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Abstract: Pancreatic cancer (PC) continues to rank among the most lethal cancers. The consistent
increase in incidence and mortality has made it the seventh leading cause of cancer-associated deaths
globally and the third in the United States. The biggest challenge in combating PC is our insufficient
understanding of the molecular mechanism(s) underlying its complex biology. Studies during the last
several years have helped identify several putative factors and events, both genetic and epigenetic,
as well as some deregulated signaling pathways, with implications in PC onset and progression.
In this review article, we make an effort to summarize our current understanding of molecular
and cellular events involved in the pathogenesis of pancreatic malignancy. Specifically, we provide
up-to-date information on the genetic and epigenetic changes that occur during the initiation and
progression of PC and their functional involvement in the pathogenic processes. We also discuss the
impact of the tumor microenvironment on the molecular landscape of PC and its role in aggressive
disease progression. It is envisioned that a better understanding of these molecular factors and the
mechanisms of their actions can help unravel novel diagnostic and prognostic biomarkers and can
also be exploited for future targeted therapies.

Keywords: pancreatic ductal adenocarcinoma; molecular pathogenesis; tumor microenvironment;
non-coding RNAs; mutations; microRNA

1. Introduction

Pancreatic cancer (PC) is the seventh most common cause of cancer-associated deaths around the
world, and 418,000 new cases of PC are estimated to be diagnosed worldwide in 2020. The incidence
and mortality rates of PC are particularly high in the developed countries [1,2]. In the United States,
PC is the third leading cause of cancer-related deaths. According to the American Cancer Society,
approximately 53,670 people will be diagnosed with PC and nearly 43,090 will die from this disease in
2017 [3]. The median overall survival for PC patients is 2–8 months, and five-year survival is 7.7% [3].
A major factor contributing to this dismal prognosis of PC is its asymptomatic progression. PC is
mostly diagnosed at a stage when it has already metastasized or is locally advanced, thus limiting the
potential for therapeutic intervention [4–6]. No reliable biomarkers are currently available that could
help in the early detection of PC. Sialyl Lewis (carbohydrate antigen 19-9 (CA19-9)) is a carbohydrate
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antigen that serves as a ligand of selectin, a widely used serum biomarker for PC [7], which has
limitations related to its sensitivity and specificity. CA19-9 is expressed only in individuals with Lewis
a+/b− or Lewis a+/b+ genotypes. Moreover, elevated levels of CA19-9 are also detected in some
non-cancerous conditions, as well, including pancreatitis [7]. Over the past several years, many new
candidate RNA and protein biomarkers have been identified for the early diagnosis of PC, yet their
sensitivity and specificity remain to be tested in larger patient cohorts. Moreover, in recent years,
novel sources of biomarker detection, such as circulating tumor cells and exosomes, have also been
explored [8]. This progress is promising; however, it remains far from reaching clinics for screening or
diagnostic use.

A better understanding of the molecular pathogenesis of PC can be immensely helpful in the
development of novel biomarkers and effective therapeutic strategies. Research progress in recent
years has helped identify several molecular alterations that occur during its progression [9–11]. It is
believed that the initiation and progression of PC are associated with successive accumulation of
alterations in multiple genes critical for tumorigenesis, leading to deregulation of several oncogenic
signaling pathways [12–16]. This review comprehensively details our current understanding of these
aspects and discusses the potential that this knowledge holds for the development of effective PC
management strategies.

2. Clinical Progression of Pancreatic Cancer

Development and progression of PC is a multistep process (Figure 1). Pancreatic cancer progresses
from noncancerous precursor lesions called pancreatic intraepithelial neoplasia (PanIN) lesions to
invasive carcinoma [12,17]. Based on the degree of cellular and nuclear atypia, PanIN lesions are
further sub-divided into low- (PanIN-1A/B) to high- (PanIN-3) grade lesions [18]. As shown in
Figure 1, numerous genetic changes accumulate over time and drive histologic progression through
the PanIN stages (PanIN1–3), ultimately leading to invasive adenocarcinoma. These changes include
genetic mutations, gain or loss of various tumor promoting/suppressor genes and microRNAs
(miRNAs) [16,17,19,20]. In early low-grade PanIN lesions (PanIN-1), Kirsten rat sarcoma oncogene
homolog (KRAS) is mutated, oncogenic miRNAs are overexpressed and stromal associated factors
are activated. Mucin 1 (MUC1) is overexpressed, and inactivating mutations in the p16/CDKN2A
gene are observed in intermediate lesions (PanIN-2). Finally, late lesions (PanIN-3) are associated
with inactivating mutations in tumor protein p53 (TP53), breast cancer type 2 susceptibility
protein (BRCA2) and mothers against decapentaplegic homolog 4 (SMAD4). With the growing
interest in identifying the causal factors responsible for the development and progression of
PC [13,16,21,22], phosphatidylinositol-3,4,5-trisphosphate-dependent rac exchange factor 2 (PREX2)
and lysine demethylase 6A (KDM6A) have recently been identified as two new drivers of pancreatic
tumorigenesis [23].

The tumor microenvironment (TME) also plays an important role in PC pathogenesis and the
failure of therapeutic intervention. Pancreatic tumors are not only composed of tumor cells, but are
marked by several other cell populations, such as fibroblasts, immune cells and endothelial cells.
Growing evidence suggests that tumor-stromal interactions play a major role in tumorigenesis, both
at primary and secondary sites [11,24,25]. Tumor cells remodel the surrounding stroma during the
course of malignant progression and develop a reciprocal association with surrounding stroma to
cooperatively promote their own growth [26]. Stroma-derived cytokine CXCL12 is taken up by
tumor cells and promotes tumor progression, metastasis and chemoresistance. Pancreatic tumor cells
produce sonic hedgehog (SHH), which induces desmoplasia in a paracrine mechanism and supports
pancreatic tumorigenesis [26,27]. Earlier studies proclaimed the tumor supportive role of stroma in
PC pathogenesis. However, a contrasting role of stroma has also been reported wherein depletion of
stroma triggers immune suppression and collectively worsens the disease [28,29]. The dual properties
of tumor stroma open a new area to explore the role of the tumor microenvironment in the pathogenesis
of pancreatic adenocarcinoma (PDAC). The question as to how stroma is regulated in the TME to
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support tumor growth remains largely unanswered. Unlike tumor cells, genetic alterations are very
rare in the stromal cells, and it may be possible that epigenetic alterations influence the phenotype of
fibroblasts [30,31]. This notion is supported by current findings that pancreatic tumor cells are able to
induce DNA methylation of the suppressor of cytokine signaling 1 (SOCS1) gene in cancer-associated
fibroblasts (CAFs), and these epigenetically-regulated CAFs potentially promote the growth of tumor
cells in vivo [32]. Further, a study of metabolic interactions suggests that pancreatic tumor cells use
stromal cells (pancreatic stellate cells) as energy reservoirs to fulfill their energy demands [33]. It has
also been suggested that KRAS-mediated oncogenic signaling requires pancreatic stroma to support
pathogenesis. Furthermore, this study suggested that the stromal signal induces distinct gene patterns
in PC cells, an observation that is supported by increased histone acetylation, an epigenetic alteration,
suggesting the importance of stroma in reprogramming PC cells [34].

In PC, excessive desmoplastic reaction induces the proliferation of fibroblast cells and the
production of extracellular matrix (ECM). Extracellular matrix, the non-cellular component, is made
up of collagens, elastins, fibronectins, osteonectin, laminins and hyaluronan. Extracellular matrix
forms fibrous mesh around tumor cells, and it has recently been shown that hyaluronan (HA),
a major component of ECM, provides favorable microenvironment for PC progression by promoting
malignant cell proliferation, aggressiveness and resistance to cancer therapy, resulting in poor
prognosis [35,36]. Recent pre-clinical findings suggested that enzymatic inhibition of HA by
hyaluronidase, in combination with gemcitabine, can significantly increase the overall survival of
tumor-bearing mice [37].

Pancreatic tumors are highly metastatic, and in a majority of PC patients, tumors have already
metastasized at the time of detection. Pre-metastatic niche formation is recognized as one of the
reasons for the early spread of tumor cells. It has been shown that tumor cell-derived tissue inhibitor
of metalloproteinases-1 (TIMP1) plays a role in liver metastasis of PC [38]. Communication between
cancer cells, as well as between cancer cells and other cells, though membrane-bound vesicles
(exosomes), is also involved in the early metastases of pancreatic cancer. Exosomes are now widely
accepted as cellular messengers, found to be involved in many pathological conditions, including
cancer [39]. The levels of macrophage migration inhibitory factor (MIF)-positive exosomes were
relatively higher in the PDAC patients who eventually developed liver metastases, as compared to
non-metastatic patients [40]. Furthermore, these MIF-positive exosomes, derived from tumor cells,
help form a pre-metastatic niche, establishing the tumor at a secondary site, liver [40]. Recently, it has
been shown that fibroblast-secreted exosomes help in the metabolic reprogramming of tumor cells
by providing metabolite cargo, promoting the growth of tumor cells during starvation or other stress
conditions [41]. We have also shown that chemotherapy-induced exosomes from pancreatic tumor
cells impart chemoresistance in PC [42]. Additionally, it has been suggested that exosomes from other
sources, such as stroma, can support PC growth and survival [43]. Another study suggested that
pancreatic tumor cell-derived exosomes have certain integrins, and the patterns of these integrins
determine the organotrophic metastasis of tumor cells [44]. Moreover, it was suggested that glypican-1
(GPC1)-positive exosomes, derived from cancer cells, may potentially serve as a diagnostic tool to
detect early stages of pancreatic tumor [45], and in a follow-up study, the same group suggested that
circulating exosomes could be efficiently used for the identification of cancer-driving mutations in
PC [46]. All of these findings suggest that exosomes can be used as diagnostic/prognostic markers
and also act as one of the key components of chemoresistance in pancreatic cancer.

It is thus clear that PC pathogenesis involves a complex interplay of multiple factors. In addition
to the different interactions of tumor cells with their immediate surroundings, as discussed above,
several molecular alterations are responsible for PC onset and progression. In the section below,
we discuss the current knowledge on genetic alterations found to be associated with PC pathogenesis.
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Figure 1. Histopathological and molecular changes in the pathogenesis of pancreatic 
adenocarcinoma (PDAC). The illustration describes the multistep PDAC development, starting from 
normal epithelium to low-grade pancreatic intraepithelial neoplasia (PanINs) and on to high-grade 
PanIN and invasive carcinoma. During this progression, several alterations in key genes (KRAS, 
CDKN2, TP53, SMAD4/DPC4 and BRCA2) are accumulated. Apart from genetic alterations, 
deregulated signaling pathways, stromal associated factors and microRNAs serve as fuel for the 
development of aggressive pancreatic cancer. KRAS: Kirsten rat sarcoma oncogene homolog; 
Her-2/neu: Human epidermal growth factor receptor 2; EGFR: Epidermal growth factor receptor; 
CXCR4: C-X-C chemokine receptor type 4; SHH: Sonic hedgehog; MUC4: Mucin 4; PTEN: 
Phosphatase and tensin homolog; CDKN2A/p16Ink4A: Cyclin dependent kinase inhibitor 2A; 
SMAD4/DPC4: Mothers against decapentaplegic homolog 4/ Deleted in pancreatic cancer-4; BRCA2: 
Breast cancer type 2 susceptibility protein; CXCL12: C-X-C motif chemokine 12. 

3. Molecular Alterations Driving Pancreatic Cancer Progression 

Several molecular events are now believed responsible for the progression of PC. These include 
genetic, as well as epigenetic changes. Genetic events include mutations in key genes, activation of 
oncogenes and inactivation of tumor suppressors. In addition, epigenetic regulation through 
non-coding RNAs is also increasingly being recognized in PC initiation, as well as progression 
(Figure 1). This section summarizes many of these reported molecular alterations.  

3.1. Activation of Oncogenes 

Oncogenic KRAS has been extensively studied in PC because of the high prevalence of its 
mutations. KRAS mutations are detected in ~30% of early neoplasms with the frequency rising to 
~95% in advanced PC [47,48]. The activating mutations of KRAS are the point mutations at codon 
G12 (GGT to GAT/GTT/CGT) resulting in the substitution of glycine with aspartate, valine or 
arginine [47]. These mutations at codon 12 represent the major point mutations (~98%) with some 
mutations reported at codons 13 and 61, as well [47]. Mutated KRAS results in the constitutive 

Figure 1. Histopathological and molecular changes in the pathogenesis of pancreatic adenocarcinoma
(PDAC). The illustration describes the multistep PDAC development, starting from normal epithelium
to low-grade pancreatic intraepithelial neoplasia (PanINs) and on to high-grade PanIN and
invasive carcinoma. During this progression, several alterations in key genes (KRAS, CDKN2,
TP53, SMAD4/DPC4 and BRCA2) are accumulated. Apart from genetic alterations, deregulated
signaling pathways, stromal associated factors and microRNAs serve as fuel for the development of
aggressive pancreatic cancer. KRAS: Kirsten rat sarcoma oncogene homolog; Her-2/neu: Human
epidermal growth factor receptor 2; EGFR: Epidermal growth factor receptor; CXCR4: C-X-C
chemokine receptor type 4; SHH: Sonic hedgehog; MUC4: Mucin 4; PTEN: Phosphatase and tensin
homolog; CDKN2A/p16Ink4A: Cyclin dependent kinase inhibitor 2A; SMAD4/DPC4: Mothers against
decapentaplegic homolog 4/ Deleted in pancreatic cancer-4; BRCA2: Breast cancer type 2 susceptibility
protein; CXCL12: C-X-C motif chemokine 12.

3. Molecular Alterations Driving Pancreatic Cancer Progression

Several molecular events are now believed responsible for the progression of PC. These include
genetic, as well as epigenetic changes. Genetic events include mutations in key genes, activation
of oncogenes and inactivation of tumor suppressors. In addition, epigenetic regulation through
non-coding RNAs is also increasingly being recognized in PC initiation, as well as progression
(Figure 1). This section summarizes many of these reported molecular alterations.

3.1. Activation of Oncogenes

Oncogenic KRAS has been extensively studied in PC because of the high prevalence of its
mutations. KRAS mutations are detected in ~30% of early neoplasms with the frequency rising to
~95% in advanced PC [47,48]. The activating mutations of KRAS are the point mutations at codon G12
(GGT to GAT/GTT/CGT) resulting in the substitution of glycine with aspartate, valine or arginine [47].
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These mutations at codon 12 represent the major point mutations (~98%) with some mutations reported
at codons 13 and 61, as well [47]. Mutated KRAS results in the constitutive activation of its downstream
oncogenic signaling [47,49]. It has been suggested that oncogenic KRAS signaling is required for
initiation, progression and maintenance of PC [50]. Moreover, it has been reported that constitutive
activation of KRAS results in the activation of pancreatic stellate cells and immune cells, thus further
contributing to the neoplastic progression of PC [49]. Although a critical role of KRAS protein has been
identified in PC, this has not resulted in any therapeutic advantage, as KRAS remains a non-druggable
target [48]. This realization has resulted in efforts to develop therapies that target signaling upstream or
downstream of KRAS [48,51,52]. In pre-clinical mouse models, successful targeting of KRAS has been
reported. For instance, through systemic administration of nanoparticles containing KRAS-specific
small interfering RNA (siRNA), regression of KRAS-driven tumors was observed [52,53]. Several
drugs targeting rapidly accelerated fibrosarcoma (RAF)-mitogen-activated protein kinase (MAPK)
and phosphatidylinositide 3-kinase (PI3 kinase), the well-established downstream pathways of KRAS,
are being tested in the clinics [54].

c-MYC proto-oncogene is an important regulator of many cellular functions in normal and
cancer cells [55]. It has been shown to affect the expression of proteins facilitating cell transformation,
cell growth, cell cycle progression, cellular stemness and cellular metabolism [55–57]. The alteration
of c-MYC alone is not sufficient for the development of pancreatic tumors [58]. However,
concurrent alteration of c-MYC expression and mutation in the KRAS gene is sufficient to instigate
tumorigenesis [58]. Similarly, c-MYC overexpression and exposure to TGFα results in the development
of pancreatic acinar lesions in the mouse model, as opposed to the absence of tumor with either of the
two conditions alone [59]. The gene encoding c-MYC on chromosome 8q is reported to be amplified in
20–30% of PC cases [60]. The nuclear factors of activated T cells (NFAT) family of transcription factors
has been found to be overexpressed in pancreatic tumors and is responsible for increased c-MYC gene
expression [61]. Increased p300-dependent histone acetylase activity, after binding of NFAT to the
c-MYC promoter, has been demonstrated to enhance the binding of other factors to promote fully active
c-MYC transcription [61]. On the other hand, enhanced c-MYC protein stability by NAD-dependent
deacetylase sirtuin-2 (SIRT2) or inhibitor of nuclear factor kappa B kinase subunit epsilon (IKKε) has
been demonstrated to increase pancreatic cancer tumorigenicity [10,62].

The p21-activated kinase 4 (PAK4) gene is amplified on the chromosome19q13, a region found
frequently amplified in pancreatic cancer [63]. In addition to its amplification, PAK4 has been
shown to be overexpressed in various tumors types, including PC [14,63,64]. Recently, we have
demonstrated that PAK4 is overexpressed in PC, and it promotes the proliferation and survival
of PC cells through AKT (RAC-alpha serine/threonine-protein kinase)- and ERK (extracellular
signal-regulated kinase)-dependent activation of the nuclear factor-kappa B (NF-κB) pathway [14].
In a follow-up study, we have also reported a role of PAK4 signaling in the induction of stemness and
drug resistance in PC [65]. In addition, others have reported the role of PAK4 in enhancing the motility
potential of PC cells [66].

The MYB proto-oncogene, a cellular progenitor of the v-MYB oncogenes carried by the chicken
retroviruses AMV (avian myeloblastsis virus) and E26, encodes for the MYB transcription factor,
which engages in gene regulation by binding to responsive promoter DNA sites [67]. MYB has
been shown to induce the expression of many genes that regulate proliferation, differentiation and
apoptosis. MYB is reported to be amplified in ~10% of pancreatic tumor samples, and interestingly,
its amplification was predominantly reported in advanced tumors indicating a strong correlation
with the progression and malignant properties of pancreatic adenocarcinoma tumors [68]. Similarly,
we observed MYB to be overexpressed in a majority of PC patient-derived tissues and cell lines, with
no expression detectable in normal pancreas. We, for the first time, reported a functional role of MYB
in promoting the growth and aggressiveness of PC [69]. Our follow-up study identified that MYB
potentially regulates the growth and genomic stability of PC cells by targeting complex gene networks
and oncogenic signaling pathways [15]. We have also reported a critical role of MYB in pancreatic tumor
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histopathology and associated molecular and biological mechanisms. MYB-overexpressing tumors
exhibit far-greater desmoplasia as compared to low MYB expressing/silenced tumors. Moreover,
MYB-overexpressing PC cells confer significantly enhanced growth benefit to pancreatic stellate
cells. Furthermore, we identified SHH and adrenomedullin (ADM) as the two molecular mediators
responsible for MYB-induced desmoplasia [9]. Our observations from these studies are suggestive of
MYB’s diverse roles in PC pathobiology.

Another oncogene, human epidermal growth factor receptor 2 (HER2), is also reported to be
amplified in PC [70]. HER2 is a transmembrane growth factor receptor tyrosine kinase protein, which
is encoded by the ERBB2 gene located on human chromosome 17. HER2 is involved in the regulation of
a wide range of cellular functions, including cell growth, survival and differentiation. Blocking of the
HER2 receptor has been observed to improve survival in several cancers [71,72]. HER2 amplification
has been reported in ~2% of PC cases [73]. Moreover, HER2 amplification positively correlates with
lung and brain metastases [73].

3.2. Inactivation of Tumor Suppressor Genes

Cyclin-dependent kinase inhibitor 2A, also known as p16INK4A or p16.p16INK4A, is a member of
the Ink4 family of cyclin dependent kinase (CDK) inhibitors, which is involved in cell cycle regulation.
p16 regulates G1/S phase cell cycle progression by binding to CDK4 and CDK6 to abolish their
interaction with cyclin D1 [74]. Therefore, loss of function of p16 results in the progression of
the cell cycle through the G1/S checkpoint in an unrestricted manner, leading to the enhanced
cell proliferation [74,75]. The biological role and observed low expression of p16 make it a tumor
suppressor protein in a majority of human malignancies [75]. Preclinical studies have suggested that
tumor develops very rapidly in p16-knockout mice [76]. Inactivation of p16 is due to mutations or
deletions. Mutations in the p16 gene result in a syndrome in humans, known as melanoma pancreatic
cancer syndrome (MPCS) [77]. Genetic analyses have suggested that families with MPCS inherit
melanoma susceptibility (20–40%), associated with mutations in CDKN2A located on chromosome 9p21.
Individuals with this mutation are likely to be predisposed to pancreatic cancer [78]. Inactivation of
p16 is first observed in moderately advanced early PanIN lesions (PanIN-1B). Moreover, the frequency
of p16 inactivation is increased as PanIN-1B lesions progress to invasive carcinomas [79,80]. Loss of
Ink4a has been reported to result in pancreatic neuroendocrine tumor (PanNET) in a mice model [81].
Forced expression of p16 inhibits pancreatic tumor growth in the orthotopic mice model and also
inhibits lymph node metastases [82]. It has also been suggested that restoration of p16 inhibits PC
cell proliferation [83]. Moreover, loss of p16 expression was observed in 67% of clinical samples
representing lymphatic invasion and metastases of PC [84].

The TP53 gene, located on chromosome 17p, is reported to be mutated in ~50–75% of PC patients.
Studies suggest that intra-genic mutation, combined with a loss of the second allele, results in the
inactivation of TP53 gene. Inactivation of p53 leads to de-regulation of the cell cycle at G1-S and
induction of apoptosis [85–87]. It has also been suggested that the p53 mutation is a late event in PC
progression, generally observed in advanced PanIN lesions [88]. The altered p53 gene may give rise to
a distinct pancreatic tumor morphology via coupling with other genetic abnormalities. This notion
is supported by the observation that a mice model with one deleted copy of adenomatous polyposis
coli (APC), a pancreatic developmental gene, along with p53 deletion, develops a distinct precursor of
PDAC, mucinous cystic neoplasm (MCN) [89]. Moreover, a pre-clinical study has suggested that the
expression of mutant p53 is essential to maintain the pro-metastatic phenotype [16].

SMAD4 is another tumor suppressor protein that transduces extracellular signals of transforming
growth factor-beta (TGFβ) to the nucleus by acting as a transcriptional regulator. The major function
of SMAD4 is the inhibition of cell proliferation by inducing G1 phase cell cycle arrest. SMAD4 has
been reported to be deleted or mutated in PC. Loss of SMAD4 occurs at a later stage of disease and
has been associated with tumor metastases in PC. Restoration of SMAD4 was shown to sensitize PC
cells to chemotherapy [90]. Moreover, genetic mutations and diminished expression of SMAD4 are
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found to be independently co-related with low PC patient survival [91,92]. It has been suggested that
loss of SMAD4 expression is an independent prognostic factor associated with tumor progression,
epithelial-mesenchymal transition (EMT) and therapy failure [93].

Phosphatase and tensin homolog (PTEN) is yet another well-characterized tumor suppressor that
negatively regulates the phosphatidylinositide 3-kinase (PI3K)-RAC-alpha serine/threonine-protein
kinase (AKT)-mammalian target of rapamycin (mTOR) signaling pathway [94]. It is reported to be
deleted or lost in PC. PTEN loss, along with mutant KRAS, induces NF-κB activation, followed by
immune cell infiltration and robust stromal activation. Further, the preclinical spontaneous mouse
model of PC suggests that PTEN deficiency, along with oncogenic KRAS, exhibits the pro-metastatic
potential of tumor cells [95]. Another similar study has confirmed the tumor suppressive role of
PTEN in mice with the KRAS mutation [96]. A study conducted by Wartenberg and co-workers
observed that the deletion of PTEN correlates with metastases and reduction in the overall survival
of PC patients [97]. This study further suggested that tumor-associated stromal cells are deficient in
PTEN protein due to chromosomal abnormality or deletion of PTEN, and such a defective stroma fuels
pancreatic tumor cells and enhances the aggressiveness of disease.

The proteins coded by the BRCA1/2 genes, i.e., BRCA1 and 2, have a wide range of biological
functions, including transcription regulation, DNA repair, etc. It has been shown that individuals
carrying BRCA1 and BRCA2 mutations have ~2.2- and ~3.5-fold, respectively, higher risk of developing
PC [98–100]. Additionally, Goggins and coworkers studied the frequency of biallelic inactivation of
BRCA2 in the different stage (from PanIN to invasive pancreatic ductal carcinomas) of PC and reported
that the wild-type allele of BRCA2 was lost in high-grade PanIN (PanIN-3), whereas no inactivation
was observed in low-grade PanIN (PanIN-1) lesions [101]. Thus, their findings clearly suggest that
biallelic inactivation of the BRCA2 gene occurs only at the late stage of pancreatic tumorigenesis.
The gene product of partner and localizer of BRCA2 (PALB2) works with the BRCA2 protein to repair
damaged DNA by stabilizing BRAC2. Recently, it has been shown that patients with familial pancreatic
cancer have mutations in their PALB2 gene [102,103]. Mutations in the PALB2 gene, along with other
germline mutations, such as BRAC2, ataxia-telangiectasia mutated (ATM), etc., collectively alter the
DNA repair pathway, resulting in increased accumulation of damaged DNA with eventual onset
of cancer [104].

Individuals with hereditary pancreatitis have a higher risk of developing PC in their
lifetime. Germline mutations in the protease serine 1 (PRSS1) gene are associated with hereditary
pancreatitis [104]. The PRSS1 gene encodes for cationic trypsinogen, abundantly present in pancreatic
juice. Mutations in the PRSS1 gene increase the conversion of trypsinogen to trypsin, and increased
trypsin activity disturbs protease and anti-protease balance in the pancreas, thereby inducing
pancreatitis [105,106]. A cohort study of 246 hereditary pancreatitis patients suggested an ~50-fold
higher lifetime risk of developing PC in these individuals [107]. Mutations in another set of genes,
the serine protease inhibitors of the Kazal type (SPINK), chymotrypsin C (CTRC) and cystic fibrosis
transmembrane receptor (CFTR), are another risk factor for developing PC [104].

3.3. Epigenetic Regulation

The role of epigenetic events in the onset, as well as progression of human cancers is increasingly
being realized [108]. Epigenetic regulation can explain the observed silencing of tumor suppressor
genes, as well as the activation of oncogenes [109]. The knowledge of the contribution of several
epigenetic events to PC progression is emerging [110]. These events include methylation, acetylation
and regulation through non-coding RNAs (ncRNAs) [110,111]. It has been advocated that epigenetic
changes can be pursued as possible biomarkers for early detection of PC [112] and targets for
therapy [110,113]. The role of ncRNAs in PC tumorigenesis is summarized in Table 1.
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Table 1. Non-coding RNAs in pancreatic cancer (PC).

Non-Coding RNAs Molecular Targets Role in Pancreatic Cancer References

H19 HMGA2, let-7 EMT [114]

HOTAIR Genes associated to
cell cycle proliferation, Invasion [115]

HOTTIP HOX genes survival, proliferation, migration [116,117]

MALAT1 Genes associated with
cell cycle and EMT

cell proliferation, migration
invasion, prognostic marker [118,119]

AF339813 NUF2 cell proliferation, apoptosis [120]

ENST00000480739 OS-9 and HIF-1α invasion [121]

miR-367 SMAD7 EMT, invasion [122]

miR-29c MMP2 metastasis [123]

miR-23a APAF1 cell proliferation and apoptosis [124]

miR-223 Fbw7 EMT [125]

miR-206 ANXA2 and KRAS cell proliferation, invasion and
lymphangiogenesis [126]

miR-34 Bcl-2 and NOTCH maintenance and survival of
cancer stem cells [127]

miR-96 KRAS tumor cell growth,
invasion and migration [128]

miR-21 MMP-2, MMP-9 metastasis [129]

miR-210 vimentin and snai-1 invasion, migration [130]

miR-145 MUC13 PC cell growth and invasion [131]

miR-148a CDC25B PC cell survival [132]

miR-150 MUC4 growth migration and invasion [133]

let-7, miR-211 RRM2 chemoresistance [134,135]

miR-155 DCK chemoresistance [42]

HMGA2: High-mobility group AT-hook 2; HOX: Homeobox; EMT: epithelial-mesenchymal transition; NUF2: Ndc80
kinetochore complex component; OS-9: Osteosarcoma amplified 9; HIF-1α: Hypoxia inducible factor-1 alpha;
SMAD7: Mothers against decapentaplegic homolog 7; MMP: Matrix metalloproteinase; APAF1: Apoptotic protease
activating factor 1; Fbw7: F-box/wd repeat-containing protein 7; ANXA2: Annexin A2; MUC13: Mucin 13; CDC25B:
Cell division cycle 25B; RRM2: Ribonucleoside diphosphate reductase subunit M2; DCK: deoxycytidine kinase.

ncRNAs represent a class of RNA molecules that do not encode for protein products and are
now widely known for their ability to regulate a number of genes [136–138]. ncRNAs are also
suggested to play an important role in several physiological conditions, including nearly all types
of cancer [138–140]. The long non-coding RNA (lncRNA) H19 has been identified to be markedly
overexpressed in pancreatic tumor tissues and cell lines, with a positive correlation with the invasive
and migratory potential of the tumors [114,141,142]. H19 has been observed to repress the inhibitory
activity of let-7 on High-mobility group AT-hook 2 (HMGA2)-mediated EMT [114]. Studies with
ncRNA HOTAIR have demonstrated its overexpression in pancreatic tumor tissues, compared to
adjacent non-cancerous pancreatic tissue [115]. Inhibition of HOTAIR by RNA interference (RNAi)
technology in PC cell lines was observed to decrease cell proliferation, induce apoptosis and inhibit
in vitro, as well as in vivo cell invasiveness [115,136]. Another ncRNA, HOTTIP, was observed to be
significantly upregulated in PC tissues and cell lines. Similar to previous studies, the inhibition of
HOTTIP induced proliferation arrest, impaired EMT, decreased invasion and metastasis and increased
chemosensitivity to gemcitabine [116,117]. lncRNA MALAT-1 influences the growth and proliferation
of PC cells [118,119,143]. Several other ncRNAs, such as AF339813, ENST00000480739, HULC (highly
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upregulated in liver cancer) and NUF2 (Ndc80 kinetochore complex component), have been observed
to be upregulated in PC cells with profound effects on the growth of these cells [120,121,144].

In addition to the long non-coding RNAs, several other classes of ncRNAs are being routinely
studied, the most common of which are the miRNAs [145]. miRNAs are 22-nucleotides in length
and regulate gene expression at the post-transcriptional level by degradation of the target transcript
or repression of its translation [136,139,140]. Numerous reports have indicated a role of miRNAs
in PC initiation, promotion, metastasis and chemoresistance [122–126,146]. miR-34 is a prominent
miRNA shown to be significantly downregulated in PC, and the ectopic expression of miR-34 has been
demonstrated to inhibit various processes important for cancer progression [127]. Restoration of miR-96
has been shown to result in the inhibition of KRAS, thereby inducing PC cell death [128]. Similarly,
inhibition of miR-21 and miR-210 decreased the invasive and metastatic potential of PC cells [147,148].
On the contrary, forced expression of miR-145 inhibited the proliferation of PC cells [149]. Several
miRNAs have also been demonstrated to regulate cell-cycle-related proteins, for example regulation
of cyclin-dependent kinase CDC25B by miR-148a [132], CDK6 by miR-107 [150] and CDKN1B by
miR-221 [151]. We have reported suppression of MUC4 by tumor suppressor miR-150 in PC, resulting
in reduced growth and tumorigenicity [133]. Further, overexpression of let-7 in PC cell lines was
reported to inhibit RRM2 levels and induce chemosensitization [134]. Increased miR-211 expression
in PC cells also enhanced the therapeutic efficacy by reducing ribonucleoside diphosphate reductase
subunit M2 (RRM2) levels [135]. Our recent findings indicate that miR-155 induces chemoresistance
in pancreatic cancer cells via inhibiting deoxycytidine kinase (DCK) expression [42]. Conversely,
an upregulation of miR-146, with the downregulation of miR-205 and let-7, seems to be relevant to
gemcitabine resistance in PC cells [152].

4. Deregulation of Signaling Pathways in Pancreatic Adenocarcinoma

A growing body of evidence suggests that modulation of a single molecule is not enough for the
development of human cancers, including PC. Accumulation of multiple genetic mutations causes
activation of oncogenes and repression of tumor suppressor genes, resulting in activation of oncogenic
signaling pathways through deregulated receptor-ligand systems (Table 2).

Table 2. Altered signaling pathways in pancreatic malignancy.

Signaling Pathway Signaling Molecules Involved in PC Tumorigenesis References

EGFR signaling HER2/neu, PI3K, Akt, ERK, Ras/Raf, TGF-α [153–155]
NOTCH signaling γ-secretase, JAGGED2, DLL3/4 [156,157]

Hedgehog signaling SHH, Gli, PTCH, Smo, PI3K/AKT, MMPs [158,159]
WNT signaling β-catenin, TCF/LEF, MAPK, Dkk1, GSK3β [160,161]
NF-κB signaling Bcl-xL, Bcl-2, SHH, CXCR4, MMPs, VEGF [27,162,163]

Cytokines/growth factors
associated signaling

PDGF, TGF-β, CXCL12, IL-6, TNF-α, IL-8, IL-12, IL-18,
IL-1β, IL-10, STATs, MAPK, PI3K, MMPs, CCL28 [26,164–166]

Akt: RAC-alpha serine/threonine-protein kinase; CCL28: C-C motif chemokine ligand 28; CXCL12: C-X-C motif
chemokine ligand 12; CXCR4: C-X-C motif chemokine receptor 4; Dkk1: Dickkopf WNT signaling pathway inhibitor
1; DLL3/4: Delta like canonical Notch ligand 3/4; EGFR: Epidermal growth factor receptor; ERK: Extracellular
regulated MAP kinase; GSK3β: Glycogen synthase kinase 3 beta; HER2/neu: Human epidermal growth factor
receptor 2; IL: Interleukin; MAPK: Mitogen activated protein kinase; MMPs: Matrix metalloproteinases; NF-κB:
Nuclear factor-kappa B; PDGF: Platelet derived growth factor; PI3K: Phosphatidylinositide 3-kinase; PTCH:
Patched; Ras: rat sarcoma oncogene homolog; Raf: Rapidly accelerated fibrosarcoma; SHH: Sonic hedgehog;
Smo: Smoothened; STAT: Signal transducer and activator of transcription; TCF: Transcription factor; LEF: Lymphoid
enhancer-binding factor 1; TGF: transforming growth factor; VEGF: Vascular endothelial growth factor; WNT:
Wingless/Integrated

Upregulation of epidermal growth factor (EGF) and its receptor (EGFR) has been demonstrated to
correlate with enhanced PC tumor aggressiveness and shorter survival periods [153,167,168]. Moreover,
nerve-growth factor, platelet-derived growth factor, fibroblast growth factor and insulin-like growth
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factor, along with their receptors, exhibit elevated expression and are associated with malignant PC
phenotypes [169–172].

Pancreatic cancer has been reported to overexpress all three isoforms of TGFβ, with an observed
poor prognosis [173]. PC cells have a high expression of TGFβ receptor, TβRII, compared to normal
pancreatic cells, but they are still resistant to TGFβ-induced inhibition of cell growth [174,175]. This has
been observed largely due to mutations in the Smad 4/DPC4 gene, a known mediator of TGFβ’s
inhibitory effects [176,177]. Thus, TGFβ overexpression leads to the promotion of malignant PC
through multiple mechanisms, including enhanced EMT, increased cell survival, matrix-remodeling,
angiogenesis, activation of stellate cells and attenuation of immune response [178–180]. Expression
of cytokines has also been observed to correlate negatively with cachexia and clinical outcome
in PC patients [181–184]. Interestingly, different studies have reported different expression levels
of certain cytokines in PC patients. This could largely be because of the method of detection
employed or due to inherent differences in the populations of PC patients. Pro-inflammatory
cytokines, interleukin (IL)-6, IL-8, tumor necrosis factor-α (TNF-α), IL-12, IL-18 and IL-1β, and the
anti-inflammatory cytokine IL-10 have been demonstrated to be highly expressed in PC patients,
compared to healthy individuals [4,164,165,185–187]. Engagement of the IL-6 receptor on cancer
cells leads to the activation of signal transducer and activator of transcription (STATs), MAPK
and PI3K, which are known to be involved in the regulation of the proliferation, survival and
tumorigenicity of pancreatic cancer [188–190]. IL-6 has also been shown to regulate tumor angiogenesis
and vascularization by controlling the secretion of vascular endothelial growth factor (VEGF) [191].
Similarly, our investigations have revealed that the secretion of IL-8 from PC cells can activate
HUVEC cells; tumor cell-derived IL-8 induces endothelial cell proliferation, migration and invasion,
triggering angiogenesis and providing an escape from chemotherapy [4]. IL-8 can also influence matrix
remodeling through the regulation of matrix metalloproteinase-2(MMP-2), resulting in enhanced
tumor invasiveness [192–194]. Higher levels of TNF-α, IL-8 and IL-6 have been reported in the
sera of PC patients, compared to healthy controls, suggesting their role in PC pathogenesis [195].
Furthermore, elevated levels ofIL-6 are associated with poor PC patient survival, and there is preclinical
evidence to suggest that IL-6 is required for the development and progression of pancreatic tumor
precursor lesions [196,197]. In recent years, our own studies have established the involvement of
stromal-derived factor (SDF-1)/CXCL12 and the CXCL12-CXCR4 signaling in PC tumorigenesis and
chemoresistance [26,198]. We have also reported that an unintended consequence of chemotherapy in
PC is the upregulation of CXCR4 receptors, which make pancreatic tumor cells highly aggressive [27].

While controlling inflammatory responses in different types of cells, NF-κB signaling is also
involved in the control of development, apoptosis and cell proliferation [199]. The NF-κB factors
involve RelA (p65), RelB, c-Rel, p105/p50 and p100/p52 that are present in the cytoplasm as homo- or
hetero-dimers and kept in an inactive state by the inhibitor of kappa B- alpha (IκB-α) protein. With an
appropriate signal, IκB-α is phosphorylated and degraded, leading to the release, activation and
nuclear localization of NF-κB, which results in the expression of its target genes [200]. As inflammatory
cues have been demonstrated to induce PC progression and are also responsible for the activation
of NF-κB signaling, a direct causal relation between the two has been well established. In fact,
not only does the NF-κB signaling work towards the development/progression of cancer, it helps
in the maintenance of the tumor cells, the initiation of metastatic cascades by the direct regulation
of MMPs, the induction of angiogenesis through the VEGF signaling in the micro-environment and
tissue invasion at distal organs [162,163,201]. We have also demonstrated a significant role of NF-κB
signaling in the development of gemcitabine resistance in pancreatic cancer through ROS-mediated
activation of NF-κB and the subsequent upregulation of CXCR4-signaling, thereby promoting cell
survival [27].

Secreted mucins are the main component of mucus that protects epithelial cells; they also
play important biological roles in cell-cell/cell-matrix interactions and tumor cell signaling. Altered
expression of mucins in PC has been reported earlier [202,203]. Membrane-bound mucins contain a
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transmembrane domain, and there are almost 20 identified MUCs, such as MUC1, MUC3, MUC4,
MUC12, MUC13, MUC15, MUC16, MUC17, MUC20 and MUC21. Among them, MUC1 and MUC4
are best characterized in pancreatic tumorigenesis. Overexpression of MUC1 was observed in
PanIN-3 and invasive ductal carcinoma [204]. Downregulation of MUC1 expression, using RNA
interference, has been shown to decrease the metastatic potential of pancreatic adenocarcinoma cells.
MUC4 has been reported to activate Akt and MAPK pathways, leading to the induction of cell
proliferation and survival. MUC4 expression gradually increases during carcinogenesis, as evidenced
by immunohistochemical analysis: 17% of PanIN-1A, 36% of PanIN-2 and 85% of PanIN-3 express
MUC4; in PDAC, the prevalence of MUC4 is ~83% to 89% [205–207]. Further, we have demonstrated
that ectopic expression of miR-150, which is frequently downregulated in PC, in MUC4-expressing cell
lines reduces MUC4 expression and abolishes MUC4-dependent PC pathogenesis [133].

Hedgehog (Hh) signaling is involved in embryonic development and regulates multiple cellular
processes. Humans have three hedgehog homologs; DHH (desert hedgehog), IHH (Indian hedgehog)
and SHH (Sonic hedgehog). These molecules serve as the Hh ligands [208]. The hedgehog pathway
becomes functionally active when ligand binds to its transmembrane patched receptor (Ptch), inducing
its internalization and the release of smoothened (Smo). Activated Smo leads to the migration of
Gli transcription factor from cytosol to the nucleus, which executes the expression of Gli-dependent
genes (Cyclin D, Myc, Gli1, Ptch, etc.). Hh signaling is constitutively active in many human cancers
including PC [208,209]. Hh signaling was reported to be active in several PC cell lines, as well as
in PC patient-derived samples [210]. The development of desmoplasia in the pancreatic tumor
has been reported to be mediated through the activation of the Hh signaling pathway by the
stroma-derived SHH [211]. Such a dense desmoplastic reaction is considered the cornerstone of
increased chemoresistance due to reduced tumor vasculature and decreased drug accumulation at the
tumor site [28]. However, the inhibition of SHH secretion in the pancreatic tumors failed to provide
clinical benefit to the therapy of pancreatic cancer; it, rather, led to increased tumor metastasis [212].

The NOTCH pathway, similar to Hh signaling, is mostly active during embryogenesis. It is also
reported to be activated in many human cancers, including PC [213–216]. Activation of NOTCH
signaling requires the binding of NOTCH ligand directly to the receptor on the cell membrane, and the
effects of NOTCH signaling on the tumor compartment are far better characterized, as compared
to its impact on the stroma. In cancer cells, NOTCH functions to maintain a steady low level of an
undifferentiated population of cells that serve as the cancer stem cells [216,217]. In fact, overexpression
and activation of NOTCH signaling has been shown to increase in early PanIN lesions, compared
to normal pancreas [156]. Additionally, an upregulation of NOTCH has also been demonstrated to
be required for pancreatic cancer tumor maintenance, as observed through its upregulation in the
Pdx1-Cre; KrasG12D; p53lox/+ mouse model and the upregulation of NOTCH pathways in resulting
mouse lesions [157,218]. Interestingly, inhibition of γ-secretase, the enzyme responsible for the cleavage
of the NOTCH receptor, in this mouse model resulted in significant inhibition of the development of
invasive carcinoma [219]. The NOTCH pathway has also been demonstrated to crosstalk with several
other oncogenic signaling pathways, such as the NF-κB signaling and the EGFR pathway [178,220].
EGFR signaling has been shown to activate NOTCH, and inhibition of NOTCH has been observed
to decrease the transactivation of NF-κB signaling [221,222]. Moreover, downregulation of NOTCH
signaling results in reduced aggressiveness of pancreatic cancer cells [223].

WNT (Wingless/Integrated) signaling is also known for its role in cell growth and differentiation
during development, and it has been reported that alterations in WNT signaling induce changes in
the tumor-compartment of PC [160]. Binding of WNT ligand to its receptor leads to the release of
β-catenin in the cytoplasm and translocation to nucleus, where it associates with the transcription
factor, T-cell factor/lymphoid enhancer-binding factor (TCF-LEF) to activate its target genes [224].
Pancreatic cancer, similar to other cancers, has been reported to overexpress β-catenin, compared
to normal tissues [224–226]. The regenerative microenvironment of acinar cells, following injury,
mimics pancreatitis and is characterized by transient reactivation of embryonic-development pathways,



Int. J. Mol. Sci. 2017, 18, 779 12 of 25

such as WNT/β-catenin [227]. Interestingly, activated β-catenin signaling has been observed
to antagonize KRAS-induced transformation; but the inflammatory state provides a break for
constitutively-active KRAS to induce early events in pancreatic ductal adenocarcinoma initiation
by blocking acinar regeneration. Genetic and chemical ablation of β-catenin in pancreatic acinar
cells has been shown to significantly delay PanIN formation [160], and the forced overexpression
of constitutively-active, degradation-resistant β-catenin, combined with mutant KRAS, has been
shown to result in a rare form of pancreatic tumors, reminiscent of human intraductal tubular tumors
(ITT), unrelated to PDACs [228]. A critical level of β-catenin activity is required for KRAS-induced
acinar-to-ductal reprogramming in PanIN [228].

5. Conclusions and Future Perspectives

Recent years have witnessed significant advancements in the understanding of the molecular
events responsible for pancreatic cancer pathogenesis. Inactivation of tumor suppressor genes/
activation of oncogenes along with deregulation of various signaling pathways have been suggested
to be critical in PC pathobiology. However, despite these advances, PC remains a challenge to
clinicians and researchers alike. Its early detection still remains the best bet for a successful clinical
outcome. A number of identified events, both genetic, as well as epigenetic, have been evaluated
in mutually-exclusive experiments in laboratory settings. These findings have often been validated
in vivo in immune-/genetically-compromised mice. While this, arguably, is a logical and standard
approach, more robust studies need to be urgently planned. This is particularly critical as PC continues
to climb the rankings for the most lethal cancers. A good starting point could be studies focused on
the tumor microenvironment. This is based on the evidence from recent literature suggesting the
significance of stroma in pancreatic cancer pathobiology. In consideration of the conflicting reports on
the role of desmoplasia (whether it provides sanctuary to the growing pancreatic tumors and protects
them from chemotherapy vs. whether it functions to restrain tumor growth), it has become even more
important to evaluate the exact contribution of the desmoplastic tumor microenvironment and its
associated factors in PC pathogenesis and chemoresistance. Such information will directly impact the
chemotherapeutic management of PC. Towards this goal, use of patient-derived xenograft (PDX) and
organoid models is important in future mechanistic studies and will help unravel many mysteries
associated with complex PC pathobiology. It is evident that focusing on individual factors for their
role in PC pathogenesis for putative targeted therapy might not be a very effective strategy in our fight
against PC. The more complex interplay of several factors needs to be appreciated and evaluated using
appropriate model systems to advance PC research.
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CAFs cancer-associated fibroblasts
CDK cyclin-dependent kinase
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DPC4 deleted in pancreatic cancer, locus 4
ECM extra cellular matrix
EGF epidermal growth factor
EGFR epidermal growth factor receptor
GPC1 glypican-1
HA hyaluronan
HER2 human epidermal growth factor receptor 2
Hh hedgehog
HULC highly upregulated in liver cancer
IHH Indian hedgehog
lncRNA long non-coding RNA
MCN mucinous cystic neoplasm
miRNAs microRNAs
MPCS melanoma pancreatic cancer syndrome
ncRNAs non-coding RNAs
PAK4 p21-activated kinase 4
PanIN pancreatic intraepithelial neoplasia
PanNET pancreatic neuroendocrine tumor
PC pancreatic cancer
PDAC pancreatic ductal adenocarcinoma
SDF-1 stromal-derived factor 1
SHH Sonic hedgehog
Smo smoothened
SOCS1 suppressor of cytokine signaling 1
TGFβ transforming growth factor-beta
TIMP1 tissue inhibitor of metalloproteinases-1
TME tumor micro-environment
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