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An accurate assessment of antigenic similarity between influenza viruses is important for vaccine strain recom-
mendations and influenza surveillance. Due to the mechanisms that result in frequent changes in the antigenicities
of strains, it is desirable to obtain an antigenic similarity measure that accounts for specific changes in strains that
are of epidemiological importance in influenza. Empirically grounded statistical models best achieve this. In this
study, an interpretable machine-learning model was developed using distinguishing features of antigenic variants
to analyze antigenic similarity. The features comprised of cluster information, amino acid sequences located in
known antigenic and receptor-binding sites of influenza A (H3N2). In order to assess validity of parameters,
accuracy and relevance of model to vaccine effectiveness, the model was applied to influenza A (H3N2) viruses
due to their abundant genetic data and epidemiological relevance to influenza surveillance. An application of the
model revealed that all model parameters were statistically significant to determining antigenic similarity be-
tween strains. Furthermore, upon evaluating the model for predicting antigenic similarity between strains, it
achieved 95% area under Receiver Operating Characteristic curve (AUC), 94% accuracy, 76% precision, 97%
specificity, 68% sensitivity and a diagnostic odds ratio (DOR) of 83.19. Above all, the model was found to be
strongly related to influenza vaccine effectiveness to indicate the correlation between vaccine effectiveness and
antigenic similarity between vaccine and circulating strains in an epidemic. The study predicts probabilities of
antigenic similarity and estimates changes in strains that lead to antigenic variants. A successful application of the
methods presented in this study would complement the global efforts in influenza surveillance.

1. Introduction antigenic similarity between circulating and vaccine strains through the

network of National Influenza Centres established by the World Health

The impact of seasonal influenza infections on populations and
economies of countries cannot be underestimated. In particular, these
seasonal influenza epidemics are estimated to cause about 3-5 million
cases of severe illnesses and about 290,000 to 650,000 deaths globally in
each year [1]. The virus frequently changes amino acids located in spe-
cific regions of its hemagglutinin protein resulting in antigenic variants
which enable it to escape neutralizing antibodies during infections [2, 3].
Although vaccinations are effective medical interventions to protect
against these infections, the immunity they provide may decline over
time because of the frequent changes in the antigenicity of influenza
viruses. Therefore, influenza vaccines are reviewed regularly to make
appropriate recommendation of strains to be considered for future vac-
cines [4]. The vaccine strain recommendation depends on an accurate
characterization of strains and determination of antigenic relatedness
(similarity) between strains. Usually, a determination is made of
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Organization (WHO) around the world for influenza surveillance [5].
Traditional methods for measuring antigenic similarity between influ-
enza strains involve the use of Hemagglutination Inhibition (HI) assay
results (titres) [6, 7, 8].

Although the direct use of HI titres has been the conventional
approach, the need for improved alternatives has necessitated methods
based on amino acid sequences [9, 10, 11]. Furthermore, amino acid
sequences are thought to be more sensitive to antigenic changes in
influenza strains and correlated with the outcomes of refined HI assays
[12, 13]. These have motivated the developments of some computational
methods for determining antigenic similarity between strains based on
amino acid sequences. Most of the computational approaches have been
applied to influenza A (H3N2) virus (strain) because of its abundant
genetic data and epidemiological importance [14, 15, 16, 17, 18, 19].
Phylogenetic trees have been used to analyze antigenic properties of
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strains [3]. Other computational models enhance the analysis of strains
by predicting antigenic variants [14].

In particular, previous modelling approaches incorporated scoring
and regression-based methods to predict antigenic variants of influenza A
(H3N2) viruses [14]. Other authors using linear models for predicting
antigenicity of the influenza A (H3N2) viruses obtained lower accuracies
compared to machine learning-based methods [15]. In other applica-
tions, a bootstrapped ridged regression model and statistical mechanics
approach to modelling have been employed to predict antigenicity of
strains [16, 20]. These methods have a common regularization param-
eter, lasso, that boosted prediction accuracies in their applications [21].

Furthermore, using 12 structural and physiochemical features of the
influenza hemagglutinin (HA) protein, a naive Bayes model was devel-
oped to predict antigenic clusters of influenza A (H3N2) viruses [22].
This development followed a suggestion from earlier researchers who
recommended that the best vaccine strategies should target antigenic
clusters [23]. In particular, this was supported by the findings that the
antigenic evolution pattern of influenza A (H3N2) formed chronological
clusters based on the years of characterization of strains and that the
evolutions of the strains were portrayed as a sequence of antigenic cluster
replacements [23, 24, 25]. The need for improving the determination of
antigenic relatedness or clusters is underscored from a previous analysis
of clusters in which some cluster members were reassigned into different
groups after adjusting pairwise antigenic similarity measure [26]. This
followed a study that showed that the main parameters, HI titres, for
clustering in those studies were affected by both antigenic and
non-antigenic factors [27]. Although Bayesian inference methods have
been proposed to decouple non-antigenic factors from HI titres to
enhance the determination of antigenic similarity [28], models that are
based on amino acid changes in known antigenic sites of the HA protein
of influenza provide better determinations of antigenic variants [29].

In order to better determine antigenic similarity of influenza A
(H3NZ2) strains, this paper incorporates amino acid changes in antigenic
and receptor-binding sites of the HA protein to develop an interpretable
statistical classification model to predict antigenic similarity between
pairs of strains. Using the number of amino acid changes in both anti-
genic and receptor-binding sites as features, a supervised machine
learning method based on logistic regression was developed. The logistic
regression analysis allows direct computational assertions that model
components (features) are determinants of antigenicity of influenza
strains. In addition, this approach provides numerical estimates of the
impacts of model components on the antigenic relatedness between
strains. These properties of the model make it interpretable and useful for
analyzing antigenic similarity between strains. In order to assess the
impact of the model on vaccine strain recommendation, the study es-
tablishes a relationship between the model outcomes and vaccine effec-
tiveness. Labelled datasets for testing the methods were curated from
influenza A (H3N2) antigenic clusters analyzed in previous studies [23].
The evaluation of the method reveals its potential to accurately decipher
antigenic similarity between influenza strains and to support the global
surveillance of influenza.

2. Materials and methods
2.1. Materials and data

In order to obtain the required data for supervised machine learning
technique used in this study, 11 antigenic clusters of influenza A
(H3N2) strains were obtained from previous studies by Smith and
colleagues [23]. By this clustering, 231 influenza A (H3N2) strains with
complete amino acid sequences were found to be members of the 11
antigenic clusters. The amino acid sequences of the HA of influenza A
(H3N2) viruses were obtained from the National Center for Biotech-
nology Information (NCBI) protein database [30]. A multiple sequence
alignment was performed using Clustal Omega [31]. The influenza A
(H3N2) strains, GenBank sequence accession numbers and clusters are
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presented as supplementary files (Supplementary Table S1). Here, pair
of strains belonging to the same antigenic clusters are considered as
antigenically similar and pair of strains from different clusters are
considered antigenically distinct. These definitions of groupings are
based on previous analysis of influenza A (H3N2) viruses [22, 23].
Applying these to the current strains resulted in 2,832 antigenically
similar pairs and 23,733 antigenically distinct pairs of strains. That is,
in all, 26,565 pairs of strains were used in this study (Supplementary
Table S2).

The features of the data used for developing the proposed learning
model comprised of number of differences in amino acid residues located
on designated positions of antigenic and receptor binding sites of HA
proteins of influenza A (H3N2) strains. There are 131 amino acid posi-
tions on five designated antigenic sites, epitopes (A, B, C, D and E), and
14 amino acid positions on the receptor-binding site [32, 33, 34, 35].
Changes in amino acids located in these sites accompany different anti-
genic variants of influenza A (H3N2) [23,32]. These amino acid changes
in the antigenic and receptor-binding sites of the HA protein of influenza
were identified as suitable parameters for the model.

The corresponding amino acids in these sites in the HA proteins of the
strains considered in this study were identified and selected after mul-
tiple sequence alignment. The pairwise differences in the selected amino
acid residues for all the relevant sites were obtained using R code
(available in Supplementary Material). The code is implemented in R
version 3.6.3. Datasets obtained for the six relevant features (five anti-
genic and receptor-binding sites) were used to build the model for pre-
dicting antigenic similarities among pairs of strains.

Models based on the designated antigenic sites in the HA proteins of
influenza A (H3N2) strains are reported to be better predictors of anti-
genic similarities and have been used in such analytical studies in the
past [29]. Furthermore, the designated antigenic and receptor-binding
sites in the HA proteins of influenza A (H3N2) strains are considered
because the number of amino acid changes in these regions are associated
with antigenic variants of strains [23, 32]. Therefore, they make the
approach presented in this study more sensitive to antigenic drifts.

2.2. Statistical methods

The goal of the modelling is to establish a method for classifying any
pair of influenza strains as similar or distinct using the relevant amino
acid substitutions accompanying variants of a strain. This study develops
a logistic regression model, as it is more suitable for interpreting (binary)
outcomes of classification models. Unlike the well-known least squares
regression, which cannot predict a qualitative response, the logistic
model predicts qualitative response variable with meaningful model
parameters and a probability of prediction. These features of the logistic
regression model make it more interpretable and preferable compared to
other machine learning techniques that can be applied to the classifica-
tion task modelled in this study. In general, for a set of n features, X7, Xz,
Xs, ..., Xp, a logistic function defines the probability of an instance, say X,
belonging to a category, say i, as Eq. (1):

ePothiXi+haXo+ . +fnXn

P<X) = 1 + efotPrXi+PoXe+.+fnXn’ @
where parameters f, f;, s, ..., B, are effects of corresponding features
X1, X2, X3, ..., Xy on determining the class of X with a probability value,
PX).

The parameters are estimated using the maximum likelihood method
[36]. This ensures that the estimated coefficients maximizes or mini-
mizes the probability that an instance, X, belongs to a given class, say i.
In this study, an instance of a pair of strains can be either antigenically
similar or antigenically distinct. That is, there are only two possible
classes and these are the contexts of application considered. Once the
effects are determined in Eq. (1), it can ascertain the class of any
instance based on the value of the probability. Although other
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regression-based approaches have been applied in the past using a
different scoring scheme [14], this study is distinguished by the attri-
butes or features of the antigenic data (antigenic and other
receptor-binding sites) being incorporated as effects, the specific
sequence information and the emphasis on the interpretation of model
parameters in relation to the relatedness between strains. Here, the
significance of the model parameters to determining antigenic similarity
is assessed.

In this study, statistical testing of significance of all coefficients in
the model was performed at 5% level of significance. The predictive
performance of model was assessed in a seven-fold cross-validation. In
the seven-fold cross-validation process, the dataset was randomly
divided into seven equal subsets, one subset was held-out as a test set
while the remaining six subsets were combined and used to train or
develop model. Then, the held-out subset was used to test the model.
The process was repeated for each subset. The predictions from all the
seven subsets were combined in order to assess the overall performance
of model. For a more standard evaluation of the accuracy of model, the
area under a Receiver Operating Characteristic (ROC) curve is employed
[37]. The ROC curve measures the discriminating power of a model
showing the trade-off between sensitivity and false positive rate of the
method. The performance of the method is based on the numbers of
correct or incorrect predictions. In particular, a correctly predicted pair
of antigenically similar strains is counted as True Positive (TP). A pair of
antigenically similar strains wrongly predicted as antigenically distinct
is counted as False Negative (FN). A correctly predicted pair of anti-
genically distinct strain is counted as True Negative (TN). A pair of
antigenically distinct strains wrongly predicted as antigenically similar
strains is counted as False Positive (FP). Confusion or error matrix is
usually presented by machine learning algorithms to convey these in-
dicators as in Table 1.

In this study, the entries of the confusion matrix were obtained using
R code (available in the Supplementary Material). With these perfor-
mance indicators, the antigenic relatedness model was evaluated using
the following accuracy measures:

Accuracy = &, 2
TP + TN + FP + FN

Precision = %7 3)

Specificity = mTipr, 4

Sensitivity = T‘Pi—PFI\I’ ®)

Diagnostic odds ration (DOR) = % (6)

The higher these measures, the better the predictive model. Although
accuracy, precision, specificity, and sensitivity can reach a maximum of
100%, it is desirable for the diagnostic odds ratio (DOR) to be greater
than one (1) since it is an indicator of a better model's predictive per-
formance. The methods and analysis were conducted using codes
implemented in R (version 3.6.3). The r-code accompanying this manu-
script can be found in the Supplementary Material.

Table 1. Error matrix.

Predicted pair of distinct
strains

Predicted pair of similar
strains

Actual pair of distinct
strains

True negative False positive

Actual pair of similar
strains

False negative True positive
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2.3. The model for predicting antigenic similarity between strains

The analysis of the antigenicity between two strains is crucial in
influenza surveillance. Using the designated antigenic and receptor-
binding sites as parameters for the model makes it possible to analyze
the model properties and antigenic characterization of the influenza
strains. Therefore, assuming X7, X5, X3, X4, X5 and X are, respectively,
the numbers of differences in amino acids located on designated anti-
genic sites A, B, C, D and E, and receptor-binding sites of any pair of
strains, then the antigenic similarity is determined by the relation:

P(x) &
10g<1—P(x)> =po+ ;ﬂixh (@)

where P(x) is the probability that the pair of strains are similar, /il-,sare
effects denoting the significance and extent of effect of each antigenic site
or receptor binding site on the similarity of the two strains, and fis a
constant which accounts for other factors that contribute to antigenic
similarity between the strains.

From Eq. (7), the relationships between probability value and effects
are not linear. However, it can be readily deduced that for a positive
effect, sayp;, if the differences in amino acids located on the antigenic
site A of any pair of strains increase, then P(x) also increases. However, if
the effect is negative, then increasing the differences in the amino acid
residues at the antigenic site A will decrease the probability, P(x), that
the pair of strains under consideration is similar. This interpretation,
which applies to every other model parameter, can be readily deduced
from Eq. (1).

2.4. Correlation analysis of influenza vaccine effectiveness and antigenic
similarity model

Correlation analysis is concerned with the analysis of linear associa-
tion between two variables. A quantitative measure of the strength of
linear relationship between the two variables is correlation coefficient. In
this study, the variables are vaccine effectiveness and antigenic related-
ness model. Vaccine effectiveness (VE) provides estimate of the fraction
of influenza cases prevented by vaccination in an influenza season. It is
defined by:

VE=(1-RR) x 100, (8)
where RR is the risk ratio defined by:

ad

RR= be (€C)]

a is the total number of vaccinated individuals diagnosed with
influenza-like illness in the particular VE study, b is total number of
vaccinated individuals taking part in the study, ¢ is the number of un-
vaccinated individuals diagnosed with influenza-like illness in the study,
and d is the total number of unvaccinated individuals taking part in the
study. The risk ratio is the relative risk of contracting influenza-like
illness in the vaccinated individuals compared to the unvaccinated.
Although this method for evaluating influenza vaccine effectiveness has
been commonly used in the past, a more recent vaccine effectiveness
study design, test-negative design, has been used over the last 16 years to
obtain estimates. This recent method assumes that influenza vaccine only
provides protection against influenza but does not affect non-influenza
causes of influenza-like illness. By this method, the VE is given by Eq.
(10):

VE= (1 _Op_> % 100%, (10)

negative

where Opgsitive is 0dds of vaccination among study participants testing
positive for influenza and Opegative is 0dds of vaccination among those
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testing negative. Usually, adjusted odds ratios of the positive and nega-
tive cases are determined using logistic models where adjustments are
made for covariates such as age, study site, calendar time, presence of
high-risk health conditions, race, among others. The VE estimates
incorporating these adjustments are referred to as adjusted VE. In this
study, adjusted VE were used to obtain estimates for the last 16 years,
2004-2005 to 2019-2020 influenza seasons (with details provided in the
Supplementary Material). The variable of antigenic similarity model
measures antigenic similarity between any pair of strain, which is given
by the probability, P(X), defined by Eq. (1).

In this study, VE data was searched from literature and it was found to
be normally distributed. However, the probability data for the antigenic
similarity model variable was not normally distributed. Therefore, a
more robust and suitable measure of correlation, Spearman's rank cor-
relation coefficient, was used for the correlation analysis. This is given by
Eq. (11):

6§njdi2

r=1- o1y a

where d; is the difference between i-th pair of ranks and n is the total
number of observations.

3. Results
3.1. An application of model to influenza A (H3N2) data

In order to illustrate validity and interpretation of model, it is applied
to the antigenic data of influenza A (H3N2) viruses considered in this
study. The modelling made it possible to evaluate the contribution and
significance of amino acid changes in each of the five designated anti-
genic and receptor binding sites of the HA protein of influenza A (H3N2).
More specifically, it was found that all the parameters of the antigenic
similarity model had statistically significant contributions to the simi-
larity or dissimilarity of any pair of strains and that the model is accurate
(Table 2). These results are important and consistent with expectations
that antigenic variant of epidemiological importance usually has at least
four amino acid changes in at least two of the designated antigenic sites
[32]. Among the five designated antigenic sites, contributions of changes
in amino acid residues in sites A and B to antigenic similarity between the
influenza strains were higher compared to contributions of the other
antigenic sites (Table 2). These findings are consistent with other
experimental studies that found amino acid changes in antigenic sites A
and B to be the major drivers of antigenic drift in influenza A (H3N2) [38,
39]. Here, the modelling distinguishes itself by providing details of the
extent of contributions of these antigenic changes in each site that may
lead to antigenic variants of the virus.

Table 2. Estimates of model parameters and significance.

Site Parameter Significance **Lower “**Upper
) (p-value) limit limit
Antigenic site A -1.03 <2e-16 -1.09 -0.96
Antigenic site B -0.47 <2e-16 -0.51 -0.43
Antigenic site C 0.3 <2e-16 0.24 0.37
Antigenic site D 0.05 0.01 0.01 0.08
Antigenic site E 0.31 <2e-16 0.26 0.35
Receptor- -0.29 8.28e-16 -0.36 -0.22
binding site
“Constant 1.69 <2e-16 1.57 1.81

* Model constant accounting for other factors that contribute to antigenic
variations among strains.

" Lower limit of 95% Wald confidence interval of parameter estimates.

™ Upper limit of 95% Wald confidence interval of parameter estimates.
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The antigenic sites, A and B, are crucial for neutralizing antibodies
and changes in the amino acids in these epitopes facilitate the escape of
the virus from neutralizing antibodies [40]. The results revealed that
amino acid changes in these epitopes decreased the chances of antigenic
similarity between pairs of strains. The (negative) signs and magnitudes
of coefficients of amino acid changes in the antigenic sites A and B
(Table 2) explain this. The results provide empirical evidence in support
of previous findings that these epitopes are the most valuable epitopes in
directing the evolution of influenza A (H3N2) viruses reported in pre-
vious studies [41, 42]. The findings of this study are consistent with a
recent study which found that key amino acid substitutions in antigenic
sites A and B were responsible for major antigenic changes in influenza A
(H3N2) [43]. A further study by Koel and colleagues suggests that the
magnitudes of antigenic effects of some amino acid substitutions in these
sites are context-dependent [44]. Additionally, differences in amino acid
residues in receptor-binding sites of pairs of strains also decrease the
probability of antigenic relatedness of those strains. This is a consequence
of the negativity of the corresponding effect of the receptor-binding site
(Table 2).

On the other hand, the probability of antigenic relatedness between
pairs of strains are less affected by amino acid changes in antigenic sites
C, D and E compared to antigenic sites A and B. This is due to the rela-
tively lower magnitudes of coefficients corresponding to antigenic sites
C, D, and E compared to antigenic sites A and B (Table 2). However, the
antigenic sites C, D and E have positive coefficients suggesting that
changes in those sites will not lead to increase antigenic dissimilarity
between pair of strains. Interestingly, the findings that the changes in
antigenic sites C, D and E did not lead to increasing antigenic dissimi-
larity are in line with previous studies [43]. In particular, it was reported
that amino acid changes in the sites C, D and E did not cause major
antigenic changes in the strains [43]. These previous findings affirm the
statistical analysis that did not predict that changes in the sites C to E
could increase antigenic dissimilarity. These consistent findings are
noteworthy since both studies considered the evolution of influenza A
(H3N2) over 35 years, 1968 to 2003. While the study by Koel and co-
workers [43] used a representative virus for each cluster in their study,
the current study considered all the viruses within the clusters.

3.2. Accuracy of predictions of antigenic similarity model

In order to evaluate performance of the model, it is tested in a 7-fold
cross-validation using the data curated for the study. The proposed model
performed better than a random model and has a value of 95% area
under ROC curve (Figure 1). These results provide further support for the
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Figure 1. Receiver-operating characteristic (ROC) curve of antigenic similarity
model. Area under ROC curve (AUC) of proposed model is appended on the plot.
Results are produced from 7-fold cross-validation. The proposed model has
higher AUC compared to the random model.
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use the model for analyzing antigenic similarity between strains. Not
only is the method interpretable, it also compares favourably well with
other methods for predicting antigenic similarity among influenza A
(H3N2) strains. In particular, the proposed model achieved 95% area
under ROC curve (AUC), 94% accuracy, 76% precision, 97% specificity,
68% sensitivity and a diagnostic odds ratio (DOR) of 83.19. These were
derived from performance indicators presented in the error matrix
(Table 3). These performance scores are better compared to other
methods based on Naive Bayes and statistical mechanics employed to
predict antigenicity of influenza A (H3N2) strains, using different fea-
tures [20, 45]. Those methods were reported to achieve accuracies that
do not exceed 90% even though they were better than random model.
However, it should be noted that while all antigenic and receptor binding
sites are considered in this study, those previous studies considered
regional band or artificial sites located on the HA1 protein as features for
classification models, combinations of HI titres and amino acid sequences
[20, 45]. In this study, features are changes in amino acid residues
located on designated antigenic and receptor binding sites of the HA
protein of influenza A (H3N2).

3.3. The model of antigenic similarity is linked to vaccine effectiveness

Furthermore, the model is assessed in relation to influenza vaccine
effectiveness. This is important because the antigenic similarity between
circulating and vaccine strains is evaluated at each influenza season to
make recommendations for future vaccines. The outcome of the antigenic
similarity between the circulating and the vaccine strains determines
whether to maintain or substitute the vaccine strain in subsequent
influenza seasons. In addition, besides factors such as age and immune
status of vaccinated individuals, the antigenic similarity between circu-
lating and vaccine strains also affect influenza vaccine effectiveness [46].
Therefore, a desirable property of a measure of antigenic similarity is that
it significantly correlates with the vaccine effectiveness. In order to test
this assertion on the model presented in this study, data on influenza
vaccine effectiveness were searched from the literature (Supplementary
Material).

The vaccine effectiveness data consists of influenza seasons in which
influenza A (H3N2) subtype dominated, the dominant influenza A
(H3N2) that circulated, and the estimated vaccine effectiveness (Sup-
plementary Material). While only pairs of vaccine and circulating strains,
prior to the 2004-2005 influenza season, whose amino acid sequences
are present in the data collected for this study were considered, all other
vaccine and dominant circulating influenza A (H3N2) strains for the last
16 years were also included in this VE analysis. Regarding the antigenic
similarity data from model, the probabilities of antigenic similarity
estimated from the model were used (Supplementary Material). The
antigenic similarity model was expected to correlate with vaccine
effectiveness. As anticipated, a strong statistically significant correlation
coefficient was established between the antigenic similarity model and
vaccine effectiveness. It was found that the model strongly correlated
with vaccine effectiveness prior to the 2004-2005 influenza season (r =
0.76, p-value = 4.11e-04, r-squared = 0.58), vaccine effectiveness from
2004-2005 to 2018-2019 influenza seasons (r = 0.72, p-value = 0.02, r-
squared = 0.51), and vaccine effectiveness over all available seasons (r =
0.71, p-value = 3.67e-05, r-squared = 0.50). These results suggest that
there exist a strong positive linear relationship between vaccine

Table 3. Error matrix produced by the antigenic similarity model.

Predicted pair of distinct Predicted pair of similar

strains strains
Actual pair of distinct 23136 597
strains
Actual pair of similar 900 1932

strains
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effectiveness and antigenic similarity between circulating and vaccine
strains in recent years despite the changes in VE study designs.
Furthermore, the results suggest that at least 50% of variations in the
vaccine effectiveness could be explained by the antigenic similarity be-
tween circulating and vaccine strains. This value is significant since there
are other factors that contribute to the vaccine effectiveness for any
influenza season.

4. Discussion

An accurate prediction of antigenic similarity between circulating and
vaccine strains is paramount to vaccine strain recommendation. There-
fore, a desirable property of a model or measure of antigenic similarity is
to have its parameters and results to be directly applied to differences in
characterized influenza strains. In this study, an interpretable model is
proposed for analysis of antigenic similarity between strains. In partic-
ular, the model's parameters are differences in amino acid residues
located on antigenic and receptor-binding sites of the HA protein of
influenza A (H3N2) viruses. In addition, the interpretable nature of the
model and its parameters permit a direct assessment of significance and
nature of antigenic similarity between strains. These can be examined
from both the magnitude and the sign of estimated parameters (Table 2).
Moreover, the study established that all effects were statistically signif-
icant and that the model is adequate.

The statistical significance of all model parameters suggests that the
parameters of the model have notable contributions to antigenic sim-
ilarity between pair of influenza A (H3N2) strains. These results pro-
vide a quantitative assessment of association of amino acid changes in
designated antigenic and receptor-binding sites to variations in anti-
genicities of strains. The model makes it possible to compare the levels
of effects of amino acid changes at the individual sites considered in
this study. In particular, amino acid changes in antigenic sites A and B
have the greatest effect on antigenic similarity between strains
compared to other sites considered in the study. This is indicated by
the higher magnitudes of coefficients of the changes in sites A and B
compared to sites C through E and the receptor-binding site (Table 2).
These findings are in line with other studies that identified antigenic
sites A and B to be most valuable epitopes capable of directing anti-
genic drift [47]. While increasing changes in amino acids located on
antigenic sites A and B and the receptor-binding site may lead to
decrease antigenic similarity between pairs of strains, the same cannot
be said of antigenic sites C, D and E even though they are statistically
significant determinants of antigenic similarity between pair of strains.
This is due to the positive values of the coefficients of the changes in
sites C to E (Table 2).

These results are consistent with previous studies that identified the
need to change vaccine designs due to frequent changes in the sites A and
B [48]. Nevertheless, a recent survey of antigenicity of influenza viruses
suggested that a new epidemic strain would have changes in all antigenic
sites in order to escape the human immune system [49]. Here, the pro-
posed model showed that the designated sites considered in this study are
relevant to antigenic similarity as they all had statistically significant
coefficients. This is particularly important because of the frequent
changes in the antigenicity of circulating influenza strains and the
consequential vaccine updates [50, 51, 52].

Furthermore, the model is effective as it achieves 95% area under
ROC curve when applied to influenza A (H3N2) data. This is in addi-
tion to the fact that it is linked to influenza vaccine effectiveness. Here,
the interpretable model strongly correlated with vaccine effectiveness.
Particularly, 51% variations in vaccine -effectiveness since the
2004-2006 influenza seasons dominated by A/H3N2 is explained by
the proposed model, which agrees in principle to the fact that vaccine
effectiveness has other determinants. Overall, it suggests that a high
antigenic similarity between vaccine and epidemic strains will lead
to a high vaccine effectiveness given other factors of vaccine
effectiveness.
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5. Conclusion

In this study, using antigenic properties of influenza A (H3N2) strains,
an interpretable machine-learning model was developed to analyze
antigenic similarity between pair of strains. The model was successfully
applied to influenza A (H3N2) data in as much as it had a desirable
property of providing quantitative assessments of the antigenic charac-
teristics that distinguishes antigenic variants. Furthermore, the model
was linked to influenza vaccine effectiveness where it estimated the
correlation between antigenic similarity between vaccine and epidemic
strains and vaccine effectiveness in influenza seasons. Therefore, a suc-
cessful application of the model of antigenic similarity could greatly
improve prediction accuracies of antigenic future of influenza virus. In
this way, recommendations for influenza vaccine design will be
enhanced and an overview of how strains effectively bind together shall
be ascertained. In this study, features considered for developing the
model were derived from the HA protein of influenza A (H3N2). There-
fore, a modification of the features for the model will be necessary in
order to incorporate other proteins such as neuraminidase for antigenic
analysis. This is a possible direction for future research.
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