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Abstract

Background: Recent studies have implied that osteoarthritis (OA) is a metabolic disease linked to deregulation of genes
involved in lipid metabolism and cholesterol efflux. Sterol Regulatory Element Binding Proteins (SREBPs) are transcription
factors regulating lipid metabolism with so far no association with OA. Our aim was to test the hypothesis that SREBP-2, a
gene that plays a key role in cholesterol homeostasis, is crucially involved in OA pathogenesis and to identify possible
mechanisms of action.

Methodology/Principal Findings: We performed a genetic association analysis using a cohort of 1,410 Greek OA patients
and healthy controls and found significant association between single nucleotide polymorphism (SNP) 1784G.C in SREBP-2
gene and OA development. Moreover, the above SNP was functionally active, as normal chondrocytes’ transfection with
SREBP-2-G/C plasmid resulted in interleukin-1b and metalloproteinase-13 (MMP-13) upregulation. We also evaluated SREBP-
2, its target gene 3-hydroxy-3-methylglutaryl-coenzymeA reductase (HMGCR), phospho-phosphoinositide3-kinase (PI3K),
phospho-Akt, integrin-alphaV (ITGAV) and transforming growth factor-b (TGF-b) mRNA and protein expression levels in
osteoarthritic and normal chondrocytes and found that they were all significantly elevated in OA chondrocytes. To test
whether TGF-b alone can induce SREBP-2, we treated normal chondrocytes with TGF-b and found significant upregulation
of SREBP-2, HMGCR, phospho-PI3K and MMP-13. We also showed that TGF-b activated aggrecan (ACAN) in chondrocytes
only through Smad3, which interacts with SREBP-2. Finally, we examined the effect of an integrin inhibitor, cyclo-RGDFV
peptide, on osteoarthritic chondrocytes, and found that it resulted in significant upregulation of ACAN and downregulation
of SREBP-2, HMGCR, phospho-PI3K and MMP-13 expression levels.

Conclusions/Significance: We demonstrated, for the first time, the association of SREBP-2 with OA pathogenesis and
provided evidence on the molecular mechanism involved. We suggest that TGF-b induces SREBP-2 pathway activation
through ITGAV and PI3K playing a key role in OA and that integrin blockage may be a potential molecular target for OA
treatment.
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Introduction

Osteoarthritis (OA) is a complex degenerative joint disease with

multifactorial aetiology. Several factors including genetic suscep-

tibility, increased mechanical load, injuries and inflammation of

the joint, as well as obesity have been long considered as important

risk factors of the disease [1] leading to progressive cartilage loss,

formation of osteophytes and other significant alterations in

ligaments, menisci and adjacent muscles [2]. Interestingly,

however, recent studies point to the direction that OA is rather

a metabolic disease [3,4], which has also been linked to

deregulation of lipid metabolism genes. This aspect is strengthened

by proteomic analysis studies which have revealed that numerous

lipid metabolism-related proteins are differentially expressed in

osteoarthritic cartilage compared to normal [5,6]. In addition,

recent work from our group has shown that oxidized low-density

lipoprotein (Ox-LDL) is present in the synovial fluid and that its

receptor, lectin-like oxidized low-density lipoprotein receptor 1

(LOX-1) is detected in cartilage from both weight-bearing and

non-weight-bearing areas, whereas no LOX-1 expression was

found in normal cartilage [7]. The presence of LOX-1 in

chondrocytes indicates that chondrocytes are indeed capable of

internalizing lipids. We have also recently shown that osteoar-

thritic chondrocytes present intracellular lipid accumulation and

exhibit reduced expression of genes regulating reverse cholesterol

transport, such as Apolipoprotein A1 (ApoA1), or liver X receptors

(LXR a and LXR b) compared to normal chondrocytes [8].
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Sterol Regulatory Element Binding Proteins (SREBPs) are

transcription factors that bind to the sterol regulatory element

DNA sequence and regulate lipid metabolism [8]. To date, three

members of the SREBP family have been identified: SREBP-1a,

SREBP-1c and SREBP-2 [9,10,11,12]. Both SREBP-1a and 1c

are isoforms encoded by the srebp1 gene, whereas srebp2 gene

encodes only one isoform [13,14]. SREBP-1c regulates genes of

fatty acid and triglyceride metabolism, while SREBP-2 preferen-

tially activates genes of cholesterol metabolism and biosynthesis,

such as 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)

reductase (HMGCR) [8] and SREBP-1a regulates both sets of

genes. SREBPs are synthesized as inactive precursor proteins

anchored to the membranes of the endoplasmic reticulum (ER)

where they remain in the presence of cholesterol [15]. When the

cell is in need of lipids, they are activated by a two-step proteolytic

cleavage of the transcriptionally active NH2-terminal portion [16].

The COOH-terminal domain forms a tight complex with SREBP

cleavage-activating protein (SCAP) which functions as the sterol

sensor in this system [17].

It has been shown, that SNPs in SREBP genes are associated

with diseases related to the metabolic syndrome [18,19,20,21].

More specifically, SNP 1784G .C in SREBP-2 gene, which play

a key role in cholesterol homeostasis, results in substitution of a

glucine by an alanine at amino acid 595 of the SREBP-2 protein

(G595A) and has been associated with intima-media thickness

(IMT), a marker of atherosclerosis, total cholesterol levels in

hypercholesterolaemic subjects and elevated plasma lipids levels

[22,23].

Recent evidence suggests that SREBPs are activated by

phosphoinositide 3-kinase (PI3K) and Akt, both of which are

considered to be mainly implicated in cell survival signalling

pathways with many implications in most multifactorial diseases

such as cancer and diabetes [24]. PI3K is activated by growth

factors, components of the extracellular matrix (ECM) and

integrins; the heterodimeric transmembrane receptors linking

ECM to the intracellular compartment of the cell. PI3K activation

may lead to enhanced cell survival signalling (through activation of

Akt and NFkB), enhanced proliferation and invasion (through

inhibition of GSK3b) or induction of differentiation (through

MAPK activation) depending on the downstream signals that get

activated in each case [25]. Thus, judging by the complexity of the

PI3K signalling pathway, it is not surprising that PI3K activation

may confer different outcomes as far as cellular fate is concerned

depending on the downstream signals that are being transmitted

every time.

With regard to OA several studies have demonstrated an

important role played by different integrins, the transmembrane

receptors that interact with the extracellular matrix (ECM) and

mediate various intracellular signalling [26,27]. More specifically,

it was recently shown in a proteomic study that integrin alpha V

(ITGAV) is upregulated in osteoarthritic chondrocytes [5].

Interestingly, transforming growth factor beta (TGF-b), one of

the integrin-induced growth factors was shown to be involved in

bone tissue formation and differentiation, while its expression in

subchondral bone and osteophytes was increased in OA patients

compared to non-OA [28]. TGF-b signaling is mainly mediated

by Smad proteins. More specifically, upon TGF-b binding to its

receptor, Smads become phosphorylated and translocate into the

nucleus where they regulate the expression of target genes [29].

Interestingly, aggrecan (ACAN), a proteoglycan that together with

Type-II collagen (COL2A1) forms a major structural component

of articular cartilage is known to be a direct target gene of Smad3

which was shown to interact with SREBP-2 [30].

In the present study we tested the hypothesis that SREBP-2 is

crucially involved in OA pathogenesis by carrying out a genetic

association study. Moreover, we have also identified the molecular

mechanism by which SREBP-2 becomes activated in osteoarthritic

chondrocytes.

Results

Association Analysis: 1784G.C Single Nucleotide
Polymorphism (SNP) in SREBP-2 gene is Associated with
OA Development

Since SREBPs seem to play a central role in regulating

intracellular lipid metabolism, single nucleotide polymorphisms

(SNPs) in these genes may interfere with lipid metabolism and

associated disease conditions. Thus, in the present study, we

investigated the association between SNP 1784G.C (rs2228314)

in SREBP-2 gene and OA development. We found a significant

difference in the distribution of GC genotype (p,0.001;

OR = 1.481) (Table 1) as well as in the allelic frequencies

(p = 0.005; OR = 1.275) (Table 2) between patient and control

group. In addition a significant correlation was observed between

GC genotype and G, C alleles and Body Mass Index (BMI)

(p,0.001; OR = 1.311) as well as K/L score (p = 0.026;

OR = 1.289), whereas when sex stratification was performed, no

significant difference was observed in the distribution of genotypic

and allelic frequencies. Adjustment for risk factors, as BMI, age,

and sex showed that significance was retained for BMI (p,0.05,

OR = 1.25) and K/L score (p,0.05, OR = 1.243). All above

indicate that 1784G.C SNP is associated with increased BMI in

OA and with OA severity by K/L score.

Power of the study. To insure that we had adequate power

we calculated the minimum detectable ORs that could lead to a

95% probability of rejection of the full hypothesis of no association

at a significance level of 0.05. The minimum detectable OR under

the log additive model with power 95% and a significance level of

5% was calculated using Quanto version 1.2.4 and was found to be

1.54 for SREBP-2 (1784 G.C).

Type II Collagen and Type I Collagen Ratio in OA and
Normal Chondrocytes

All OA and normal cartilage samples had significantly higher

COL2A1 mRNA expression levels compared to COL1A1,

verifying the chondrocytes’ phenotype in the cultures (Figure 1A).

SREBP-2 and 3-hydroxy-3methylglutaryl Coenzyme A
Reductase (HMGCR) mRNA and Protein Expression Levels
are Elevated in OA Chondrocytes

Since SNP 1784G.C in SREBP-2 was found to be associated

with OA we were tempted to investigate whether SREBP-2

mRNA and protein expression is altered in OA chondrocytes

compared to normal. We evaluated SREBP-2 and its’ target gene,

HMGCR mRNA and protein expression levels in osteoarthritic

and normal chondrocytes and found that they were both

significantly elevated in OA chondrocytes compared to normal

(p,0.05) (Figures 1B and 1C).

25-hydroxycholesterol Treatment in OA Chondrocytes
Resulted in SREBP-2 Upregulation

We treated OA chondrocytes with 25 mM 25-hydroxycholes-

terol for l2h in order to evaluate its effect on SREBP-2 expression

and we found an increase in SREBP-2 and MMP-13 expression

(Figures 1D and 1E).

SREBP-2 in Osteoarthritis
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Phospho-PI3K and Phospho-Akt Protein Expression
Levels are Elevated in OA Chondrocytes

As recent evidence [24] suggests that PI3K and Akt activate

SREBP-2, we studied the expression levels of phospho-PI3K and

phospho-Akt in osteoarthritic and normal chondrocytes. We found

that osteoarthritic chondrocytes had significantly higher phospho-

PI3K and phospho-Akt protein expression compared to normal

(p,0.05), while total PI3K and Akt expression levels remained

stable (Figures 2A and 2B).

TGF-b is Overexpressed in OA Chondrocytes while it also
Induces SREBP-2 and HMGCR Upregulation in Normal
Chondrocytes

PI3K, a protein playing a central role in multiple pathological

and physiological conditions, is activated mainly by growth

factors such as Transforming Growth Factor b (TGF-b),

components of the ECM and their transmembrane receptors,

integrins. To test how PI3K is activated in OA, we first

performed ELISA assays to assess TGF-b expression level in OA

and normal chondrocytes and found that TGF-b expression was

elevated in osteoarthritic chondrocytes compared to normal

(p,0.05) (Figure 3A). In order to test whether TGF-b can induce

SREBP-2 activation by itself, normal chondrocytes were treated

with 10 ng/ml TGF-b over different periods of time (from 0.5 to

24 h). Our results showed that both SREBP-2 and HMGCR

mRNA and protein expression levels were upregulated in

chondrocytes treated with TGF-b as opposed to untreated cells

(p,0.05) (Figures 3B and 3C) indicating that there is a cause and

effect relationship between TGF-b and SREBP-2/HMGCR.

Moreover, we showed that TGF-b treatment upregulated

phospho-PI3K (Figure 3B), and MMP-13 (Figure 3C and 3D)

expression in normal chondrocytes, promoting thus the osteoar-

thritic phenotype.

Pharmacological Inhibition of TGF-b Receptor
Downregulates SREBP-2 Protein Expression but does not
Lead to Restoration of their Normal Phenotype

Since TGF-b was found to upregulate of SREBP-2 mRNA

and protein expression, normal chondrocytes were treated with

10 ng/ml TGF-b together with a pharmacological inhibitor of

TGF-b receptor (SB-431542), in two different concentrations,

1 mM and 10 mM for 6 h. Our results showed that SREBP-2

protein expression levels were downregulated in chondrocytes

treated with 10 mM SB-431542 compared to untreated chon-

drocytes, or treated with TGF-b alone or 1 mM SB-431542

(Figure 4A). Furthermore, we showed that there was no

significant difference in MMP-13 and ACAN mRNA expression

in treated chondrocytes (Figure 4B).

Integrin Alpha V (ITGAV) is Upregulated in OA
Chondrocytes

Since TGF-b is activated by integrin alpha V (ITGAV), we

tested its expression in OA and normal chondrocytes and found

that ITGAV mRNA and protein expression levels were signifi-

cantly elevated in osteoarthritic chondrocytes (p,0.05) (Figures 4C

and 4D respectively).

Blocking of Integrins by cyclo-RGDFV (RGD) Peptide in
Osteoarthritic Chondrocytes Leads to Restoration of their
Normal Phenotype

Since PI3K is activated by integrins, and in order to get a

more detailed picture of the molecular mechanism implicated in

OA pathogenesis, we blocked all integrins upstream of PI3K

using the cyclo-RGDFV (RGD) peptide and evaluated the effect

on osteoarthritic chondrocytes. Since RGD peptide is a non-

specific integrin binding peptide, we used RGE peptide as

negative control to show specificity in addition to a no-peptide

control. To that regard, osteoarthritic chondrocytes were treated

with 25 mM cyclo-RGDFV (RGD) peptide and RGE peptide for

24 hours and the expression levels of SREBP-2, HMGCR,

MMP-13, COL2A1 and ACAN were evaluated. Ninety-eight

percent (98%) of osteoarthritic chondrocytes treated with the

RGD or RGE were viable, as evidenced by the MTT assay

confirming thus the good preservation of cell viability (data not

shown). We found that SREBP-2, HMGCR and MMP-13 as

well as phospho-PI3K mRNA and protein expression levels were

significantly reduced in the peptide-treated cells (p,0.001)

(Figure 5A, 5B and 5D). Interestingly, ACAN, but not COL2A1

mRNA expression exhibited significantly elevated levels in the

Table 1. Genotypes of 1784G.C (rs2228314) polymorphism in SREBP-2 gene.

Reference SNP ID Genotype Frequency no. (%) p value OR (95% CI)

Patients (n = 709) Controls (n = 701)

rs2228314 GG 320 (45.1%) 385 (55%)

GC 384 (54.1%) 307 (43.8%) p,0.001 1.481 (1.201–1.827)

CC 5 (0.8%) 9 (1.2%) p = 0.187 2.038 (0.693–5.992)

doi:10.1371/journal.pone.0035753.t001

Table 2. Alleles of 1784G.C (rs2228314) polymorphism in SREBP-2 gene.

Reference SNP ID Allele Frequency no. (%) p value OR (95% CI)

Patients (n = 1418) Controls (n = 1402)

rs2228314 G 1024 (72%) 1077 (77%)

C 394 (28%) 325 (23%) p = 0.005 1.275 (1.076–1.511)

doi:10.1371/journal.pone.0035753.t002

SREBP-2 in Osteoarthritis
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treated cells (Figure 5C) (p,0.001) indicating an at least partial

reversal of the osteoarthritic phenotype by integrin blockage.
SREBP-2 1784 G/C SNP Heterozygosity is Associated with
Increased SREBP-2 Protein Levels

SREBP-2 genotypes were evaluated in OA and normal cartilage

samples. We found that 8/12 OA samples had the heterozygous

Figure 1. SREBP-2 and HMGCR mRNA and protein expression in normal and osteoarthritic chondrocytes. (A) COL2A1 and COL1A1 ratio
was screened for the verification of chondrocytes’ phenotype in cultures (B) SREBP-2 and HMGCR mRNA expression in normal and osteoarthritic
chondrocytes. GAPDH was used for normalization of the Real Time PCR data. All experiments were performed in duplicate. *p,0.05 (C)
Representative film showing SREBP-2 and HMGCR protein expression evaluated by Western blot analysis in normal and osteoarthritic chondrocytes.
b-actin was used as loading control. (D) Representative film showing SREBP-2 protein expression evaluated by Western blot analysis in osteoarthritic
chondrocytes treated with 25 mM of 25-hydroxycholesterol. GAPDH was used as loading control. (E) MMP-13 and COL2A1 mRNA expression in
osteoarthritic chondrocytes treated with 25 mM of 25-hydroxycholesterol. GAPDH was used for normalization of the Real Time PCR data. All
experiments were performed in duplicate. *p,0.05, NS: non significant.
doi:10.1371/journal.pone.0035753.g001
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(GC) genotype, while 4/12 were homozygous for the wild-type

allele (GG). Regarding normal samples, 3/6 were heterozygous

(GC genotype) and 3/6 were wild-type homozygous (GG).

Furthermore, endogenous levels of SREBP-2 protein were

evaluated in the above OA and normal samples and we found

that GC genotype induced SREBP-2 (Figure 5E) and HMGCR

protein expression more efficiently than GG genotype (p,0.05

and ptrend,0.1 respectively). We also found that GC genotype

had no effect on the basal expression levels of TGF-b, ITGAV,

phospho-PI3K, phospho-Akt, and MMP-13.

SREBP-2 Interacts with Smad3 in Osteoarthritic
Chondrocytes while Smad3 Inhibition Leads to Reduced
ACAN Expression

Taking into account the fact that one of the changes observed in

OA is ACAN reduction, we focused on molecules that regulate

ACAN such as Smad3. Primary osteoarthritic chondrocytes

obtained from individuals with GG genotype were transfected

with a plasmid overexpressing SREBP-2. Twenty four hours post

transfection immunoprecipitation was performed for SREBP-2

and the interaction with Smad3 was assessed. We found that

SREBP-2 indeed binds to Smad3 in osteoarthritic chondrocytes

(Figure 6A). Moreover, normal chondrocytes were treated with

TGF-b and Smad3 activity was assessed by luciferase activity

(GACA) 12-luc plasmid showing that TGF-b induces Smad3

activation (Figure 6B). Interestingly, normal chondrocytes treated

with TGF-b in the presence of control siRNA or siRNA against

Smad3 showed a dramatic reduction of ACAN (Figure 6D). More

specifically, Smad3 knockdown (Figure 6C) inhibited TGF-b to

up-regulate ACAN mRNA expression (Figure 6D), suggesting that

TGF-b activates ACAN only through Smad3.

SREBP-2 G/C Exhibits Stronger Association with Smad3
and its Overexpression Leads to Dramatic Reduction of
ACAN mRNA Expression in Normal Chondrocytes

Since our initial data showed a strong association between

1784G.C SNP in SREBP-2 gene and OA, we generated a

plasmid carrying this specific polymorphism as described previ-

ously [31] namely SREBP-2 G/C. To test the functional role of

this polymorphism, normal chondrocytes obtained from individ-

uals with GG genotype were transfected with SREBP-2 WT and

SREBP-2 G/C plasmids. We observed that overexpression of

SREBP-2 G/C in normal chondrocytes resulted in significant up-

regulation of constitutive MMP-13 and IL-1b expression in

comparison to SREBP-2 WT (Figure 6F). Interestingly, immuno-

precipitation performed 24 h post transfection showed that the

interaction between SREBP-2 and Smad3 was stronger between

SREBP-2 G/C and Smad3 than between SREBP-2 WT and

Smad3 (Figure 6A). Finally, simultaneous treatment of normal

chondrocytes with TGF-b and transfection with SREBP-2 or

SREBP-2 G/C resulted in significant ACAN mRNA reduction,

which was more efficient in the SREBP-2 G/C-treated cells than

in the SREBP-2 WT-treated cells (Figure 6E) (p,0.05).

Discussion

There is accumulating evidence linking OA pathogenesis and

lipid metabolism prompting many scientists to characterize OA as

a metabolic disease [6,32,33,34]. SREBPs are transcription factors

regulating lipid metabolism-related genes and although well

studied in general, to date there is no knowledge on their

involvement in OA.

In order to evaluate the role of SREBP-2 gene in osteoarthritis’

pathogenesis, we performed a genetic association study using a

cohort of 1410 OA patients and healthy subjects. We observed

that SREBP-2 1784G.C polymorphism was significantly associ-

ated with BMI and OA development. Muller et al [21] had

previously reported that the above variant, a glycine-to-alanine

(G595A) substitution located in COOH-terminal regulating

region, could affect the formation and stability of SREBP-2/

SCAP complex. More specifically, 595A isoform was found to

decrease the stability of the complex compared to 595G isoform

affecting the role of SCAP as a sensor in case of cell’s sterol

depletion or excess. Taking into consideration the fact that

osteoarthritic chondrocytes have been shown to accumulate lipids

[34], our finding provides further evidence on the contribution of

this polymorphism in the deregulation of lipid transport that

characterizes osteoarthritic chondrocytes.

Interestingly, this polymorphism has been previously correlated

with atherosclerosis and since atherosclerosis and OA have been

thought to share some common characteristics in relation to the

implication of lipid metabolism-related genes [32], the latter

finding further fortifies this notion.

To further substantiate our finding and conclude on the

functional significance of SREBP-2 1784G.C SNP, we transfect-

ed normal chondrocytes, obtained from individuals with GG

genotype, with SREBP-2 G/C plasmid and found that SREBP-2

G/C over-expression up-regulated IL-1b and MMP-13 expression

at higher levels in comparison to SREBP-2 WT over-expression,

Figure 2. Phospho-PI3K and phospho-Akt expression in normal and osteoarthritic chondrocytes. (A) A representative western blot
showing phospho-PI3K protein expression level in normal and osteoarthritic chondrocytes. Total PI3K expression level is shown in the lower panel.
(B) A representative western blot showing phospho-Akt protein expression level in normal and osteoarthritic chondrocytes. Total Akt expression level
is shown in the lower panel.
doi:10.1371/journal.pone.0035753.g002

SREBP-2 in Osteoarthritis
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Figure 3. TGF-b expression in normal and osteoarthritic chondrocytes and effect of TGF-b treatment on SREBP-2, HMGCR, phospho-
PI3K and MMP-13 expression. (A) TGF-b expression levels in normal and osteoarthritic chondrocytes detected by ELISA. *p,0.05 (B) Western blot
showing SREBP-2, HMGCR and phospho-PI3K protein expression levels in normal and osteoarthritic chondrocytes treated with 10 ng/ml TGF-b for
0.5, 2, 6, and 24 h. b-actin was used as loading control. The same membrane was reprobed without stripping. (C) SREBP-2, HMGCR and MMP-13

SREBP-2 in Osteoarthritis
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providing evidence on the involvement of SREBP-2 gene in OA

susceptibility in Greek population.

The observed association between SNP 1784G.C and OA

occurrence prompted us to investigate whether SREBP-2 expres-

sion is altered in OA cartilage compared to normal. Interestingly,

our results showed that SREBP-2 mRNA and protein expression

levels were significantly elevated in osteoarthritic chondrocytes

compared to normal. In addition, HMGCR expression, a SREBP-

2 target gene catalyzing a significant step in cholesterol synthesis

pathway, was also significantly increased in osteoarthritic com-

pared to normal chondrocytes. Since we found that SREBP-2 was

associated with BMI and as obesity is characterized by upregulated

cholesterol synthesis [35] we evaluated the effect of sterols on

SREBP-2 expression and chondrocytes markers such as MMP-13

and COL2A1. We found that 25-hydroxycholesterol upregulated

SREBP-2 protein expression and MMP-13 mRNA expression in

OA chondrocytes. All above, provide further evidence on the

deregulation of lipid homeostasis in OA.

As PI3K/Akt pathway is an important player in the regulation

of lipid metabolism, and previous evidence suggests that SREBP-2

is activated by PI3K/Akt in diabetes, cancer and viral infections

[24], we proceeded to investigate whether PI3K/Akt pathway

activates SREBP-2 in osteoarthritic chondrocytes. We found, that

phospho-PI3K and phospho-Akt protein levels were significantly

upregulated in OA chondrocytes compared to normal.

PI3K is an extensively studied protein playing central role in

multiple pathological and physiological conditions. PI3K/AKT

pathway is known to be activated by growth factors such as TGF-b,

as well as integrins [24]. In the present study, we tested both ways of

activation and found that both TGF-b and ITGAV exhibited

elevated expression levels in osteoarthritic chondrocytes compared

to normal. Intrigued by this finding we wanted to further investigate

the effect of TGF-b on normal chondrocytes and test whether TGF-

b can induce SREBP-2 activation by itself. Our results showed that

treatment of normal chondrocytes with TGF-b resulted in SREBP-

2, HMGCR, phospho-PI3K and MMP-13 upregulation promoting

thus the osteoarthritic phenotype, The use of the pharmacological

inhibitor of TGF-b receptor (SB-431542), resulted in downregula-

tion of SREBP-2 expression but had no significant effect on MMP-

13 or ACAN expression suggesting the involvement of additional

TGF-b-induced pathways.

Since PI3K is activated by integrins [25] and in order to get a

more detailed picture of the molecular mechanism implicated in

OA pathogenesis, we decided to block all integrins upstream of

PI3K using the cyclo-RGDFV peptide, which blocks several

members of the integrin family of proteins, including substrates for

laminin and vitronectin (ITG AVb3) and evaluate the effect on

osteoarthritic chondrocytes. Integrin blockage with RGD peptide

and no RGE resulted in dramatic reduction of SREBP-2,

HMGCR, phospho-PI3K and MMP-13 expression levels accom-

panied by elevated levels of ACAN, indicating an at least partial

reversal of the osteoarthritic phenotype. These results further

verify the central role played by integrins in OA pathogenesis and

their potential to be used as therapeutic targets.

In an attempt to shed more light upon the molecular

mechanism triggered by SREBP-2 activation and taking into

consideration the fact that one of the changes observed in OA is

ACAN reduction, we focused on molecules that regulate ACAN.

ACAN is a direct target gene of Smad3 which is activated by

TGF-b [29] and has been shown to interact with SREBP-2 [30].

Our hypothesis was that this interaction should be valid in OA

cartilage since our data have so far shown that the alterations seen

in OA chondrocytes were TGF-b driven. We confirmed previous

data in monkey kidney fibroblast cell lines that Smad3 interacts

with SREBP-2 [30] and demonstrated that Smad3 also forms

complex with SREBP-2 in OA chondrocytes and that the

interaction is stronger in the presence of SREBP-2 G/C genotype.

Furthermore, inhibition of Smad3 in normal chondrocytes

blocked ACAN upregulation by TGF-b more efficiently when

they were transfected with SREBP-2 G/C than with SREBP-2

WT suggesting that TGF-b induces ACAN expression only

through Smad3 activation. This observation is in accordance with

van der Kraan et al. who showed that Smad3 deficient mice

displayed phenotypes similar to human OA [36].

In conclusion, we demonstrated, for the first time to our

knowledge, the involvement of SREBP-2, a lipid metabolism gene,

in OA pathogenesis and provided novel evidence for its TGF-b-

induced activation through ITGAV/PI3K/Akt pathway, sche-

matically represented in Figure 7, pointing towards the use of

integrin inhibitors as possible molecular targets for osteoarthritis

treatment.

Materials and Methods

Single Nucleotide Polymorphism (SNP) in SREBP-2 gene
Examined in OA and Normal Subjects

Study groups. The study included 709 patients with knee

OA undergoing knee replacement surgery; 563 women with mean

age 66.866.2; range 40–92 years and 146 men with mean age

67.466.3; range 42–82 years. Height and weight were measured

and BMI was computed. Mean BMI of OA patients was

28.9664.12, range 21.76–43.22. Radiographs were obtained

before surgery and graded using the Kellgren - Lawrence system

according to the following criteria: grade 1 (doubtful narrowing of

joint space and possible osteophytes), grade 2 (definite osteophytes

and possible narrowing of joint space), grade 3 (moderate multiple

osteophytes, definite narrowing of joint space and some sclerosis

and possible deformity of bone ends), grade 4 (large osteophytes,

marked narrowing of joint space, severe sclerosis and definite

deformity of bone ends) [37]. All patients had a Kellgren

Lawrence score $2 with over 90% having a K/L score 3 or 4

and were randomly selected. The assessment of the radiographs by

two independent expert observers was blinded and the kappa

value for inter-reader variation was 0.81 (0.72–0.89). Patients with

rheumatoid arthritis and other autoimmune diseases as well as

chondrodysplasias, infection-induced OA and post-traumatic OA

were not included in the study. The control population consisted

of 701 healthy subjects; 384 women with mean age 67.468.4;

range 48–87 years and 317 men with mean age 64.567.2; range

46–88 years. Mean BMI for the control group was 24.865.4,

range 19.54–27.65. All individuals had no signs or symptoms of

arthritis or joint disease (pain, swelling, tenderness or restriction of

movement). Because of ethical and financial constraints the knee

joints of the controls were not subjected to radiographic analysis.

All individuals were of Greek origin living in the region of Thessaly

of Central Greece. The study population was in Hardy-Weinberg

equilibrium and ethnically homogeneous, which makes the

possibility of confounding ethnic heterogeneity less likely. Verbal

mRNA in cultured normal chondrocytes following treatment with 10 ng/ml TGF-b for 0.5, 2, 6 and 24 h. All experiments were performed in duplicate
and data are expressed as mean. *p,0.05 (D) MMP-13 protein expression levels in normal chondrocytes following treatment with 10 ng/ml TGF-b for
0.5, 2, 6 and 24 h detected by ELISA. *p,0.05.
doi:10.1371/journal.pone.0035753.g003
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Figure 4. Effect of TGF-b receptor inhibitor (SB-431542) on SREBP-2 expression and ITGAV expression in normal and osteoarthritic
chondrocytes. (A) Western blot showing SREBP-2 protein expression levels in normal chondrocytes treated with 10 ng/ml TGF-b, 10 ng/ml TGF-b
plus 1 mM SB-431542, and 10 ng/ml TGF-b plus 10 mM SB-431542 for 6 h. GAPDH was used as loading control. (B) MMP-13 and COL2A1 mRNA
expression levels in normal chondrocytes treated with 10 ng/ml TGF-b, 10 ng/ml TGF-b plus 1 mM SB-431542, and 10 ng/ml TGF-b plus 10 mM SB-
431542 for 6 h, normalized to GAPDH. *p,0.05, NS: non significant (C) ITGAV mRNA expression in normal and osteoarthritic chondrocytes. GAPDH
was used for normalization of the Real Time PCR data. All experiments were performed in duplicate. Data are expressed as mean. *p,0.05 (D) A
representative western blot showing increased protein levels of ITGAV in osteoarthritic chondrocytes compared to normal, where b-actin was used as
loading control.
doi:10.1371/journal.pone.0035753.g004
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Figure 5. Effect of integrin blockage by cyclo-RGDFV peptide (RGD) on osteoarthritic chondrocytes. (A) Effect of treatment of
osteoarthritic chondrocytes with 25 mM cycloRGDFV peptide (RGD), control peptide RGE and additional control (untreated cells) for 24 h on SREBP-2,
HMGCR and phospho-PI3K protein expression evaluated by Western blot analysis. GAPDH was utilized as loading control. (B) SREBP-2, HMGCR and
MMP-13, and (C) COL2A1 and ACAN mRNA expression in osteoarthritic chondrocytes treated with RGD, RGE and respective control using Real Time
PCR. GAPDH was used for normalization of the Real Time PCR data. All experiments were performed in duplicate and data are expressed as mean of
two independent experiments. (D) MMP-13 expression levels in osteoarthritic chondrocytes following treatment with RGD, RGE and respective
control detected by ELISA. *p,0.05, **p,0.001, NS: non-significant (E) SREBP-2 protein expression in normal and OA chondrocytes compared to
genotypes (GG and GC) of the 1784G/C SNP.
doi:10.1371/journal.pone.0035753.g005
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Figure 6. Transfection of chondrocytes with plasmids and interactions between SREBP-2 and Smad3. (A) Primary osteoarthritic
chondrocytes were transfected by electroporation with SREBP-2 WT and SREBP-2 G/C plasmids. 24 h post transfection we performed
immunoprecipitation for SREBP-2 and tested the interaction with Smad3. (B) Normal chondrocytes were treated with TGF-b (3, 10 ng/ml) and
Smad3 activity was assessed by luciferase activity (GACA) 12-luc plasmid, 12 h post transfection. (C) Western blot analysis showing Smad3 protein
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informed consent was obtained from all participants in the study.

The method of obtaining verbal consent was approved by the

Institutional Review Board of the University Hospital of Larissa.

The study protocol conformed to the ethical guidelines of the 1975

Declaration of Helsinki as reflected in a priori approval by the

Local Ethical Committee of the University Hospital of Larissa.

SNP selection. We downloaded from the NCBI SNP

database (http://www.ncbi.nlm.nih.gov/SNP) all SNPs’ genotype

data of SREBP-2 gene based on the genotyped SNPs in European

population and found 70 non-synonymous SNPs, out of which

only 2 (rs2228314 and rs2228313) had minor allele frequencies

(MAF) exceeding 5%. However, as rs2228313 MAF resulted from

a low coverage panel of Europeans, we selected to genotype the

non-synonymous SNP rs2228314 in SREBP-2 gene located in

exon 10 (MAF = 0.36).

Genotyping. Genomic DNA was obtained from 3 ml of

peripheral blood, using a commercially available kit (Qiagen,

Hilden, Germany) according to manufacturer’s instructions. The

selected SNP was genotyped using standard polymerase chain

reaction and restriction-fragment-length polymorphism methods.

The following set of primers was used: (1784G.C): forward 59-

GCCAGTGACCATTAACACCTTTTGA-39 and reverse: 59-

TCGTCTTCAAAGCCTGCCTCAGTGGCTGGC-39. Ther-

mal cycling conditions were as follows: 35 cycles of denaturing

at 94uC for 1 minute, annealing at 65uC for 1 minute and

extending at 72uC for 1 minute. PCR products were digested using

expression levels in normal chondrocytes treated for 24 h with siRNA control (100 nM) or siRNA against Smad3 (100 nM). GAPDH was used as loading
control. (D) Normal chondrocytes were treated with TGF-b (10 ng/ml) in the presence of siRNA control (100 nM) or siRNA against Smad3 (100 nM).
(E) Normal chondrocytes were treated with TGF-b (10 ng/ml) and transfected with SREBP-2 WT or SREBP-2 G/C plasmids and ACAN mRNA expression
was tested by real-time PCR. (F) SREBP-2 G/C overexpression in normal chondrocytes up-regulated MMP-13 and IL-1b in higher levels in comparison
to SREBP-2 WT over-expression (48 h post transfection).
doi:10.1371/journal.pone.0035753.g006

Figure 7. Schematic representation of the molecular pathway activated in osteoarthritic chondrocytes where the involvement of
1784G.C polymorphism is evident. Briefly, in OA, ITGAV and TGF-b upregulation leads to phospho-PI3K and phospho-Akt activation which in
turn cause overexpression of SREBP-2 and its target gene HMGCR accompanied by increased levels of MMP-13. Interestingly, chondrocytes
expressing the SREBP-2 G/C genotype bind stronger to Smad3 leading to ACAN downregulation, contributing thus to the osteoarthritic phenotype.
Furthermore, inhibition of integrins in OA, leads to SREBP-2, HMGCR and MMP-13 downregulation with subsequent elevation of ACAN levels
suggesting integrin blockage as a potential molecular target for OA treatment.
doi:10.1371/journal.pone.0035753.g007
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MspI enzyme and the restriction fragments were visualized after

electrophoresis in 3% agarose gel.

Osteoarthritic and Normal Articular Cartilage Samples
Articular cartilage samples were obtained from femoral

condyles and tibial plateaus of patients with primary OA

undergoing knee replacement surgery at the Orthopaedics

Department of University Hospital of Larissa. A total of 12

patients were included in this study (10F/2M; mean age

62.5612.33 years, range 41–76). All osteoarthritic specimens

had Mankin score 10–14. Radiographs were obtained before

surgery and graded using the Kellgren - Lawrence system

according to the following criteria: grade 1 (doubtful narrowing

of joint space and possible osteophytes), grade 2 (definite

osteophytes and possible narrowing of joint space), grade 3

(moderate multiple osteophytes, definite narrowing of joint space

and some sclerosis and possible deformity of bone ends), grade 4

(large osteophytes, marked narrowing of joint space, severe

sclerosis and definite deformity of bone ends). All patients had a

Kellgren Lawrence score $2. The assessment of the radiographs

by two independent expert observers was blinded. Patients with

rheumatoid arthritis and other autoimmune diseases as well as

chondrodysplasias, infection-induced OA and post-traumatic OA

were not included in the study. Normal cartilage was obtained

from 6 individuals (3F/3M; mean age 42.667.6 years, range 32–

74) with 0 Mankin score, undergoing fracture repair surgery with

no history of joint disease and who did not show clinical

manifestations compatible with OA when specifically explored

by radiographs. Both patients and healthy individuals’ cartilage

samples were obtained upon individuals’ verbal informed consent.

The method of obtaining verbal consent was approved by the

Institutional Review Board of the University Hospital of Larissa.

The study protocol conformed to the ethical guidelines of the 1975

Declaration of Helsinki as reflected in a priori approval by the

Local Ethical Committee of the University Hospital of Larissa.

Primary Cultures of Normal and Osteoarthritic Articular
Chondrocytes

Articular cartilage was dissected and subjected to digestion with

1 mg/ml pronase (Roche Applied Science, Mannheim, Germany)

for 30 minutes and then the sample was centrifuged and the pellet

was subjected to digestion with 1 mg/ml collagenase P (Roche

Applied Science, Mannheim, Germany) for 3 h at 37oC.

Chondrocytes were counted and checked for viability using trypan

blue staining. More than 95% of the cells were viable after

isolation. Chondrocytes were cultured with Dulbecco’s Modified

Eagles Medium/Ham’s F-12 (DMEM/F-12) (GIBCO, BRL, UK)

plus 5% fetal bovine serum (FBS, GIBCO, BRL, UK) and 100 U/

ml penicillin-streptomycin, and were incubated at 37oC under a

humidified 5% CO2 atmosphere until reaching confluence.

Chondrocytes were kept in culture for 2 passages, while type II

collagen and type I collagen ratio was screened in all samples to

exclude dedifferentiation events.

Chondrocytes’ Transfection with siRNAs or Plasmids
Prior to transfection, we evaluated SREBP-2 genotype in OA

and normal samples and compared them with SREBP-29s protein

expression. Primary chondrocytes were treated for 24 h with

100 nM siRNA negative control (Ambion Inc) or 100 nM siRNA

against Smad3 (Ambion Inc, USA) and then with TGF-b (10 ng/

ml) (Sigma-Aldrich, Missouri, USA) for 12 h. SREBP-2 and

SREBP-2 G/C plasmids were constructed according to a

previously described method [38]. Transfections with these

plasmids in primary chondrocytes were performed using the

Amaxa Nucleofector Kit (Lonza, Italy). Smad3 activity was

assessed by luciferase activity (GACA) 12-luc plasmid provided

by Dimitris Kardassis (School of Medicine, University of Crete).

SREBP-2–Smad3 Immunoprecipitation Assay
Sub-confluent cells of normal chondrocytes cultures transfected

with SREBP-2 WT and SREBP-2 G/C plasmids were lysed in

20 mM Tris-HCl buffer (pH 8) containing protease inhibitors. In

separate aliquots of cell lysates was added antibody against

SREBP-2. Protein A/G agarose beeds (Thermo Scientific, Rock-

ford, USA) were also added in every sample and they were

incubated overnight at 4uC. Agarose beeds were collected and

washed with lysis buffer (pH 8). Based-bound proteins were

resolved on 4–10% SDS-polyacrylamide gels, and the gels were

blotted on nitrocellulose membranes. The membranes were

incubated with 5% blocker and then with anti-Smad3 antibody.

The membranes were then exposed to photographic film. IgG

from the same species as the antibody being used for the IP was

used as a negative control.

RNA Extraction and Quantification of mRNA Expression
Total cellular RNA was extracted from cultured chondrocytes

using Trizol reagent (Invitrogen, Life Technologies, Paisley, UK).

RNA was further purified using an RNeasy mini kit (Qiagen,

Hilden, Germany). Preservation of 28S and 18S ribosomal RNA

(rRNA) species was used to assess RNA integrity. All the samples

included in the study were with prominent 28S and 18S rRNA

components. The yield was quantified spectrophotometrically.

Transcription of 1 mg RNA to complementary DNA (cDNA) was

performed using the AMVKit (Roche Applied Science, Mann-

Table 3. Oligonucleotide primers used in real-time PCR assay.

Gene Forward primer sequence Reverse primer sequence

SREBP-2 AAGTCTGGCGTTCTGAGGAA AGGTCCACCTCATTGTCCAC

ITGAV TTCTCTCGGGACTCCTGCTA AGCTCCCACGAGAAGAAACA

HMGCR GTCATTCCAGCCAAGGTTGT TCCTGTCCACAGGCAATGTA

MMP-13 TGGCATTGCTGACATCATGA GCCAGAGGGCCCATCAA

COL2A1 ATGACAATCTGGCTCCCAACACTGC GACCGGCCCTATGTCCACACCGAAT

ACAN TGAGGAGGGCTGGAACAAGTACC GGAGGTGGTAATTGCAGGGAACA

GAPDH ACCACTGTCCACGCCATCAC TCCACCACCCTGTTGCTGTA

COL1A1 CCTGGGGTCTTCCTTACCTC CCATGGGGTCAGATGGTATC

doi:10.1371/journal.pone.0035753.t003
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heim, Germany). Quantification of SREBP-2, ITGAV, HMGCR,

MMP-13, COL2A1, COL1A1 and ACAN mRNA expression was

performed by real-time PCR (ABI 7300, Applied Biosystems

Foster, CA). Glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) was used as a housekeeping gene. Reactions were done

in triplicate using 2 ml of cDNA per reaction. All primers used are

shown in Table 3. To quantify the relative expression of each

gene, Ct values were normalized against the endogenous reference

(DCt = Ct target – Ct GAPDH) and were compared with a

calibrator using the DDCt method (DDCt =DCt sample – DCt

calibrator).

Protein Extraction and Western Blot Analysis
Normal and osteoarthritic chondrocytes were lysed using lysis

buffer containing 30mM Tris (pH 7.5), 150mM NaCl, 10%

glycerol, 1% Nonidet P-40, and a cocktail of protease and

phosphataese inhibitors. Protein concentration was quantified

using the Bradford protein assay (Bio-Rad Protein Assay,

BioRad, Hercules, CA) with bovine serum albumin as standard.

Cell lysates from normal and OA chondrocytes were electro-

phoresed and separated on a 4–10% Tris-HCl gel (Bio-Rad

Protein Assay, BioRad, Hercules, CA) and transferred to a

Hybond-ECL nitrocellulose membrane (Amersham Biosciences,

Piscataway, NJ) that was probed with anti-ITGAV, SREBP-2,

HMGCR, total PI3K, p-PI3K, total Akt and p-Akt (Santa-Cruz

Biotechnology Inc. Europe). Signals were detected using suitable

immunoglobulin IgG conjugated with horseradish peroxidase

(Invitrogen, Life Technologies, Paisley, UK). Anti-b-actin anti-

body (Sigma-Aldrich, Missouri, USA) and anti-GAPDH antibody

(Cell Signaling Technology, Boston, USA) were used as loading

controls as indicated in the figure legends.

ELISA Assay
Culture supernatants from osteoarthritic and normal chondro-

cytes were harvested and stored frozen at 280uC. TGF-b and

MMP-13 were quantitated in cell supernatants by ELISA using

Quantikine human TGF-b and MMP-13 immunoassay kits

according to the instruction of the manufacturer (R&D Systems,

McKinley Place, NE Mineapolis, USA). Samples were measured

in duplicate.

25-hydroxycholesterol Treatment in OA Chondrocytes
Cells were seeded on six-well plates at a density of 0.36106

cells/well. Three days post-seeding normal chondrocytes were

treated with 25 mM of 25-hydroxycholesterol (Sigma-Aldrich,

Missouri, USA) or DMEM/F-12 alone for 12 h. Each experiment

was conducted in duplicate and the results from 2 wells were

averaged and considered as n = 1. RNA and proteins were

extracted while real-time PCR and Western blotting analysis were

performed.

TGF-b Treatment in Normal Chondrocytes
Cells were seeded on six-well plates at a density of 0.36106

cells/well. Three days post-seeding normal chondrocytes were

treated with 10 ng/ml of TGF-b (Sigma-Aldrich, Missouri, USA)

or DMEM/F-12 alone for 30 min, 2 h, 6 h and 24 h. Each

experiment was conducted in duplicate and the results from 2 wells

were averaged and considered as n = 1. RNA and proteins were

extracted while real-time PCR and Western blotting analysis were

performed.

TGF-b Treatment in Normal Chondrocytes with
Subsequent Use of the Pharmacological Inhibitor of TGF-
b Receptor, SB-431542

Cells were seeded on six-well plates at a density of 0.36106

cells/well. Three days post-seeding normal chondrocytes were

treated with 10 ng/ml of TGF-b (Sigma-Aldrich, Missouri,

USA), 10 ng/ml of TGF-b plus 1 mM of SB-431542, 10 ng/ml

of TGF-b plus 10 mM of SB-431542 or DMEM/F-12 alone for

6h. Each experiment was conducted in duplicate and the results

from 2 wells were averaged and considered as n = 1. RNA and

proteins were extracted while real-time PCR and Western

blotting analysis were performed.

OA Chondrocytes’ Viability after Treatment with
Synthetic Peptides Cyclo-RGDFV (RGD) and RGE

Cells were plated at 16104 cells/well in a 96-well plate and

allowed to attach overnight. The following day, cells were shifted

to serum-free medium and then treated with 25 mM of cyclo-

RGDFV (RGD) peptide (Calbiochem-Novabiochem, UK) for

24 h. Controls included serum-free, peptide untreated cells. A

peptide containing an RGE motif (Sigma-Aldrich, Missouri,

USA) served as control in addition to a no-peptide control. Cell

viability was estimated using the TACS MTT assay kit (R&D

Systems, McKinley Place, NE Mineapolis, USA) according to the

manufacturer’s instructions.

Treatment of OA Chondrocytes with Synthetic Peptides
Cyclo-RGDFV (RGD) and RGE

Cells were seeded on six-well plates at a density of 0.36106

cells/well. Three days post-seeding osteoarthritic chondrocytes

were treated with 25 mM of cycloRGDFV (RGD) peptide

(Calbiochem-Novabiochem, UK), RGE peptide (Sigma-Aldrich,

Missouri, USA) or DMEM/F-12 alone for 24 h. Each experi-

ment was conducted in duplicate and the results from 2 wells

were averaged and considered as n = 1. RNA and proteins were

extracted 24 h after treatment with the peptide and were subject

to Real Time PCR and Western blotting analysis.

Statistical Analysis
Genotype distribution, allele frequencies and their association

with other variables, such as K/L score, BMI and sex, were

analyzed using the chi-square test. In addition, we included in

the logistic regression model, variables known to be associated

with OA. These variables were age, sex and BMI. Odds ratio

(OR) and 95% confidence interval (CI) for relative risks were

calculated using Fisher’s exact test when necessary. Probability

(p) values quoted were based on two-sided tests. A two-sided p

value less than 0.05 was considered as statistically significant.

The minimum detectable ORs under the log additive model

with power $80% and significance level of 5% were calculated for

each comparison using Quanto version 1.2.4 (http://hydra.usc.

edu/gxe).

The G-allele frequency (SREBP-2 1784G.C) was set to 77%

(the frequency for all 701 of our controls) and the population risk

of OA was set to 5%.

Gene expression data were analyzed using unpaired t-test as

well as Analysis of Variance (ANOVA) and the Tukey’s Honestly

Significant Difference (HSD) as the post hoc test where applicable.

Numerical data were expressed as mean 6 Standard Deviation

(SD). A two sided p value ,0.05 was considered as statistically

significant.

All statistical analysis was performed using the SPSS software

(version 17.0).
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