used distributions, that is, PDF’s for which there exists a
mean and standard deviation such that as the number of data
points becomes arbitrarily large, the limit of the extrema PDF
approaches the Gumbel form.

Figure 1 compares the Normal and the Laplace (1810) PDF’s
to that of Gumbel as well as to a second type of extreme value
PDF due to Fréchet (1927). Note that a PDF is obtained from the
negative derivative of the probability so that for the Gumbel PDF
we obtain from Equation (3)

dpP
2 = =T s exp [ (x— ] exp [~ exp [ (0],
)
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FIGURE 1 | Four PDF’s are plotted on log-linear graph paper. The
parabolic solid curve is a Normal PDF and the dashed is a Laplace PDF. The
broader of the two remaining distributions is the Gumbel PDF given by
Equation (4). The remaining extrema distribution is that of Fréchet (1927)
and is discussed subsequently.

It is evident from the figure where Equation (4) is plotted that the
large excursion of the variate from the central values dominate the
extrema PDF’s.

Of particular interest to us here are the extreme properties of
fluctuations in medical observables. If the maximum fluctuation
in body temperature doubles an individual may be in some dis-
tress but if the maximum interval between heart beats double the
pathology may be life threatening. Part of the reason for this dif-
ference can be traced to the changes in the behavior of extrema
properties for a Normal statistical process and non-Normal pro-
cesses, say one described by Pareto, i.e., IPL statistics. Extrema
in stock market fluctuations, Taleb’s black swans Taleb (2007),
generated by an underlying Pareto distribution are unpredictable
and have a distribution that does not approach the Gumbel form,
but does converge on the Fréchet form. On the other hand, these
extrema could also be Sornette’s dragon kings (Sornette, 2009)
when they are transiently organized into extreme events that are
statistically or perhaps mechanically different from those in the
underlying distribution that produces the smaller values of the
fluctuations. An example of the latter mechanism was worked
out in detail by Montroll and Shlesinger (1984) who leverage the
moments of a distribution with finite central moments using a
renormalization group argument to generate the Pareto tail in
the income PDF’s for Western society independently of the initial
distribution. We present this argument subsequently.

The lack of interchangeability of black swans and dragon kings
in the interpretation of medical pathologies has not yet been
addressed explicitly, as we subsequently discuss. This distinction
becomes important in a medical context given the recent progress
by de Souza Cavalcante et al. (2013) in real time forecasting of an
impending extreme event (“dragon king”), but more importantly
that it is demonstrably possible to perturb the system to suppress
the onset of the extrema for certain chaotic mechanisms.

1.4. PREVIEW
In Section 2 the idea is developed that the PDF’s generated by
complex phenomena, particularly those in medicine, require a

new method of quantification; one based on fractal statistics,
self-similarity, and the fractional calculus. Some renormalization
group scaling ideas are taken from Zaslavsky (2002) but other
sources for the mathematical infrastructure developed are also
discussed. The renormalization group properties of the statisti-
cal distribution are discussed, including the existence of complex
fractal dimensions that explain the empirical harmonic modula-
tion of the scaling observed in some data. Thus, information in
fractal phenomena is coupled across multiple scales, as for exam-
ple, observed in the architecture of the mammalian lung (West
et al., 1986, Nelson et al., 1990, Weibel, 2000); manifest in the
long-range correlations in human gait (Hausdorff et al., 1996,
West, 1999); measured in the human cardiovascular network
(Peng et al., 1993) and observed in a number of other physiologic
contexts (West et al., 2008). These all appear to be consequences
of TNE.

Fractal processes are dynamically rich in interconnected scales
with no one scale or set of scales dominating. The solutions to the
fractional equations of motion for a category of such processes
are given in Section 3 using scaling arguments. The alpha-stable
Lévy distribution is one such solution that has been suggested
to describe the statistics of heart rate variability (HRV) of both
healthy and diseased individuals (Peng et al., 1993). A discussion
of these statistics is given in Section 4 where the fractional calcu-
lus is shown to provide a truncated Lévy distribution to describe
healthy individuals. It is argued that the truncation is determined
by a physiological control process that is suppressed in individuals
that suffer a cardiac induced death. Extreme value theory is used
to distinguish between black swans and dragon kings using the
length of time one would wait before the reoccurrence of an event
of a given magnitude. This might translate into how long one
can survive with a critical illness given the time one has already
survived with that illness.

In Section 5 we present some conclusions based on the
application of the fractional calculus and scaling to physio-
logical time series and discuss the implications of the TNE
hypothesis.

2. FRACTIONAL CALCULUS

Physics has the most complete description of the dynamics of
phenomena, from the deterministic force laws of Newton to
the stochastic equations of Langevin (1908). By comparison
medicine lacks the foundational principles necessary to generate
such mathematical descriptions, whether in terms of the equa-
tions for the dynamic variables or the phase space equations for
the corresponding PDF’s This limitation is due in large part to the
complexity of medical phenomena and the lack of formal under-
standing of that complexity. Herein we provide a glimpse into a
strategy for how this limitation may be overcome.

The inherent complexity of physiologic structure, dynam-
ics and function was captured in the latter part of the last
century through the concept of fractals. The inventor, devel-
oper and champion of this idea was the late Mandelbrot (1977)
who discussed the anatomical structure of the lung and the
convoluted surface of the mammalian brain in terms of frac-
tal geometry. Of course he did not restrict himself to static
objects but introduced the notion of fractal statistics to describe
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intermittent stochastic phenomena. What tied the geometrical
and statistical fractals together was the idea of scaling and
much of the past quarter century was devoted to finding the
scaling behavior of time series for heart beats, breathing inter-
vals, stride intervals, and many other phenomena identified as
belonging to the study of fractal physiology (West, 2010). A
crucial point about these studies is that by identifying a time
series by means of a fractal function f(¢) immediately disqual-
ifies the traditional ordinary differential equations as a way
of describing its dynamics since the ordinary derivative of a
fractal function diverges. Consequently, it became necessary to
show that a fractional derivative of a fractal function is another
fractal function implying that the fractional calculus is the
appropriate way to describe the dynamics of fractal phenomena
(West et al., 2003, West and Clancy, 2010, West and Grigolini,
2011).

In this section we show that the scaling behavior of the frac-
tional kinetic equation (FKE) entails the notion of complex fractal
dimensions. The real part of the complex dimension is the IPL
index and the imaginary part yields a periodic modulation of
the IPL distribution. The existence of such a complex dimen-
sion is sketched out using data from a number of physiologic
phenomena.

2.1. FRACTIONAL KINETICS EQUATION

In this section we introduce the kinetic equation for the evolution
of the probability P(x, t)dx of a dynamic process X(t) along a frac-
tal trajectory having a value in the interval (x, x 4 dx) at time .
Zaslavsky (2002) provides an excellent description of the relation
between chaotic trajectories generated by non-linear equations of
motion and the fractional kinetics of the PDE. He considers the
infinitesimal changes of P(x, t) in time along chaotic trajectories
whose local averages yield a FKE, which is to say an equation of
motion for the PDF in phase space in terms of fractional deriva-
tives. There are a number of alternative derivations of the FKE
including the continuous time random walk (CTRW) of Montroll
and Weiss (1965) as reviewed by Metzler and Klafter (2000); the
extension of the CTRW using subordination (Gorenflo et al,
2007); as well as the fractional generalized Langevin equation, see
for example, Lutz (2012), West and Grigolini (2011). One of the
simplest form of the FKE is

8% [P(x. 1)] = Kpdf,, [P(x. 1)] (5)

and the non-integer parameters o and S are scaling expo-
nents that characterize the fractal structure of the trajectories in
Zaslavsky’s approach and consequently yield fractional derivatives
in time and space, respectively. Of course it is also possible that
the diffusion coefficient is dependent on ¢ and/or x, but we do
not consider these cases here and instead refer the reader back to
the literature (Zaslavsky, 2002, Klafter et al., 2012). It remains for
us to interpret the symbols indicating the fractional derivatives in
time and in space, which we do in Section 3.

Equation (5) is sometimes called the fractional Fokker-Planck
equation (FFPE) with zero potential because it can be general-
ized by introducing a potential function in complete analogy with
the historical Fokker-Planck equation. When o = 1 Equation (5)

reduces to the anomalous diffusion equation (Seshadri and West,
1982, Metzler and Klafter, 2000, West et al., 2003)

0P(x, t) B
or K# I

[P(x, 1)] . (6)

Here the anomaly arises from the heterogeneity in the phase space
variable captured through the non-local character of the spatial
fractional derivative. It is not necessary to review the fractional
calculus in order to understand the solutions to Equation (5) or
(6); the understanding required for our purposes can be achieved
from their scaling properties.

2.2. RENORMALIZATION GROUP SCALING

Zaslavsky (2002) applied a renormalization group (RG) transfor-
mation to the system dynamics such that the scaling properties of
the incremental changes in space and time are

R: Ax— AAx , At — ATAL (7)

which apply after some averaging in a restricted space-time
domain and (Ay, A1) are scaling parameters. He goes on to say
that a basic feature of renormalization group kinetics is that the
FKE is invariant under the operation of a renormalization group
transformation R {-}:

R{9¢ (PGx, 01} = R{Kf, (P, 0)]] ®)
implying that the FKE satisfies the scaling behavior
2202 [P(x. 1)] = M Kpdf, [Plx. 1)] . (9)

The scaling results from the fractional powers of the differentials
in the basic definition of the fractional derivative.

This renormalization procedure may be applied an arbitrary
number of times to the FKE and consequently the resulting frac-
tional differential equation remains valid only if the ratio of the
scaling parameters satisfies

(Y
lim [ ] =1
n—00 )‘T

The FKE is linear so that the sum of the individual fixed-point
solutions is also a solution. In this way the fixed point equation
Equation (10) has an infinite number of solutions

(10)

pY4
AT

in2mw

=¢ ; n=0,%1,£2, ... (11)

where the fixed point solutions have integer n. Consequently,
indexing the time parameter with the fixed point index the ratio
of the time to space parameters becomes

. 2mn

oy In Ay ;
ﬂlnAT

/3 - ln)\.T

5 0g=d. (12)

Indexing the time parameter by # is arbitrary and is only intended
to distinguish among the various fixed point solutions to the FKE.
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In Section 3 we show that the solution to Equation (5) has the
general scaling form

P(x, 1) = tisF (%) 5 =a/p, (13)

using the zero-order solution to Equation (12). Consequently the
first moment of the dynamic variable takes the form

(x; 1) = /xP(x, t)dx = / %F (%) dx

_pOs

aff (14)

where the coefficient can be calculated to be Zaslavsky (2002)

DY) = /yF(y)dy: KsT (1 + B). (15)

However, if we include the higher-order fixed point solutions
from Equation (12) into the average we obtain

[e.e]
Int
() =1 ZA” cos <2nnlnkT>

n=0

(16)

resulting in periodic variations in the average value, with varia-
tions in In ¢ , the logarithm of time for time series data, having
period In A.

The expansion coefficients A, in Equation (16) can be explic-
itly calculated when the kinetic equation of motion has a dis-
crete renormalization invariance, see, for example, Hanson et al.
(1985), Montroll and Shlesinger (1984), West et al. (1986). The
lowest-order coefficient is given by Ag = Dgg. On the other hand,
these coefficients can also be used heuristically as expansion coef-
ficients much like what is done with empirical Fourier series
fitting the expansion coefficients to time series data.

2.3. COMPLEX FRACTAL DIMENSIONS
It is important to note that the concept of fractal dimension
implies that the underlying process is self-similar, but the fact that
the dimension is complex implies even richer properties of the
process. The real part of the complex dimension yields the inverse
power-law index for the Pareto distribution. The time series data
is seen to have bursts of activity followed by long quiescent inter-
vals during which no event occurs. However, when one of these
bursts is examined with higher resolution it is seen to be com-
posed of bursts separated by relatively long quiescent intervals.
The relative amount of bursting and resting is apportioned by
the scaling index. The imaginary part of the dimension indicates
that there is a memory superposed on the Pareto statistics pro-
ducing log-periodic modulations of the moments. It is useful to
understand that this apparently bizarre phenomenon is not new.
Over 40 years ago Novikov (1966) in his investigation of
the properties of turbulent fluid flow discovered the periodi-
cally modulated scaling properties of intermittent stochastic pro-
cesses. He considered a general Poisson process supplemented
by “nested” pulses of activity. The power spectral density func-
tion was consequently determined to satisfy a scaling relation

of the renormalization group form and the predicted spectrum
was a modulated IPL. Novikov’s prediction regarding the log-
periodicity in turbulence has subsequently been observed by
Zhou and Sornette (2002). Thus, whether the functional form of
Equation (16) arises in the study of the moments of a processes,
or in its spectrum, it indicates a process that is void of a charac-
teristic scale and has long-range correlations induced by nested
bursts of activity as also pointed out by West and Fan (1993).

The log-periodic variability of an observable average was first
discussed in a physiologic context by Shlesinger and West (1991)
to describe the scaling behavior of the bronchial airway network
of the mammalian lung. In the application to physiology the
solution Equation (16) takes the heuristic form

) 1 Int
(x;t) = = Ao + Aj cos 2ﬂlnAT

where (x; t) is the average diameter of the bronchial airway at gen-
eration t, Agp and A; are empirical constants, and the generation
t denotes the number of branchings of the bronchial tree start-
ing from the trachea t = 0. Consequently, a result of TNE on the
bronchial network is that it is characterized by having a complex
fractal dimension

(17)

21

D=§+i
+11nAT

(18)

whose imaginary part produces the modulation of the dominant
IPL behavior of the average diameter. This periodic modulation is
clearly seen in Figure 2 for four distinct species, human, dog, rat,
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FIGURE 2 | The data from Raabe et al. (1976) for the average diameter
of the mamallian lung for four distinct species is compared with the
predictions of the fractal model of the lung West et al. (1986). The
symbols are the data points and the solid curves the results of the fractal
model. The parameter values yield the slopes § = 1.26 (humans), 1.05
(rats), 0.86 (dog), and 0.90 (hamster), with periods /nA7 = 2.20 for humans
and rats; /Init = 2.40 for dogs and hamsters (From Shlesinger and \West,
1991 with permission).
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and hamster for all generations and is apparently a general prop-
erty of mammalian species and is called the fractal lung model
(West et al., 1986).

The log-periodic modulation of the IPL behavior of the aver-
age diameter in the bronchial airway network is only one of
many such phenomenological regularities observed in physiol-
ogy. Another is cerebral blood flow (CBF) velocity measured
using transcranial Doppler ultrasonography, which is not strictly
constant. West et al. (1999) use the dimensionless relative disper-
sion, the ratio of the standard deviation to the mean, to show
by systematically aggregating the data that the correlations in the
beat-to-beat CBF time series data is the modulated IPL depicted
in Figure 3. This scaling of the CBF time series indicates the exis-
tence of long-time memory in the underlying control process.
They argued that allometric control (West and Grigolini, 2010)
enables the CBF to maintain a relatively constant perfusion.

The CBF time series for 2h of data from each of six sub-
jects is processed to obtain the relative dispersions depicted in
Figure 3. The processing procedure is to first calculate the rela-
tive dispersion using all the data as indicated by the zero point
on the horizontal axis in the figure. Next each of the neighboring
data points is added together to obtain half the original number
of data points and the relative dispersion is calculated again. This
is the 1 indicated on the horizontal axis in the figure. These data
points are aggregated again in the same way and the relative dis-
persion is calculated a third time to obtain point 2. This process is
repeated six more times with the data and plotted as shown. For
each subject the relative dispersion is successively aggregated in
this way and plotted against the size of the aggregation and is seen
to yield a modulated IPL PDE. The underlying theory on which
this processing technique is based is given by Bassingthwaighte
et al. (1994) for fractal time series where the relative dispersion is
shown to satisfy a renormalization group relation.

These are only two examples of physiologic phenomena with
complex fractal dimensions that are revealed through modulation
of the processed time series data as a consequence of the TNE.
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FIGURE 3 | The logarithm base 2 of the relative dispersion is plotted
vs. the exponent of 2 in the numbers of aggregated data points for
each of six subjects. Each time series is 2 h long and consists of between
seven and eight thousand data points. The lines are the best fits to the data
and it is clear that the curves describe modulated inverse power laws (From
West et al., 1999 with permission).

Sornette (1998) also emphasized the log-periodic corrections to
scaling produced by the imaginary part of the complex fractal
dimension in his extensive discussion of the concept of discrete
scale invariance. He Sornette and Johansen (1997) implemented
the renormalization group idea to postdict stock market crashes,
that is to “predict” historical stock market crashes, fitting the
log-periodic modulation of the solution to the renormalization
group relation to historical data. This distinctive modulation is
obtained using the Dow Jones time series financial data for the
United States stock market crash of 1929 depicted in Figure 4. The
solid line segment is the RG solution fit to the data. Predicting the
occurrence of a crash from historical stock market time series sub-
sequently became equivalent to predicting the arrival of a dragon
king (Sornette and Johansen, 1997).

This analysis suggest the possible use of extrema in the
prediction of mortality as we subsequently discuss.

3. SOLUTIONS TO FRACTIONAL KINETIC EQUATIONS

The method for obtaining the PDF solution to the FKE with
fractional derivatives in both space and time has been presented
elsewhere West and West (2012), but for the sake of complete-
ness I sketch out the method here as well. So now we inter-
pret the symbols for the fractional derivatives in Equation (5):
a7 [+] is the Caputo fractional derivative in time (Caputo, 2001)
defined below in terms of Laplace transforms; 8(; [-] is the Reisz-
Feller fractional derivative (Feller, 1968) in one space dimension
defined in terms of Fourier transforms and Kg is a generalized
diffusion coefficient. The most direct explicit definition of the
solutions to the fractional differential equations of motion is in
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FIGURE 4 | The time dependence of the logarithm of the Dow Jones
stock exchange index from June 1921 to September 1929 and the best
fit of the parameters using the log-periodic modulated solution to the
renormalization group relation. (From Sornette and Johansen, 1997 with
permission).
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terms of their combined Fourier-Laplace transforms, which we
now present.

3.1. THE MITTAG-LEFFLER FUNCTION

The Fourier transform of the symmetric Reisz-Feller operator
8"; [-] acting on an analytic function f(x) is as shown in Appendix
6.2 (Seshadri and West, 1982, Metzler and Klafter, 2000):

FT{of, [r]. k) = - kP Tk (19)

where f(k) is the Fourier transform of f(x). The Laplace trans-
form of a Caputo fractional time derivative 9 [-] acting on the
analytic function g(t) is

LT {8?‘ [g(t)] ; u} = u*g(u) — uo‘_lg(O) (20)
where g(u) is the Laplace transform of g(¢) and g(0) is its initial
value. Consequently the phase space dynamics given by Equation
(5) can be expressed as the joint Fourier-Laplace transform

u*P*(k, u) — u*"" = —Kg kP P*(k, u) (21)
and the asterisk denotes the double transform and we have used
the normalization condition on the characteristic function in the
form P(k =0, t) = 1. Therefore, after some rearrangement of
terms in Equation (21) the solution in Fourier-Laplace space can
be written

uu—l

Pk, u) = ———.
k) u® + Kg [k|P

(22)

The PDF that solves the FKE is given by the inverse Fourier-
Laplace transform of Equation (22).

We note that the space-time representation of the solution to
the FKE for various combinations of & and 8 and potential func-
tions are reviewed by Metzler and Klafter (2000), who show how
to derive Equation (5) using the CTRW of Montroll and Weiss
(1965).

The inverse Laplace transform of the Fourier-Laplace solution
to the FKE yields the characteristic function in terms of a function
first obtained by the mathematician Mittag-Leffler at the turn of
the twentieth century:

P(k,t) = Eq (—Kgp |KIP 1*) (23)
in terms of the infinite series that now bears his name
o0 z”
E, = _ 24
« (2) n;)r(na+1) @4

The time dependence of the Mittag-Leffler function (MLF) is
extremely interesting. At early times the MLF has the analytic
form of the stretched exponential (West et al., 2003):

(25)

imE, (—At%) = M ;
P B B

at late time it has the analytic form of an inverse power law (West
et al., 2003):

lim By (—A%) = —— (26)
t—00

T — o)A’
and the analytic series smoothly joins these two asymptotic
expressions. Consequently, the relatively benign Poisson statis-
tics at @ = 1, where the MLF reduces to an exponential, becomes
the intermittent IPL statistics for 0 < o < 1. The complexity of
the resulting statistics is captured in the IPL index much like the
allometry exponent captures the complexity of fractal structure of
allometric phenomena (West and West, 2012).

3.2. SCALING SOLUTION
Uchaikin (2000) inverse transformed Equation (22) for arbitrary
a and B to obtain the analytic form for the PDF; but that level
of mathematical detail is not necessary for the present discussion.
The desired insight is provided by utilizing the scaling properties
of the characteristic function Equation (23) and considering the
PDF in the form of the inverse Fourier transform
P(x,t) = FT " {Eq (—Kp [kIP 1) 5 x} . (27)
The series expansion for the MLF given by Equation (24) allows
us to write the scaling relation

o0

P(Ayx, ATt) = Z

n=0

(=Kprg1“)" T (B + 1)

28
F(HO[ + 1) |kxx|”ﬁ+1 ( )

where the second factor in the summation is the result of applying
the Tauberian Theorem (Zygmund, 1935) to the inverse Fourier
transform of |k|"®. A renormalization group scaling equation
emerges when the parameters satisfy the equality A, = )f;/ A
which is the lowest-order fixed-point solution to Equation (12),

resulting in Equation (28) reducing to

1
PO Px, art) = P ). (29)

T

If we now select the time parameter to be A = 1/¢, so that
in Equation (29) the scaled variable x/t%/P becomes the new
dynamic variable we can write

1 x
Finally, the PDF that solves the FKE in terms of the similarity
variable x/t"~ satisfies the scaling equation

P(x, t) = LFx (i) and u, = /B, (31)

tHx tHx
as introduced in Equation (13).
The function F, (-) in Equation (31) is left unspecified but it
is analytic in the similarity variable x/t**. In a standard diffusion
process X(¢) is the displacement of a diffusing particle from its
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initial position at time ¢, and for vanishing small dissipation the
scaling parameter is p, = 1/2 since « = 1, § = 2 and the func-
tional form of F,( - ) is a Gauss distribution. However, for general
complex phenomenon there is a broad class of PDF’s for which
the functional form of Fy(-) is not Gaussian and the scaling
index puy # 1/2. For example, the stable Lévy process Montroll
and West (1979), Samorodnitsky and Taqgqu (1994), Seshadri and
West (1982), Zolotarev (1986) scales in this way and the Lévy
index is in the range 0 < ¥ < 2, with the equality holding for
the Gauss distribution and the scaling index in Equation (31) is
related to the Lévy index by u, = 1/9.

3.3. LEVY STATISTICS
In the previous section we noted that a process described by an
alpha-stable Lévy distribution satisfies the general scaling solution
to the FKE. More explicitly we note that the Fourier transform of
a PDF is the characteristic function for a process. Consequently,
the inverse Fourier transform of the characteristic function given
by Equation (23) yields the PDF
P(x,t) = FT ' {Ey (—Kg [kIP t%) ; x} (32)

When o = 1 we know that the MLF reduces to an exponential in
which case the PDF is the alpha-stable Lévy distribution in space
Lg (-) with a Lévy index B and a “width” that increases linearly
with time:

P(x, t) = Lg (x, Kgt) = FT " {exp[—Kg [k t]; x}  (33)
The series representation for the Lévy distribution is given in a
number of places, see for example Montroll and West (1979):

o0

_ (=D)"*'T [Bn + 1]sin[Bnm/2] 1 (Kpt\"
Lg (x, Kﬂt) = Z ZT (1) m <W> ;

n=1

—00 < X < 00 (34)
whose lowest-order term is the IPL

lim Lg (x7 Kﬂt) — ['[1 + B]sin[Br/2]

x| =00 T

Kgt

T 99

Note that in the discussion up to this point we have interpreted x
as the “space” variable, but this choice of words was used to facil-
itate the presentation. In fact X(¢) has been called the dynamic
variable, variate or random variable of interest and x is the cor-
responding phase space variable. The variate could be the time
interval between successive heart beats and ¢ would then be the
chronological time and the clock is started when the first of these
beats occurred. Consequently both the random variable and the
independent variable would be measures of time. For example, if
the heart rate variability (HRV) were given by a Lévy distribution
then x in Equation (34) would be the interbeat time interval and
Lg (x, Kg t) dx would be the probability that the interbeat interval
falls in the interval (x, x + dx) at time ¢.

It has been over 20 years since Peng et al. (1993) determined
that the successive increments in the cardiac beat-to-beat inter-
vals of healthy subjects display scale-invariant, long-range anti-
correlations (up to 10* heart beats). They also determined that the

histogram for the heartbeat interval increments is well described
by the above Lévy stable distribution as shown in Figure 5. For a
group of subjects with severe heart disease, they find that the dis-
tribution is unchanged, but the long-range correlations vanish.
Therefore, the different scaling behavior in health and disease are
related to the underlying cardiac dynamics.

The beat-to-beat time series are denoted B(n) for the beat
number n. Peng et al. (1993) explain that the resulting HRV time
series are non-stationary as a consequence of the competing neu-
roautonomic inputs. Parasympathetic stimulation decreases the
firing rate of pacemaker cells in the heart’s sinus node; sym-
pathetic stimulation has the opposite effect. The competition
between these two branches of the involuntary nervous system
is the postulated mechanism for much of the erratic variabil-
ity recorded in healthy subjects (Goldberger and West, 1987,
Goldberger et al., 1990).

They Peng et al. (1993), in order to remove the non-
stationarity in the time series, introduced the difference in the
beat interval I(n) = B(n + 1) — B(n), the interbeat increments
(x in our notation), which they heuristically determined to be
stationary. The second moment of the interbeat increment time
series data scale with time as a power-law and the spectrum scales
as a power law in frequency S(f) o f* where u = 1 — 2H and the
mean-square level of the interbeat fluctuations increases as 72,
as depicted in Figure 6. Here H = 0.5 corresponds to Brownian
motion, so that 4 = 0 indicates the absence of correlations in
the time series x (“white noise”). They observed that for a dis-
eased data set that p is approximately zero in the low-frequency
regime confirming that the x are not correlated over long times.
On the other hand, they also observed that for the healthy data
set w is slightly less than 1 indicating a long-time correlation in
the interbeat interval differences. The anti-correlated property of
x are consistent with a non-linear feedback system that “kicks” the
heart rate away from extremes. This tendency operates on a wide
range of time scales not on a beat-to-beat basis.

The spectrum indicates the correlation of the heart beats.
In normal healthy individuals shown in Figure 6A the heart
beats are determined to be anti-correlated. Correspondingly, this
correlation vanishes in patients with heart disease (dilated car-
diomyopathy) as shown in Figure 6B. This loss of correlation
in diseased individuals does not influence the statistics of the
heartbeat increments. Both healthy and diseased individuals are
described by a Lévy stable distribution as depicted in Figure 5 and
it is not possible to distinguish between the healthy and diseased
individuals statistically.

More recent studies conclude that although the statistics of
HRV have heavy tails they need not be strictly Lévy Hayano et al.
(2011) as we discuss in Section 4. The physiologic mechanism
producing the effect of keeping the heart rate away from extremes
is modeled in the next section by modifying the FKE to obtain a
solution that is a truncated Lévy distribution.

4. HRV, EXTREMA STATISTICS, AND COMPLEXITY LOSS

In the previous section we learned that what is of most inter-
est in complex phenomena often resides in the tails of the PDE.
Consequently, to understand complexity and its loss requires
insight into the extremes of fluctuating time series. The discipline
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FIGURE 5 | The HRV increment data is fit with a Lévy distribution
(solid curve) and compared with a Gauss distribution (dashed
curve). Healthy (circles) and diseased (triangles) individuals are depicted
with the data normalized to the standard deviation and the probabiltiy
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density to P(0). The same data are plotted in (A,B) only the vertical
axis has been changed to a logarithm in the latter to emphasize the
separation between the Gauss and empirical distributions (Adpated from
Peng et al., 1993).
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FIGURE 6 | The power spectrum for the interbeat interval
increments sequences over a 24h period. (A) Data from healthy
adult. The best-fit line for the low-frequency region has a slope 0.93.
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(B) Data from a patient with severe heart failure. The best-fit line of
the low-frequency region has slope 0.14 (Adated from Peng et al,
1993 with permission).

developed for the study of statistically unusual or rare events is
extreme value theory, which is the branch of statistics that deals
with extreme deviations from the median of the probability den-
sity. Half the data is greater than the median and half is less than
the median and consequently the median is not the same as the
mean or average except when the PDF is symmetric as in the case
of the Normal PDE. The description of many complex phenom-
ena has involved replacing the Normal with an IPL PDF, in fact,
this replacement is often used to define complexity. The existence
of the long tail implies that there are a great many more large
magnitude events than in exponential processes.

The importance of rare events in statistical processes cannot
be over stated since extrema dominate such processes in general,
for example, in determining mortality in heart beat irregulari-
ties. A data processing model for sudden cardiac death after atrial
myocardial infarction (AMI) based on a measure of the degree of
non-Gaussianity of HRV has been proposed (Kiyono et al., 2006).
One measure of the degree of deviation from normalcy that has
been found useful in the study of HRV was developed in the study
of the intermittency properties of turbulent velocity fluctuations
by Castaing et al. (1990).

The analysis of the variability of RR-intervals for healthy indi-
viduals and those with heart disease were shown to have the same
statistical distribution, that being Lévy stable (Peng et al., 1993).
This non-Gaussian behavior of the HRV intermittent time series
has, a quarter century later, been shown to be more subtle than
originally believed. The scale invariant fluctuations in the healthy
human heart beat were examined under a variety of statistical
assumptions by Kiyono et al. (2006). They found that a truncated
Lévy PDF could not be ruled out as a proper descriptor of the
HRYV statistics. The processing was done by aggregating the RR
time series data using increasingly longer segments of the time
series and eventually converged on a Gaussian distribution for
sufficient coarse graining of the time series. Kiyono et al. (2006)
found it impossible to distinguish between a truncated Lévy PDF
and the approximated PDF based on the analysis using the tech-
nique of Castaing et al. (1990). On the other hand, the cascading
mechanism that is used in the interpretation of the intermittency
of velocity fluctuation in turbulent fluid flow by Castaing et al.
(1990) and subsequently used in the interpretation of intermit-
tency in HRV interval statistics could not be confirmed in the
analysis of HRV by Kiyono and Bekki (2011). This contradicts
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an earlier finding by Lin and Hughson (2001) who found strong
evidence that the cascade mechanism can generate some of the
statistics of HRV variability.

In Figure 7 a qualitative sketch of the curves denote the HRV
statistical PDF’s from a study (Hayano et al., 2011) of a collection
of 670 post-AMI (acute myocardial infarction) patients using 24
h Holter monitor data sets yielding heart beat interval variability
X(t) from the time series. In this study a number of individu-
als suffered a cardiac death, others died by non-cardiac causes
and some survived. The statistical distributions determined by the
time series for the three groups are indicated schematically.

The first thing to notice about the results in Figure 7 is that
even though the PDF’s are only sketched it is clear that no group
has Normal statistics, which in terms of the standardized vari-
able would coincide with the dashed curve. Next the survivors
and those succumbing to non-cardiac death have essentially the
same variability distribution, consistent with the findings of Peng
et al. (1993). The extrema for these processes would be called
black swans by Taleb (2007) and are unpredictable because they
share the statistics of their smaller siblings. The extrema for those
that suffer cardiac death fall into the category of Sornette’s dragon
kings (Sornette and Johansen, 1997) and are well fit by a Lévy
distribution (no truncation).

The variability statistics of the cardiac death patients are very
different from those that survive even though there is a great
deal of overlap in the central regions of the PDF’s. The difference
between the two curves suggests that those that survive might be
modeled using a truncated Lévy distribution. This is consistent
with the results of Kiyono et al. (2006) who find it : “..impossible
to distinguish between the truncated Lévy distribution and the
approximated probability density function based on Castaing’s
equation.”

We hypothesize a feedback mechanism that produces a trun-
cated Lévy distribution for those that survive, not unlike the
“kicks” away from the extreme excursions postulated a quarter
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1e+] « === Cardiac death
Non-cardiac

1e+0 4

Probability density
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-10 5 0 5 10
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FIGURE 7 | The HRV distributions are indicated schematically from
24 h RR interval time series for a group having suffered atrial
myocardial infarcation. The patients are separated into those that suffer
cardiac death, another with non-cariac death and third consisting of
survivors (Adapted from Hayano et al., 2011).

century ago by Peng et al. (1993) to explain the anti-correlation
of HRV data. This mechanism would suppress the largest extrema
that persist in the cardiac death group. The pathology of the HRV
PDF’s being Lévy stable would then be the result of the suppres-
sion of a physiological control process, that is, a process not to
inhibit events in chronological time but to suppress the size of the
interbeat interval. The mathematical form of this hypothesized
physiologic mechanism is given in the next subsection.

4.1. TRUNCATED LEVY HYPOTHESIS

In Section 3.3 we determined that the solution to the FKE with
a =1 is the alpha-stable Lévy distribution given by Equation
(33). It was noted that such distributions have fat or IPL tails
that decay more slowly than the typical exponential. Such fat
tails can generate diverging variances, which are not plausible for
healthy physiologic data. Consequently, it is necessary to find a
PDF that behaves as an IPL for intermediate amplitudes but man-
ifests physiologic control to mitigate the occurrence of extreme
events such as dragon kings. For this reason we assume that the
HRV statistics of healthy individuals are determined by a physio-
logic feedback mechanism in which the tails of a Lévy distribution
are truncated.

We hypothesize physiologic feedback to produce an expo-
nential suppression of very large fluctuations. This exponential
decay of large fluctuations can be formally incorporated into the
anomalous diffusion equation Equation (6) in the following way

0P(x, t)
ot

= K [0 + iv]” [P(x, )] (36)
The solution to the modified FKE is again given by means of
Fourier transforms. The Fourier transform of the shifted oper-
ator is determined by the binomial expansion in Appendix 6.2
resulting in the equation for the characteristic function

dInPk, 1)

3 —Kg [k2 + y2]ﬁ/2 cos B [tan_1 v/ |k|)] (37)

Integrating Equation (37) yields the characteristic function after
including a term to insure proper normalization of the PDF, that
is, P(k =0, t) = 1, and introducing the phase ¢ for the inverse
tangent
> _ 2 218/2 B
InP(k,t) = —Kpt {[* + y*]" “cos Bp —yP 1. (38)
The inverse Fourier transform of Equation (38) yields the trun-
cated symmetric Lévy PDF
P(x,t;y,B) = e_y‘lelg (x, K,gt) . (39)
The truncated Lévy PDF was first studied numerically in the
context of stock market fluctuations by Mantegan and Stanley
(1994) and soon thereafter Koponen (1995) provided a formal
derivation of the characteristic function for a truncated Lévy
flight. Matshshita et al. (2003) explain that the resulting pro-
cess is infinitely divisible by scaling x and y with (Kﬁt)l/ £
Consequently, in terms of the scaled variables x; = x/ (Kﬂ t)l/ P
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and the scaled parameter y; = y (Kpt) ' the probability that an
RR interval occurs in the interval (x, x + dx) is

P(x, £; y, B)dx = e Ly (x;) dxg (40)

where Lg (x;) is the stable Lévy PDF with Lévy index B.

4.2. LOSS OF COMPLEXITY

It has been hypothesized that disease is associated with the loss
of complexity (Goldberger et al., 1990). This hypothesis has been
repeatedly tested using HRV data. For example, a study of com-
bat casualties in an emergency department in Iraq involving 70
acutely injured adults determined that the complexity of HRV
dynamics over a range of time scales was lower in high-risk than in
low-risk combat casualties (Cancio et al., 2013) using a multiscale
entropy (MSE) as a measure of complexity (Costa et al., 2002).
In this last reference Costa et al. (2002) show that MSE uses the
same coarse graining procedure that was implemented to obtain
the relative dispersion in Figure 3. The scaling of the data estab-
lished that the MSE was higher for healthy subjects than for those
with congestive heart failure or with atrial fibrillation. It should
be noted however that the loss of complexity only became evident
after a certain level of coarse graining was carried out.

Consequently, in contradiction to the central limit theorem
these statistical fluctuations do not converge to a Gaussian dis-
tribution. Struzik et al. (2008) emphasize an interpretation in
which healthy-heart rate represents the upper bound on HRYV,
and reduced variability of heart rate fluctuations is of clinical risk.
They call into question the complexity paradigm and its clini-
cal interpretation. In particular they find that there is an increase
in fluctuations and in complexity of heart rate in chronic-heart
failure patients, in particular those at risk of death, just as those
observed in Figure 7.

A quarter century ago we (Goldberger et al., 1990) proposed
that the scaling behavior of the statistics may provide a measure
of the complexity of the underlying process. Thus, it would appear
from Figure 7 that complexity has increased in those patients
that are the more severely diseased rather than the other way
around as hypothesized. This interpretation proposes that com-
plexity is proportional to variability and therefore is greatest for a
non-ergodic statistical process with diverging central moments.
A more thoughtful analysis of complexity reveals something
different.

First of all the scaling of the statistics for the central or Lévy
part of the PDF is the same for both sets of curves. However, there
is the additional scaling of the truncation parameter in the trun-
cated Lévy PDF that reduces the expanse of the fluctuations for
those that do not expire by cardiac death. This second scaling,
a scaling that would be produced by a control mechanism, cer-
tainly adds to the overall complexity of the process. It is the loss
of this control that enables the dragon kings of cardiac death. So
that although those that expire due to cardiac death have greater
variability they do not have greater complexity.

The question of how to distinguish between the extrema gen-
erated by the Lévy and the truncated Lévy PDF’s can be answered
using extreme value theory. In Appendix 6.3 type-1 and type-II
extrema are discussed. Type-I extrema, those represented by a

Gumbel PDF Equation (63), are generated by underlying pro-
cesses with normal, log-normal, Poisson or Weibull statistics;
all of which have a finite variance. Thus, we would expect that
extrema generated by the truncated Lévy PDF to be attracted to
the type-I PDE, since the exponential asymptotically dominates in
the truncated Lévy. On the other hand, type-II extrema, those rep-
resented by a Fréchet PDF Equation (67), are generated by process
with diverging second moments such as in the case of IPLs and
Lévy PDF’s. Thus, we hypothesize that black swans are more like
type-I extrema and dragon kings are more like type-II extrema.
So how readily can we distinguish between the two?

4.2.1. Extrema statistics

Leonard Tippet (1902-1985) was the founder of the field of
extreme value statistics. He was employed by the British Cotton
Industry Research Association, where he worked on understand-
ing how to make cotton thread stronger. In his studies, he realized
that the strength of a thread was controlled by the strength of
its weakest fibers. He determined that perhaps the most intuitive
comparison between the extrema PDF’s is given by the return
time, that is, after a given magnitude event occurs how long must
we wait for another event of that magnitude to occur? In this way
the statistics of the size of an event can be related to the variability
of the size over time.

Recall that the AMI cohort group introduced earlier was
defined by having had an initial AMI event. So the question arises
as to how long we expect a person to wait before the occurrence
of a second event. This can be framed as a return time problem
and depends on whether an individual’s HRV is determined by
a Lévy or by a truncated Lévy PDEF. This is the kind of question
encountered in the consideration of earthquakes and floods. The
return time to an extreme value 7 is in general given by

T = (41)

1 —F(n)

where F(n) is the probability of achieving this extreme value.
Figure 8 displays the return time using the Gumbel PDF, which
is a consequence of the underlying process being a truncated
Lévy, as well as the Fréchet PDF, which results from the under-
lying processes being Lévy stable, Mittag-Leffler or a Pareto PDF.
The schematic behavior of the return time is depicted for typical
parameter values using Equation (41). In this figure it is clear that
the return times for a phenomenon with a diverging variance is
significantly shorter than for one with a finite variance.

For a Gumbel PDF a magnitude “40” event (arbitrary units)
occurs approximately every 50 units of time, say years for an
earthquake, but for a Fréchet distribution this event occurs
approximately every 10 units of time or so; a factor of five more
frequently. The return time increase for type-I extrema is approx-
imately exponential with extrema size (amplitude). On the other
hand, the return time increase for type-II extrema parallels the
type-I for small values of the amplitude but seems to approach a
saturation level at large extrema. Consequently the return time
for type-I extrema diverges from that of type-II extrema with
increasing size. It is not clear that it is easier to identify what
needs to be done to develop protection against the rare events of a
truncated Lévy process (type-I extrema) than for the significantly
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FIGURE 8 | The return time is plotted as a function of the amplitude of
the extrema for type-l and type-ll extrema. The upper curve uses the
Gumbel distribution and the lower curve uses the Fréchet distribution in
Equation (41). The parameter values have been selected with £10%
variation to contrast the two distributions.

more frequent Lévy process (type-1I extrema). However, the rel-
ative frequency of the two classes of extrema would suggest very
different strategies for suppressing them, particularly in identify-
ing and fixing a disrupted control process that results in the loss
of truncation resulting in Lévy distributed HRV.

4.22. Predicting survival

A second example of a physiologic phenomenon that is asymp-
totically described by IPL variability is epileptic seizure. Recently
Osorio etal. (2010) presented a dynamic analogy relating seizures,
called “brainquakes,” and earthquakes. They supported the anal-
ogy using five scale-free statistics: the Gutenberg-Richter distri-
bution of event intervals, the Omori and inverse Omori laws, and
the conditional waiting time until the next event. Somewhat ear-
lier Beggs and Plenz (2003) had found that the brain produced
“neuronal avalanches,” which like the brainquakes have no char-
acteristic scale and in addition their PDF is an IPL with index
—3/2. This and related work was reviewed by Osorio et al. (2010)
to emphasize that the purported resemblance between earth-
quakes and neuronal spiking had not been previously subjected
to the kind of rigorous scrutiny presented in their paper. They
point out that the behavior of neuronal assemblies and of epilep-
togenic regions of the brain are fractal and the observable changes
in neuronal voltage is self-similar.

What is perhaps most significant in the discussion of brain-
quakes for our purposes is the observation first made by Davies
etal. (1989) regarding interquake intervals for fat-tailed distribu-
tions. They asked the question:

Is it true that, “The longer it has been since the last event, the
longer the expected time till the next?.”

This means that the average waiting time conditional on the time
elapsed since the last event ¢ denoted by (t |¢) increases with ¢.
Sornette and Johansen (1997) provide an analytic answer to this
question and we follow their argument in outline below.

The probability that an event occurs in the time interval (¢, t +
dt) is denoted as ¥ () dt given that the last quake occurred at
time ¢ = 0. The waiting-time PDF is given by ¥ (¢) so that the

probability that no event has occurred in the time interval (0, t),
the survival probability, is given by

o0

way:?wwywzl—/waﬁﬂ.

0

(42)

These two distributions can be used to define P(t |t )dt the
probability that the next event will occur in the time interval
(t 4+ 7, t + T 4 dt) conditional on the fact that the last quake had
not occurred up to the time t. The formal expression for this
probability density is given by Bayes’ theorem to be (Sornette and
Johansen, 1997):

R AG))

P(t|t) = D) (43)

so the conditional average waiting time is determined by the
integral

(t]t) = /TP(T |t )dr. (44)
0

The asymptotic form of the Lévy and Mittag-Leftler PDF’s dis-
cussed as solutions to the KFE are IPLs, which is to say, they
are Pareto PDF’s, so for the present discussion we consider the
schematic form for the waiting-time PDF

A

th+1 (45)

¥ (1) =

where A is a constant. Evaluating the survival probability corre-
sponding to the IPL waiting-time PDF yields for the conditional
PDF Equation (43)

¢ n+1
mﬂm=ﬁ( )
t \t+71

which when inserted into Equation (44) allows us to determine
the conditional expected time to the next quake for u > 1

(46)

(tle) ot (47)
It is evident that for an inverse power-law waiting-time PDF the
conditional expected waiting time to the next quake increases lin-
early with the elapsed time since the last quake. Consequently, the
longer it has been since the last quake the larger is the conditional
expected waiting time.

Figure 9 depicts the conditional waiting time as a function
of the time since the last event for both seizures and earth-
quakes (Osorio et al., 2010). The dashed line is the unconditioned
expected waiting time calculated for an underlying exponential
PDE At early times the conditional expected waiting times are
less than the unconditioned value, however at late times, when
the asymptotic IPL is expected to be valid, they exceed this value.
Thus, at late time the question asked by Davies is answered in the
affirmative.
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FIGURE 9 | Average conditional waiting time (7 |t ) until the next event
conditional on the the time t already elapsed since the last event ended.
Seizures (thin curve; upper x axis and right y axis); earthquakes (thick curve;
lower x axis and left y axis). For seizures and earthquakes, (z |t) increases
paradoxically with up to a maximum (due to finite-size effects). The dashed
horizontal line shows the value of the unconditioned average waiting time
between two events. The increase in (t |t) with t confirm the heavy-tailed
nature of the distribution of interevent times. M, magnitude. From Osorio

et al. (2010) with permission.

Sornette and Johansen (1997) determine the general condi-
tions under which the question can be answered both positively
and negatively. They summarize their finding with the obser-
vation that with the exception of the Poisson PDF all statis-
tical descriptions must have a conditional average time from
now to the next event that depends on the time since the last
event. Whether the question is answered positively or negatively
depends on whether the waiting-time PDF falls off at a rate slower
or faster than the exponential, respectively. The exponential is
neutral with respect to the question because the time since the last
event has no influence on the time of the next event and conse-
quently establishes the statistical crossover between the two states.
Huillet and Raynaud (2001) re-examine the question and gener-
alize the analysis to renewal events. They find that the question
should be replaced with:

Is it true that: “The longer it has been since the last earthquake, the
longer the median time till the next.”

Note that “expected time” in the original question is replaced
with “median time” in the new question since in the analysis the
median time is always finite whereas the expected time may in fact
diverge.

4.2.3. Age-related disease (ARD) networks

Medicine concentrates on keeping us healthy, and extending our
life expectancy through the maintenance of the complexity of the
human body. However, we all die in the end. Therefore, we have
a vested interest in determining if science can find ways to facili-
tate life extension. Cluett and Melzer (2009) mention that ageing
has been described as the result of the lifelong accumulation of

random molecular damage, which in turn depends of the bal-
ance between molecular damage and repair. They review how
ARD’s are associated with gene variants and how these variants
determine pathways linked to ageing, what they call “beacons.”

Budovsky et al. (2007) were the first to apply networking
ideas to the study of longevity, focusing on the analysis of
human protein-protein interactions (PPI’s), which they call the
“longevity network.” They point out that the longevity gene-
encoded proteins together with their interacting proteins form
a continuous scale-free network with an extremely large num-
ber of hubs. The hubs are significant since, as they point out,
almost all of them are involved in at least one ARD. Note that
this is the topological complexity referred to earlier as being sepa-
rate and distinct from the temporal complexity (West et al., 2014)
discussed in relation to physiologic time series.

Continuing in this departure from the trend of focusing on
individual genes and/or their products Wolfson et al. (2009)
emphasize that the properties of complex networks cannot be
reduced to the properties of its components, and protein net-
works are no exception. They showed that longevity-associated
proteins (LAP’s) or ARD proteins can be organized into scale-
free network as identified in human cancer proteins, proteins
involved in Alzheimer’s disease, type 2 diabetes, and atheroscle-
rosis (Budovsky et al., 2007). The increased incidence of ARD’s in
advanced age is considered a major factor limiting human lifespan
(Cutler and Mattson, 2006).

In this context TNE would support the hypothesis that ARD’s
and longevity networks are interconnected through the signaling
of the proteins on the network and that such signaling can be
associated with the control of lifespan (Warner, 2005). In addition
the application of the network perspective to biogerontology has
been carried out by Tacutu et al. (2012) to identify new “putative
regulators of longevity” and as commented by one referee, this
indicates a high functional significance of TNE.

5. DISCUSSION AND CONCLUSIONS

It is often the case in presenting mathematical arguments in
support of a clinical interpretation that the latter is lost in the
torturous details of the former. So let us recap the most impor-
tant aspects of the formal discussion. First of all the statistics
most often observed with time series generated by physiological
phenomena, both healthy and diseased, are fractal and there-
fore they scale. This scaling suggests the hypothesis that the
behavior of the PDF is described by a FKE. In general the
fractal dimensions associated with the scaling of the FKE are
complex, they have a real and imaginary part, with the real
part denoting the index for the IPL and the imaginary part
determining the period of a log-periodic modulation of the
statistics.

One solution to the FKE was the Mittag-Leffler PDF and
another was the Lévy stable PDE, both of which have a Pareto
IPL form asymptotically. A generalization of the FKE that incor-
porated a physiological control mechanism to suppress large-
scale fluctuations yields a truncated Lévy PDFE. The truncated
distribution was associated with a healthy HRV time series,
whereas the Lévy PDF was associated with the statistics for a
diseased HRV time series. Since the variability for a Lévy pro-
cess is greater than for its truncated counterpart this seemed to
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contradict the hypothesis that a healthy physiologic process is
more complex than a diseased one. This is not the case.

A sharper definition of physiologic complexity is needed. In
the Scientific American article (Goldberger et al., 1990) the mis-
taken conclusion could have been drawn that complexity and
variability were the same thing. This is not always the case.
Consider, for example, a generalized hyperbolic, a Lévy or a
Mittag-Leffler PDFE. They each have a Pareto PDF asymptotically,
however their level of complexity is not the same. The generalized
hyperbolic and Mittag-Leftler PDF’s do not scale throughout the
domain of the variate, but only asymptotically. The Lévy PDF, on
the other hand, is infinitely divisible and scales throughout the
domain of the variate. This would imply that in the former case
the complexity associated with the bursting behavior of scaling
time series is only evident for very long time series and would
not be observed in short time series. This kind of complexity is
revealed by the renormalization group behavior observed in the
discussion of the dragon king.

This partitioning into the simple and the complex was made
evident in an argument put forward by Montroll and Shlesinger
(1982) in which the random fluctuations of an economic time
series is described by a function g(z) that has finite central
moments. A process was generated in which mechanisms were
introduced that scaled in time with increasing values b, b? ... with
probabilities a, a?, .., respectively, resulting in the renormaliza-
tion group relation for the new PDF

G(z) = g(z) + aG(bz). (48)

They used this argument to derive the Pareto IPL form for the
PDF of income for the highest few percent of income earners
in Western countries independently of the form of g(z) as long
as it has finite central moments. As stated in the text this argu-
ment was applied to the scaling of the bronchial airway network
in the mammalian lung (West et al., 1986, Shlesinger and West,
1991) with income level replaced with the branching generation.
The resulting distribution is g(z) for small values of the argu-
ment but having an IPL (Pareto) form asymptotically with index
w = loga/logh.

Consequently, the level of complexity is a balance between
regularity and variability, not just the result of variability alone.
Thus, the truncated Lévy PDF has this balance built in with the
possibility of extreme variability at short time intervals, but sup-
pressed extreme variability at very long time intervals. In keeping
with this new perspective, homeostasis, which focuses on the long
time control of a physiologic process, and inverse power laws that
focus on unfettered variability each have only part of the answer.
TNE is intended to capture the full range of complexity charac-
teristic of physiological phenomena that have evolved through the
development of complex dynamic networks.

Herein we have stressed that the TNE hypothesis encom-
passes the fact that the statistics of physiologic processes are not
the Normal statistics of simple physical systems. Instead com-
plex physiological phenomena are dominated by IPL’s of various
forms. The scaling of physiologic time series data manifest in the
IPLs strongly suggest that the equations of motion for the PDF
describing this behavior have fractional derivatives in the variate,

in time or both. The solutions to the FKE’s have this IPL struc-
ture as evidenced by the asymptotic behavior of both the Lévy and
Mittag-Leffler PDF’s. A generalization of the FKE, under the addi-
tional hypothesis that there exists a physiological mechanism to
inhibit large excursions of physiological fluctuations, was shown
to produce a truncated Lévy PDE. Although it was not shown
here a similar generalization can be made to generate a truncated
Mittag-Leffler function.

We have argued that a dragon king extreme (generated by a
Lévy stable PDF) is much more likely to occur in a given inter-
val of time for a physiologic process than a black swan extreme
(generated by a truncated Lévy stable PDF). Consequently, if the
extreme event is medically critical a person is more likely to die
as the result of a dragon king than of a black swan. However,
if we can identify the physiological mechanism that produces
the truncation in the Lévy statistics, the one whose suppression
transforms an unpredictable black swan into a more tractable
dragon king, then a judicious intervention could make a person
less vulnerable to the more frequent dragon kings.

The existence of an explicit physiological mechanism that sup-
presses large scale excursions of heart beat intervals has been
hypothesized. Such a mechanism would seem to explain the
clinical data and to be consistent with the fractional calculus
developed in this paper as a way of systematically describing the
dynamics of HRV for both the healthy and those with a variety of
heart diseases. Moreover it is not unlikely that such a mechanism
is not process specific but is a natural consequence of biological
evolution. It has been shown elsewhere that fractal statistics con-
fer a survival advantage (West, 2006) and therefore it would not
be surprising if nature adopted a generic mechanism to limit the
range of such fractal fluctuations while simultaneously retaining
the benefits such scaling provides.

We close with a speculation having to do with the relatively flat
region of the conditional waiting time for an event observed in
Figure 9. This behavior indicates a lack of dependence of the con-
ditional waiting time on the elapsed time since the last event for
short times and is followed by the linear dependence suggested by
the IPL PDF at late times resulting from TNE. Although not estab-
lished here this pattern is consistent with the qualitative behavior
of the underlying statistics being described by a Lévy PDF. One
may speculate that although dragon kings have a shorter uncon-
ditional return time than do black swans based on their amplitude
that counterintuitively for a given elapsed time since the last event
the conditional expected time until the next dragon king is longer
than the unconditioned average waiting time. By the same token
the conditional expected time until the next black swan is shorter
than the unconditioned average waiting time. Thus, one con-
sequence of TNE is the fact that although the recurrence time
between extreme events is shorter for Type-II over Type-I statis-
tics, the conditional time between extreme events increases with
the time since the last event.
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