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Non-host resistance (NHR) is a broad-spectrum plant defense. Upon colonizing on the
surface on the root or leaves of non-host species, pathogens initial encounter preform
and induce defense response in plant, such as induced hypersensitive response, PAMPs
triggered immunity (PTI), and effector triggered immunity (ETI). The ability of plants
to develop an induced systemic response (ISR) in reaction to the colonization by
non-pathogenic rhizobacterium depends on interactions between host plants and the
colonizing rhizobacterium, and the ISR also can be defined as a NHR. However, how
the colonization signal is and how systemic resistance to pathogens is developed is still
unclear. In this study, we demonstrated that the extracellular polysaccharides (EPSs)
of Bacillus cereus AR156 could act as novel microbe-associated molecular patterns
(MAMPs) and function in the early perception status of the ISR of B. cereus AR156.
The results revealed that B. cereus AR156 EPS could induce systemic resistance to Pst
DC3000 in Arabidopsis. Cellular defense response markers such as hydrogen peroxide
accumulation, callose deposition, and defense-associated enzyme were induced upon
challenge inoculation in the leaves primed by EPS. Moreover, the defense-related genes
PR1, PR2, and PR5 and mitogen-activated kinases (MAPK) cascade marker gene
MPK6 were concurrently expressed in the leaves of EPS-treated plants and induced
higher resistance to Pst DC3000 in Col-0 than that in the jar1 or etr1 mutants. The
protection was absent in the NahG transgenic plants and npr1 mutant, suggesting an
activation of the salicylic acid (SA)- and the MAPK-dependent signaling pathways with
NPR1-dependent by B. cereus AR156 EPS. In conclusion, B. cereus AR156 EPS play
an important role in MAMP perception during the process of rhizobacteria-triggered
NHR. This study is the first to illustrate how AR156 induces systemic resistance to Pst
DC3000 in Arabidopsis. It also provides the first explanation of how plants perceive
colonization of non-pathogenic bacteria and how rhizobacteria trigger ISR to plant
pathogens.

Keywords: induced systemic resistance (ISR), non-host resistance, micro-associated molecular patterns
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INTRODUCTION

Plant growth is influenced by a variety of biotic and abiotic
factors. To survive from an antagonistic and complex
environment, the plant has evolved a series of inducible
defense mechanisms, which can assist them to activate
appropriate defense reactions upon pathogen invasion (Niu
et al., 2011; Jiang et al., 2015). Well-researched examples of
plant-induced resistance include SAR and rhizobacteria-ISR,
which are phenotypically similar to each other and both of them
can be defined as a non-host resistance (NHR) (Conrath et al.,
2002; Jiang et al., 2015). NHR is one kind of resistance exhibited
by an entire plant species to all genetic variants of a non-adapted
pathogen species in nature. Phyto-hormones such as SA, JA, and
ethylene play important but quite different roles in the signaling
network, which function on regulating the development of ISR
and SAR (Glazebrook, 2001; Niu et al., 2011). As previously
reported, the SAR is induced by SA, and its onset involves both
systemic and local increases in endogenously synthesis of phyto-
hormones SA, leading to activation of pathogenesis-related (PR)
proteins encoding genes, such as PR1, PR2, and PR5 (Ward et al.,
1991; Van Loon and Van Strine, 1999; Niu et al., 2011; Jiang et al.,
2015). In contrast, ISR requires the JA and ET signaling pathways
(Van Loon et al., 1998; Jiang et al., 2015) and is combined with
the high expression of the plant defensin 1.2 (PDF1.2) (Van
Oosten et al., 2008; Jiang et al., 2015).

Induced systemic response has been found and demonstrated
in series of plant species [e.g., cucumber (Cucumis sativus), bean
(Phaseolus vulgaris), and tomato (Solanum lycopersicum) (Van
Loon et al., 1998; Van der Ent et al., 2008; Jiang et al., 2015)]. The
rhizobacterium Pseudomonas fluorescens WCS417r (WCS417r
hereafter) has been demonstrated, which could trigger ISR in
series of plant species (Pieterse et al., 2002). Nevertheless, it
has also been documented that Bacillus cereus AR156 induces
systemic resistance in Arabidopsis (Niu et al., 2011). The ability of
plants to trigger ISR in response to the root colonization by non-
pathogenic rhizobacterium relies on the interactions between
host plants and the rhizobacterium (Van Loon et al., 1998;
Pieterse et al., 2002), which rises following questions: How do
plants perceive the colonization of non-pathogenic bacteria? How
do bacteria colonizing plant roots trigger ISR to plant pathogens
in systemic tissue?

Plants are equipped with a multiple of immune receptors,
which can sense the invasion of numerous pathogenic microbes
(Boller and Felix, 2009; Dodds and Rathjen, 2010; Monaghan
and Zipfel, 2012; Spoel and Dong, 2012; Li et al., 2014). At the
front line, plants have two main modes functions on pathogen
recognition. The first mode was pattern recognition receptors
(PRRs), which localized on the plasma membrane and function
on the recognition of pathogen/microbe-associated molecular
patterns (PAMPs/MAMPs). Most of these conserved signatures

Abbreviations: dpi, Day post inoculation; dpt, Day post treatment; EPS,
Extracellular polysaccharides; hpi, Hour post inoculation; HR, Hypersensitive
response; ISR, Induced systemic resistance; JA, Jasmine acid; MAMPs, Micro-
associated molecular patterns; MAPK, Mitogen-activated protein kinases; Pst
DC3000, Pseudomonas syringae pv. tomato DC3000; SAR, Systemic acquired
resistance; SA, Salicylic acid.

are belongs to the essential microbial structures, such as flagellin
of bacteria, cell walls and translation factors (Boller and Felix,
2009; Mari-Anne et al., 2013; Newman et al., 2013; Sreekanta
et al., 2015; Trdá et al., 2015). The endogenous signals may
cause similar responses to pathogen, which was called damage-
associated molecular patterns (DAMPs). These signals include
oligogalacturonides (OGs) and cutin monomers, which could
act as a critical component of signaling in signaling tranduction
(Kauss et al., 1999; Huffaker and Ryan, 2007; Yamaguchi et al.,
2010; Rasul et al., 2012; Bartels et al., 2013; Sreekanta et al., 2015).

Host resistance responses induced by MAMPs are collectively
referred to as pattern-triggered immunity (PTI) (Jones and
Takemoto, 2004; Zhang and Zhou, 2010). In pattern-triggered
immunity, the defense responses are motivated following by
the recognition of pathogen PAMPs, such as flg22, which is a
conserved 22 amino acid N-terminal sequence of the bacterial
flagellin protein. In Arabidopsis, flg22 has been well studied and
perceived by PRRs such as FLAGELLIN-SENSITIVE 2 (FLS2).
Recent studies have shown that PTI also plays an important role
in NHR. For example, the flagellin of biocontrol strain, which
can act as MAMPs and recognized by PRRs also can trigger
ISR. Meziane and asscociate reporte that the isolated flagellin
of P. putida WCS358 was shown to trigger ISR against Pst
DC3000 in Arabidopsis, as well as an Lipopolysaccharides (LPS)
from P. fluorescens WCS417r and P. putida WCS358 (Meziane
et al., 2005). Beside the flagellin, the bacterial Lipopolysaccharides
also can act as a prototypical PAMP which can induce series
of plant defense-related responses, such as the nitric oxide
(NO) generation, oxidative burst, the cell-wall alteration, callose
deposition, and the expression of PR gene (Sun and Li, 2013).

Zhang et al. (2007) and associates reported that the reactive
oxygen species (ROS) production in the process of PTI was
mediated primarily by the NADPH oxidase RBOHD, which was
necessary for callose deposition (Torres et al., 2002; Sreekanta
et al., 2015). The following responses included production of
SA, JA, and ET, the expression level of defense-related gene
changes (van Loon et al., 2006; Browse, 2009; Vlot et al.,
2009; Sreekanta et al., 2015). Many studies have reported that
phyto-hormones SA, JA, and ET play important roles in the
signaling network on regulating the development of ISR. As
we all known, some beneficial rhizobacteria can trigger ISR by
priming the plant for potentiated activation of several cellular
defense responses. The potentiated responses include oxidative
burst, callose deposition (Iriti et al., 2003), defense-related
enzymes accumulation (Benhamou and Belanger, 1998), and
some secondary metabolites production (Yedidia et al., 2003).
Therefore, here we raised a question: Is there a crucial part of
microbial structures that could act as a type of MAMP that could
be perceived by plants and trigger ISR to the pathogen?

Microorganisms have evolved in various responses to biotic
and abiotic stress and interact with their environments (Pintor
et al., 2012; Singh et al., 2012; Huang and Liu, 2013). An efficient
response mechanism is the EPS hereafter secretion (Wei et al.,
2011; Wang et al., 2014). A series of studies have reported that
EPS act as highly potent and efficient signatures that can perceive
environment signals and interact with plants. We propose that
the EPS of rhizobacteria can act as MAMPs and facilitate
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the induction of systemic resistance in some rhizobacteria to
pathogens in plants.

We previously isolated the rhizobacterium B. cereus strain
AR156. In our previous study, it was found that colonization of
Arabidopsis roots by AR156 could enhance resistance against a
broad-spectrum disease. We further demonstrated that AR156
could elicit ISR through simultaneously activating of the SA
and JA/ET two signaling pathways (Niu et al., 2011). To
further investigate how plants perceive the colonization of non-
pathogenic bacteria and how bacteria trigger ISR to plant
pathogens, we carried out the current study by using a well-
established system employing ISR-inducing B. cereus strain
AR156 and a plant-pathogen interacting system (Arabidopsis and
Pst DC3000), a common practice in our lab over the past few
years (Ref).

In this study, we demonstrated that B. cereusAR156 EPS could
act as novel MAMPs during rhizobacterium-ISR that functioned
to distinguish between the rhizobacterium and plant. Results
showed that the B. cereus AR156 EPS could be perceived by
Arabidopsis, which activated the downstream immune response,
including the activation of various cellular defense responses
and changes in gene expression encoding PR proteins [PR1,
PR2, PR5] through the MAPK- and SA-signaling pathways. The
B. cereus AR156 EPS-triggered ISR was dependent on an ankyrin
repeat protein, NPR1 (non-expresser of PR genes 1)/NIM1 (non-
inducible immunity). This study is the first to illustrate and
provide a clear explanation regarding how the plant perceives the
colonization of non-pathogenic bacteria and triggers ISR to plant
pathogens when the pathogens are localized on the surface of the
plant root.

MATERIALS AND METHODS

Plants, Bacterial Strains, and Growth
Conditions
The following Arabidopsis lines were used: Col-0 (wild-type
Arabidopsis thaliana ecotype); npr1 (Bowling et al., 1994);
signaling mutants jar1 (Staswick et al., 1992); and etr1 (Bleecker
et al., 1988) and a transgenic line NahG (overe-expressing the
bacterial NahG gene in Col-0) (Delaney et al., 1994); All Seeds
of Arabidopsis lines were sown in an soil combined with sterilized
vermiculite and potting soil, and the 2-week-old seedlings were
transferred into 200 ml pots, which filled with a mixture of
sterilized vermiculite and potting soil, each pot placed one
seedling. All the plants were cultivated in a growth chamber with
a suitable condition, which was 10 h day (200 μE m−2 s−1 at
22◦C) and a 14 h night (20◦C) cycle at 70% relative humidity
and the whole growth process was supplied with modified
half-strength Hoagland nutrient solution weekly (Hoagland and
Arnon, 1938).

The studied PGPR strain B. cereus AR156 was cultivated on
LB (Luria-Bertani) (yeast extract 5 g, peptone 10 g, NaCl 10 g in
1 L of water) agar plates at 28◦C for 24 h. The B. cereus AR156
cells were pelleted by centrifugation and re-suspended in sterile
10mMMgCl2 solution and then adjusted density to 5× 107 CFU
ml−1 for use.

The challenging pathogen Pst DC3000 was cultivated in
the liquid King’s B medium (peptone 20 g, K2HPO41.5 g,
MgSO4.7H2O 1.5 g, Glycerol 10 ml, in 1 L of water), which
containing 50 mg/L of rifampicin at 28◦C overnight. The Pst
DC3000 cells were collected by centrifugation and re-suspended
in 10 mMMgCl2 solution, in which containing 0.01% (v/v) of the
surfactant Silwet L-77 (bought from Sigma, St Louis) and adjusted
density to 5 × 107 CFU ml−1 for use (modified from Niu et al.,
2011).

Extraction and Purification of
Extracellular Polysaccharides from
B. cereus AR156
The extraction and purification of EPS from B. cereus AR156
cells was carried out by reference to the method of Hung et al.
(2005). The B. cereus AR156 cells were inoculated into 1 L of
LB liquid medium within 48 h after it had been autoclaved at
121◦C for 20 min. After allowing the culture to grow for 48 h,
an aliquot from the bacterial culture was taken and centrifuged
at 5000 g for 30 min. After centrifugation, the culture contained
two layers: a pellet and a supernatant. EPS were then extracted
from the supernatant. Five volumes of isopropanol were added
to precipitate EPS overnight at 4◦C. The next day, the pellets
were spun down, re-suspended in 10 ml of freshly made digestion
mix (0.1 M MgCl2, 0.1 mg/ml RNase and 0.1 mg/ml DNase in
ddH2O), and incubated for 1 h at 37◦C. The treated samples
were extracted with equal volumes of phenol:chloroform twice.
The samples were then collected and dialyzed in a large volume
of ddH2O (for example 5L) for 24–48 h at room temperature.
The dialyzed samples were collected and dried using a lyophilizer
(LyoQuestTM −85). A 50 mg/ml EPS aqueous solution was
prepared for use in the following experiments (Hung et al., 2005;
Dogan et al., 2015).

Hypersensitive Response Analysis
In this study, we employed two systems to perform a
hypersensitive analysis: Arabidopsis and tobacco. In Arabidopsis,
the left half of the leaves, which was from 6-weeks-oldArabidopsis
plants were infiltrated with B. cereus AR156 EPS (50 mg/ml);
The Pst DC3000 strains which containing vector only or
overexpressing of avrRpt2 (1 × 107 CFU ml−1), the supernatant
of B. cereus AR156, and the cell suspension of B. cereus AR156
(5 × 107 CFU ml−1). MgCl2 (10 mM) and LB liquid medium
were employed as negative controls. Leaves were stained with
Trypan Blue 6, 14 or 20 hpi as previously described (Koch and
Slusarenko, 1990; Katagiri et al., 2002; Takahashi et al., 2003).
The same treatments and methods were used in tobacco. All
experiments were performed three times.

Antagonistic Analysis of Extracellular
Polysaccharides of B. cereus AR156 to
Pst DC3000 In Vitro
In this study, the antagonistic activities of B. cereus AR156 EPS
and the B. cereus AR156 component were assayed. A 10 mL
suspension of 1.0 × 107 CFU/mL Pst DC3000 strains containing
vector only or clones expressing avrRpt2 were added to 1 L of
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King’s B medium (make sure the temperature lower than 50◦C),
and mixed completely, then poured into plates. A 50 mg/ml EPS
aqueous solution was prepared and added into an Oxford cup;
the solution was then placed onto a plate containing previously
prepared Pst DC3000 and incubated at 28◦C for 2 days. This
procedure was repeated three times for each treatment. The
supernatant of B. cereus AR156, LB medium, and sterile water
were used as controls. For the B. cereus AR156 itself, the strain
was placed onto the plates and incubated at 28◦C for 2 days. Four
repeats were set on one plate. Finally, the diameter of the clear
semicircular hyaline zone, which was surrounding the bacterial
plaque, was measured after incubation, and the size of the clear
semicircular hyaline zone was used to evaluate the antagonistic
activities.

Induction Treatments
Six-weeks-old plants were subjected to bacteria induction
treatments in 4 weeks later. For the B. cereus AR156 EPS
treatments, 50 mg/ml EPS was sprayed onto the leaf surface of
the Arabidopsis ecotype Col-0 plant. For the control treatment,
sterilized water was sprayed onto the leaf surface of the
Arabidopsis ecotype Col-0 plant.

Five days after the induction treatment, half of the seedlings
in each treatment were challenge-inoculated through spraying
the cell suspension of the virulent pathogen Pst DC3000
(5 × 107 CFU ml−1) on the leaves, until all the leaves were
covered with fine droplets. The other halves of the remaining
plants were sprayed with 10 mM MgCl2 as the negative control.
All the plants were incubated in a dew chamber with 100%
relative humidity for 3 days and then transferred to a normal
growth chamber after challenge inoculation.

Density Detection of Pst DC3000 in
Arabidopsis Leaves
To detect the density of Pst DC3000 in Arabidopsis leaves,
samples were collected at three time points: 0, 3, and 4 days
post inoculation (dpi). Arabidopsis leaves (0.1 g) were surface
sterilized by 70% ethanol, then washed in sterilized water for
three times, and then homogenized by using a sterilized mortar
and pestle with 0.9 ml 10 mM MgCl2. Subsequently, suitable
dilutions were plated onto King’s B agar containing with 100 mg
l−1 cycloheximide and 50 mg l−1 rifampicin (Pieterse et al.,
1996), then incubated at 28◦C. After 48 h, the colonies shown
on the plate were counted, and then the density of Pst DC3000
in the Arabidopsis leaves was detected, expressed as CFU g−1
fresh leaf (FW). This experiment was repeated three times. Means
were compared by using a LSD test (short of least significant
difference) (P = 0.05), then the LSD results and standard errors
and were calculated (Niu et al., 2011; Jiang et al., 2015).

Detection of Hydrogen Peroxide
Accumulation and Activities of SOD and
POD
The content of hydrogen peroxide and the activities of SOD and
POD in plants were determined according to the method of Jiang
et al. (2015) using a ‘Hydrogen Peroxide assay kit’, ‘SOD detection

kit’, and ‘POD detection kit’, respectively, (Nanjing Jiancheng
Biological Engineering Institute, Nanjing, China) according to
the manufacturer’s instructions (Jiang et al., 2015).

To experimental methods used for determining the
accumulation of hydrogen peroxide and callose deposition
in different treatments were referred from the methods described
by Reuber et al. (1998) and Niu et al. (2011). There was no change
in our study.

Plant RNA Extraction and RT-PCR
Analysis
Arabidopsis leaves for RT-PCR analysis were soaked in liquid
nitrogen. The total RNA of each sample was extracted by the
TRIZOL reagent (Invitrogen, Cat. No. 15596-026), referring to
the manufacturer’s recommendations. RT-PCR was developed
with 1 mg total RNA, treated with DNase I (gDNA Wiper
from VazymeTM, Cat. No. R133-01). Reverse transcription was
conducted using HiScriptTM Q Select RT SuperMix (VazymeTM,
Cat. No. R133-01). Quantitative RT-PCR was conducted on an
ABI 7500 system (ABI) using the SYBR premix Ex-Taq mixture
(Takara). PCR was performed under the following conditions:
94◦C for 5 min, followed by 45 cycles of 94◦C for 10 s, 55◦C for
20 s, and 72◦C for 30 s, and end with 72◦C for 5 min. At-BETA-
TUB 4 (locus: At4g44340) was employed as the internal standard.
All the PCRprimers used in our study are listed in Supplementary
Table S1.

Protein Extraction and Western Blotting
Analysis
To detect the MAPK6 protein expression level during the EPS-
ISR process, samples were collected at 3 and 5 days post-EPS
treatment (dpt) and at 6 and 12 h post Pst DC3000 inoculation
(hpi). Arabidopsis leaves were soaked in liquid nitrogen, and
the total protein in the leaves was extracted by a homemade
protein extraction buffer (Zhang et al., 2011). The protein
concentration was detected by using Bradford reagent (Bio-
Rad). 10 μg of total protein was size-fractionated by SDS–PAGE
gel for Western blotting analysis, then all the proteins were
transferred to a Hybond-P PVDF membrane (bought from GE
Healthcare) in transfer buffer in which containing 10%methanol.
The membrane was probed with a specific MAPK6 antibody
(purchased from Sigma–Aldrich, Cat. No. HPA030262) and
a secondary horseradish-peroxide-conjugated antibody (anti-
rabbit-HRP) purchased from Sigma–Aldrich (Cat. No. R2004).
The final antibody-protein complexes were determined by using
ECL-plus (GE Healthcare) on a Bio-Rad Versa doc 5000, and
the image was analyzed using Quantity One software. β-Tubulin
was used as an internal standard. The β-tubulin antibody was
purchased from Sigma–Aldrich (Cat. No. T2200).

Analysis of the Characteristics and
Composition of Extracellular
Polysaccharide
Finally, the IR and UV spectra, the molecular weight and
the monosaccharide composition of the sample were obtained
to analyze the characteristics and composition of B. cereus
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AR156 EPS. The IR spectrum analysis was carried out by
using an FTIR, Jasco 6100, Model Japan (resolution: 4 cm−1).
The sample was ground with spectroscopic grade potassium
bromide powder and then pressed into a 1 mm pellet
for FTIR measurement over the frequency range of 4000–
400 cm−1 (Mid infrared region). The UV spectrum of the
EPS was recorded by using a T80+UV/VIS Spectrometer,
PG Instrument Ltd. (range: 190–1000 nm). The molecular
weight and monosaccharide composition assays were performed
as described by Haroun and associates (Haroun et al.,
2013).

Statistical Analysis

All bioassays were conducted three times with 24 seedlings per
treatment. Analysis of variance (ANOVA) was carried out using
SPSS software version 19.0 (IBM). A mean comparison was
conducted by using LSD test (P < 0.05). Standard errors and
standard deviations (SDs) were calculated.

RESULTS

The Extracellular Polysaccharides of
B. cereus AR156 Elicited Strong HR in
Plants Leaves
In our previous study, B. cereus AR156 was found to not
only promote the growth of Arabidopsis but also trigger ISR
(Niu et al., 2011). To demonstrate how B. cereus AR156 was
perceived by plants and how ISR was triggered in plants, a
series of components of B. cereus AR156 were examined and
tested in this study. As shown in Figure 1, the Arabidopsis
leaves of the B. cereus AR156 EPS treatment started to show HR
symptoms 6 h post infiltration (hpi), and the symptoms became
more significant at 12 h (Figure 1). The same symptoms were
observed in B. cereus AR156 and its supernatant treatment. In
this study, we also used Pst DC3000 strains containing vector
only or clones expressing avrRpt2 as a control. The results
described in a previous study are shown in Figure 1(Takahashi
et al., 2003). To confirm these results, we employed a tobacco
system to repeat the experiments. As shown in Figure S1,
the B. cereus AR156 EPS could significantly elicit HR on
tobacco leaves (Supplementary Figure S1). The B. cereus
AR156 could trigger HR on non-host plants in a manner
resembling that observed for the pathogenic P. syringae strain
Pst DC3000. B. cereus AR156 is avirulent to plants such as
Arabidopsis (data not shown). Therefore, we concluded that
B. cereus AR156 might act as a beneficial elicitor that could
be perceived by plants and could trigger immunity similarly to
pathogens.

The Extracellular Polysaccharides of
B. cereus AR156 Triggered ISR to Pst
DC3000 in Arabidopsis
Research has shown that flg22 can induce ROS production and
enhance plant resistance to Pst DC3000 infection (Lu et al.,

2009; Zhang et al., 2010; Lin et al., 2014). To determine whether
B. cereus AR156 EPS 6 could act as a MAMPs and induce
systemic resistance to Pst DC3000 infection, B. cereus AR156 EPS
were analyzed for their ability to trigger ISR to Pst DC3000 in
Arabidopsis Col-0 plants in a greenhouse trial, in which H2O
was employed as a mock treatment. Four dpi, typical symptoms
of bacterial speck disease-water-soaked spots or yellowing leaves
or surrounded by extensive chlorosis was shown on the surface
of the mock-treated plants leaves (Figures 2A,B). Moreover,
compared with the controls, the pretreatment with B. cereus
AR156 EPS caused a significant (P < 0.05) decrease in disease
severity in Arabidopsis Col-0 plants (Figure 2C); therefore,
the biocontrol efficacy of B. cereus AR156 in reducing the
leaf speck disease caused by Pst DC3000 could up to 62.71%
(Supplementary Table S2). To prove that the abovementioned
result was not caused by the antagonistic effect of B. cereusAR156
EPS on Pst DC3000 in Arabidopsis Col-0 plants, we carried out
an evaluation experiment on the antagonism of B. cereus AR156
and Pst DC3000 in vitro. As shown in Supplementary Figure S2,
B. cereus AR156 EPS had no antagonistic effect on Pst DC3000.
Overall, we could conclude that the B. cereus AR156 EPS could
induce systemic resistance to Pst DC3000 in Arabidopsis Col-0
plants.

The Extracellular Polysaccharides of
B. cereus AR156 Induced
Defense-related Gene Expression in
Arabidopsis
Enhanced disease resistance in Arabidopsis is often accompanied
by enhanced transcription of PR genes (such as PR1, PR2,
and PR5) associated with the SA-mediated defense signaling
pathway (Uknes et al., 1992; Jiang et al., 2015) and the
PDF1.2 gene associated with the JA/ET- mediated defense
pathway. To test whether B. cereus AR156 EPS could induce
expression levels of defense-related genes, the expression
levels of all four genes were examined in plants, which
were treated with B. cereus AR156 EPS and Pst DC3000
inoculation. As demonstrated in Figure 3, compared with
the mock treatment, the transcripts of three PR genes were
accumulated to a higher degree in the leaves treated with
B. cereus AR156 EPS from 1 to 5 dpi and reached their
maximums at 3 dpi (Figures 3A,C,E); however, there was
no significant change in the expression level of PDF1.2 gene
(Figure 3G).

Q-RT-PCR was also employed to analyze the transcription
of the four genes in Arabidopsis ecotype Col-0 plants, which
were inoculated with Pst DC3000 alone and in those treated
with B. cereus AR156 EPS and inoculated with Pst DC3000.
During the pathogen challenging process, Q-RT-PCR revealed
that B. cereus AR156 EPS stimulated the transcription of
PR1, PR2, and PR5 in Arabidopsis ecotype Col-0, which
reached their maximums at 6 hpi in the samples treated
with B. cereus AR156 EPS and inoculated with Pst DC3000
(Figures 3B,D,F). Regarding the expression levels of PDF1.2
genes, there was no significant difference between the B. cereus
AR156 EPS treatment and the mock treatment (Figure 3H).
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FIGURE 1 | The EPSs of Bacillus cereus AR156 elicited strong HR in non-host Arabidopsis ecotype Col-0 plants leaves. The HR test was conducted
using Trypan Blue staining. The left half of the leaves from 6-week-old Arabidopsis ecotype Col-0 plants were infiltrated with B. cereus AR156 EPS (50 mg/ml); Pst
DC3000 strains (1 × 107 CFU ml−1) containing vector only; or clones expressing avrRpt2, the supernatant of B. cereus AR156, and the cell suspension of B. cereus
AR156 (5 × 107 CFU ml−1). MgCl2 (10 mM) and LB liquid medium were employed as negative controls. Leaves were stained with Trypan Blue at 6, 14, or 20 hpi.
Fractions indicate the number of leaves exhibiting HR and the total number of leaves tested. hpi, hours post-inoculation. All experiments were performed three times,
and similar results were obtained.

These results indicated that the transcription of the three
PR genes (PR1, PR2, and PR5) in Arabidopsis treated with
B. cereus AR156 EPS and inoculated with Pst DC3000 was
more rapid than the treatment inoculated with Pst DC3000
alone. Furthermore, over all test periods, transcription of three
PR genes (PR1, PR2, and PR5) was stronger in Arabidopsis
treated with B. cereus AR156 EPS and inoculated with Pst
DC3000 than that in Arabidopsis inoculated with Pst DC3000
alone.

The Extracellular Polysaccharides of
B. cereus AR156 Primes for Hydrogen
Peroxide Accumulation, Callose
Deposition, and Increased
Defense-related Enzyme Activities in
Arabidopsis
In plants, rhizobacteria-trigered ISR is usually combined with the
enhancement of activity of cellular defense responses, such as a
hydrogen peroxide rapidly accumulation, callose deposition and
increased defense-related enzyme activities (Conrath et al., 2002;

Van Wees et al., 2008), which are response upon the pathogen
attack. B. cereus AR156 has been demonstrated to be able to
prime Arabidopsis for potentiated cellular defense responses (Niu
et al., 2011; Jiang et al., 2015). To examine whether B. cereus
AR156 EPS could enhance the activities of the cellular defense
responses, hydrogen peroxide accumulation, callose deposition
and defense-related enzyme activities inArabidopsis ecotype Col-
0 were detected. As shown in Supplementary Figure S3 and
Figure 4A, under the conditions without pathogen challenge, the
accumulation of hydrogen peroxide and callose were determined
at 3 dpi in the leaves of Arabisopsis pre-treated with B. cereus
AR156 EPS. At 5 dpi, the change in cellular defense responses
tended to decrease and stabilize, and as shown in Figure 4A,
hydrogen peroxide accumulation peaked at 3 dpi in the leaves
of Arabidopsis ecotype Col-0 plants treated with B. cereus AR156
EPS. These results are in agreement with those previously
obtained from histone staining (Ref). Regarding its effect on
defense-related enzyme activities, the B. cereus AR156 EPS
treatment led to potentiated SOD and POD activities in the
leaves of Arabidopsis ecotype Col-0 plants not challenged with
Pst DC3000 at 3 dpt compared with the mock treatment. Under
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FIGURE 2 | Induction of resistance to Pst DC3000 by the EPSs of B. cereus AR156 in Arabidopsis ecotype Col-0 plants. Plants were pretreated by being
sprayed with B. cereus AR156 EPS (50 mg/ml) or sterile water (as a mock control). Five days later, leaves were sprayed with Pst DC3000 at 5 × 107 CFU ml−1 or
10 mM MgCl2 (as a mock control). (A,B) Disease symptoms caused by Pst DC3000 infection in Arabidopsis plants. A representative plant from each treatment was
photographed at 5 dpi. (C) Bacterial growth assay of Pst DC3000 in Arabidopsis treated with B. cereus AR156 EPS or sterile water. Data are means and standard
deviations (SDs) (n = 24). Letters above the bars indicate statistically significant differences between treatments [least significant difference (LSD) test, P < 0.05]. dpt,
days post-inoculation. All experiments were performed three times, and similar results were obtained.

the conditions without pathogen challenge, the B. cereus AR156
EPS treatment increased the activities of SOD and POD at 1 and
3 dpt, respectively (Figures 4C,E). With pathogen challenging, he
accumulation of hydrogen peroxide and callose were obviously
determined at 12 hpi in the leaves of Arabidopsis pre-treated
with B. cereus AR156 EPS and inoculated with Pst DC3000,
whereas these defense responses were observed at 24 hpi in
plants inoculated with Pst DC3000 alone (Figure 5). As shown
in Figure 4B, in the leaves of Arabidopsis ecotype Col-0 plants,
which was treated with B. cereus AR156 EPS and inoculated
with Pst DC3000, hydrogen peroxide accumulation reached a
maximum at 6 hpi; however, in the leaves of plants inoculated
with Pst DC3000 alone, hydrogen accumulation reached a
maximum at 24 hpi. These results are in agreement with those
previously obtained by histone staining. Regarding its effect
on defense-related enzyme activities, the B. cereus AR156 EPS
treatment elevated the activities of SOD and POD at 3 and 12 hpi,
respectively, (Figures 5D,F). These results indicate that the
B. cereus AR156 EPS pre-treatment could make plants respond to
pathogen infestation faster and more strongly by enhancing the
activation of cellular defense responses.

SA Signaling Pathways and NPR1 are
Involved in the Extracellular
Polysaccharides of B. cereus AR156
Induced Systemic Resistance in
Arabidopsis
To identify the signal transduction pathways involved in B. cereus
AR156 EPS ISR in Arabidopsis, an epistasis analysis method was
used. We compared the levels of B. cereus AR156 EPS-induced
resistance to Pst DC3000 in the wild-ecotype Arabidopsis Col-
0, some Arabidopsis mutants asscociated with defense-signaling
pathways, jar1, etr1, and npr1and the transgenic line NahG,
and. Pre-treated with B. cereus AR156 EPS caused a significant
(P < 0.05) reduction in disease severity in all tested Arabidopsis
lines except for NahG and npr1 compared with the respective
controls inoculated with only Pst DC3000 (Figure 6).

At 3 and 4 dpi, pretreatment with B. cereus AR156 EPS led
to a significant (P < 0.05) reduction in density of pathogen Pst
DC3000 in the leaves of all tested Arabidopsis lines except for
NahG and npr1 compared with the respective controls inoculated
with only Pst DC3000, indicating that the induction of ISR by

Frontiers in Microbiology | www.frontiersin.org 7 May 2016 | Volume 7 | Article 664

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Jiang et al. EPS act as Novel MAMPs

FIGURE 3 | Differential expression of SA and JA/ET signal markers in Arabidopsis ecotype Col-0. Leaves of Arabidopsis ecotype Col-0 were harvested at
the indicated time points for extracting total RNA. Gene expression levels were determined by Q-RT-PCR. (A–H) Time course of expression of PR1, PR2, PR5, and
PDF1.2 genes in the leaves of Arabidopsis ecotype Col-0 treated with B. cereus AR156 EPS alone and EPS-pretreated plants inoculated with Pst DC3000. The
expression values of the individual genes were normalized using β-tubulin 4 as an internal standard. Data represent the average values of at least three biological
replicates, each repeated in duplicate in the same run, and SDs (∗P < 0.05). dpt, days post-treatment with EPS; hpi, hours post-inoculation with Pst DC3000. All
experiments were performed three times, and similar results were obtained.
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FIGURE 4 | Effect of the EPSs of B. cereus AR156 and pathogen challenge on hydrogen peroxide accumulation and defense-related enzyme
activities in the defense responses of Arabidopsis ecotype Col-0. Leaves of Arabidopsis ecotype Col-0 were harvested at the indicated time points for the
evaluation of hydrogen peroxide accumulation and defense-related enzyme activity. (A,B) Time course of hydrogen peroxide accumulation; (C,D) SOD activity of
defense-related enzymes; and (E,F) POD activity in the leaves of Arabidopsis ecotype Col-0 treated with B. cereus AR156 EPS for 5 days and inoculated with Pst
DC3000. Error bars represent the standard errors of four independent treatment samples; dpt, days post-treatment; hpi, hours post-inoculation. All experiments
were performed three times, and similar results were obtained.
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FIGURE 5 | The EPSs of B. cereus AR156 induced hydrogen peroxide accumulation and callose deposition in the leaves of Arabidopsis ecotype Col-0
plants upon Pst DC3000 attack. Arabidopsis ecotype Col-0 plants were inoculated with Pst DC3000 5 days after the B. cereus AR156 EPS or sterile water
treatment, and the leaves were sampled at 12 and 24 hpi. Hydrogen peroxide accumulation and callose deposition were observed under light and epifluorescence
microscopes, respectively. Scale bars represent 20 μm. hpi, hours post-inoculation. All experiments were performed three times, and similar results were obtained.

B. cereus AR156 EPS occurred through the SA signaling pathway
andwasNPR1-dependent inArabidopsis (Figure 6). These results
are in agreement with those previously observed in defense-
related gene expression detection components and also provide a
reasonable explanation why B. cereus AR156 EPS could affect the
transcription level of SA signaling pathway marker genes (PR1,
PR2, and PR5), rather than that of the JA-responsive marker gene
PDF1.2.

The Extracellular Polysaccharides of
B. cereus AR156 Trigger ISR through
MAPK Signaling Pathway
Microbe-associated molecular patterns or PAMPs must be
perceived by PRRs (plasma-membrane localized PRRs)

combined with the motivated of MAPK and trigger plant
immunity (Trdá et al., 2015). For example, pathogen infection or
treatments with bacterial flagellin-derived flg22 peptide, which
was know as a conserved PAMP, can enhance the activation
of the four Arabidopsis MAPKs: MPK4, MPK3, MPK6, and
MPK11 (Asai et al., 2002; Beckers et al., 2009; Bethke et al.,
2011). To clarify whether B. cereus AR156 EPS could be MAMPs
and activate MAPK to trigger plant immunity, we detected the
expression level of one type of Arabidopsis MAPK—MPK6,
which is known to be activated by MAMPs—during the process
of B. cereusAR156 EPS-ISR to PstDC3000. As shown in Figure 7,
Q-RT-PCR revealed that MPK6 showed significantly altered
expression levels in the B. cereus AR156 EPS-treated plants
compared with the mock-treated ones and reached a maximum
at 1 dpt (Figure 7A). During the pathogen challenging process,
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FIGURE 6 | The EPSs of B. cereus AR156-mediated induced systemic resistance to Pst DC3000 in Arabidopsis Col-0, NahG, etr1, jar1, and npr1
plants at phenotypic. Density of Pst DC3000 in the leaves of Arabidopsis plants were measured. Plants were inoculated with Pst DC3000 at 5 days
post-treatment with B. cereus AR156 EPS (dpt), and leaves were harvested at 0, 3, 4, days post-inoculation. Bars represent average number of CFU per gram of
leaf fresh weight. Data are means and SDs (n = 24). Letters above the bars indicate statistically significant differences between treatments [least significant difference
(LSD) test, P < 0.05]. All experiments were performed three times, and similar results were obtained.

Q-RT-PCR revealed that B. cereus AR156 EPS stimulated the
transcription ofMPK6 in Arabidopsis ecotype Col-0 and reached
the maximum levels at 6 hpi in the Arabidopsis plants, which
was treated with B. cereus AR156 EPS and inoculated with Pst
DC3000 (Figure 7B). Moreover, the expression level of MPK6
was also detected by Western blotting with a commercial MPK6
antibody, and the results were consistent with the detection
of MPK6 in Arabidopsis ecotype Col-0 by Q-RT-PCR. As
shown in Figures 7C,D, B. cereus AR156 EPS could enhance the
expression level of MPK6 at 1 dpt, and in the leaves ofArabidopsis
ecotype Col-0, which was treated with B. cereus AR156 EPS and
inoculated with Pst DC3000, the expression level of MPK6
reached a maximum at 6 hpi (Figure 7C); however, in the leaves
of plants inoculated with Pst DC3000 alone, the expression level
of MPK6 reached a maximum at 12 hpi (Figure 7C). These
results suggest that B. cereus AR156 EPS could be MAMPs and
trigger ISR through MAPK signaling as well, and the activation
of MAPK signaling in plants, pre-treated with B. cereus AR156
EPS and inoculated with Pst DC3000 show more faster and rapid
than that in plants inoculated with Pst DC3000 alone.

Characteristics and Composition
Analysis of Extracellular Polysaccharide
of B. cereus AR156
Investigations of the chemical compositions and molecular
structures of EPS are important for establishing their function

relationship. Therefore, in this study, we also analyzed the
characteristics and composition of EPS extracted from
B. cereus AR156, which could act as a MAMPs. As shown
in Supplementary Figure S4, the UV scanning curve of B. cereus
AR156 EPS was smooth, with a single peak at 196 nm and
no absorption peak at 260 and 280 nm, suggesting that were
no protein, polypeptide or nucleic acid components in the
EPS samples. The IR spectral analysis results show that the
EPS molecules contained different functional groups, such as
hydroxyl, alkane, and carbonyl groups (Supplementary Figure
S5). We also demonstrated that the average molecular weight of
B. cereus AR156 EPS was approximately 13272 Da, as shown in
Supplementary Figure S6.

After hydrolysis and anthranilic acid derivatization, the sugar
composition of B. cereus AR156 EPS was analyzed by HPLC.
The monosaccharide composition of EPS was found to consist of
mannose, galactose and glucose (Supplementary Figures S7A,B).
In terms of weight, mannose (70.97%) was found to be the major
monosaccharide, followed by galactose (17.59%) and glucose
(11.45%) (Supplementary Figure S7B).

DISCUSSION

In recent years, series of studies have established the functions
of beneficial plant growth promotion rhizobacteria (PGPRs) on
improving plant health by increasing resistance to insect pests,
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FIGURE 7 | The EPSs of B. cereus AR156 induced MAPK6 expression in the leaves of Arabidopsis ecotype Col-0 plants upon Pst DC3000 attack.
Leaves of Arabidopsis ecotype Col-0 treated with B. cereus AR156 EPS alone and EPS-pretreated plants inoculated with Pst DC3000 were harvested at the
indicated time points to extract total RNA and protein; (A,B) MAPK6 gene expression levels were determined by Q-RT-PCR. The expression values of the individual
genes were normalized using β-tubulin 4 as an internal standard. Data represent the average values of at least three biological replicates, each repeated in duplicate
in the same run, and SDs (∗P < 0.05). (C,D) Expression of MAPK6 in the Arabidopsis ecotype Col-0 treated with B. cereus AR156 EPS alone and EPS-pretreated
plants inoculated with Pst DC3000 by Western blotting with a commercial MAPK6 antibody (Sigma–Aldrich), β-Tubulin was used as an internal standard. The
β-tubulin antibody was purchased from Sigma–Aldrich. All experiments were performed three times, and similar results were obtained.

pathogens, and abiotic stressors, such as salinity and drought
(Zhang et al., 2008, 2010; Lakshmanan et al., 2012). Among these
PGPR strains, B. cereus AR156 could reduce disease severity
when rhizoinoculated onto the roots of Arabidopsis plants.
Niu et al. (2011) reported that AR156 inhibit the proliferation
of the foliar pathogen Pst DC3000 through ISR, which was
dependent on NPR1 and involved both the SA and JA/ET two
signaling pathways. The two transcriptional factors WRKY11
and WRKY70 play roles in B. cereus AR156-triggered ISR to Pst
DC3000, which explains why B. cereus AR156 could trigger ISR
through the simultaneous activation of the SA and JA/ET two
signaling pathways (Jiang et al., 2015). However, little was know
on how the plant roots perceive the colonization of rhizobacteria,
such as B. cereus AR156, and trigger ISR in response to pathogen
attack. In this study, we demonstrated that the B. cereus AR156
EPS could act as novel MAMPs, be recognized by plants, and
then trigger immunity to Pst DC3000 in Arabidopsis. We also
found that perception and ISR triggering occurred through
MAPK signaling and SA-signaling pathways and was NPR1-
dependent.

Arabidopsis response to Pst DC3000 is ordinarily related to
concomitant activation of the JA/ET defense signaling (Van Loon
et al., 1998). As the results shown, the B. cereus AR156 EPS
did not enhance the expression level of the JA/ET marker gene
PDF1.2 (Figures 3G,H), and pre-treatment with B. cereus AR156
EPS could significantly (P < 0.05) reduced the disease severity
in jar1 and etr1 mutants (Figure 6), all these indicated that
the JA/ET-dependent defense responses were not potentiated
by B. cereus AR156 EPS upon Pst DC3000 infection. By
contrast, B. cereus AR156 EPS primed the expression level of
the SA-responsive genes (PR1, PR2, and PR5) upon Pst DC3000
invasion (Figures 3A–F), indicating that SA signaling might
be responsible for B. cereus AR156 EPS-induced Arabidopsis
resistance to Pst DC3000. Different bacterial PAMPs, containing
flg22, could induce overlapping genes (Zipfel et al., 2004), and
some studies have shown that flg22-induced gene regulation and
expression are shown SA-dependent after flg22 administration
(Vlot et al., 2009). In our study, we also found that the B. cereus
AR156 EPS, by acting as novel MAMPs, could induce systemic
resistance to Pst DC3000 by activating the SA signaling pathway,
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FIGURE 8 | Proposed model for the EPSs of B. cereus AR156 in the
perception rhizobacteria AR156 by plants and triggered induced
systemic resistance. The EPSs of B. cereus AR156 act as unique MAMPs
of AR156, and recognition by the receptors in Arabidopsis triggers ISR in the
leaves by activating the SA-dependent signaling pathways in an
NPR1-dependent manner, which leads to concurrent expression of a large set
of the SA-responsive genes in the leaves and hydrogen peroxide
accumulation, callose deposition and defense-related enzyme activities.
Moreover, the perception of B. cereus AR156 EPS can also activate MAPK
signaling to raise systemic resistance, which leads to the expression of
MAPK6 at the transcription and post-transcription levels. This model may
explain how the rhizobacteria can be recognized by plants and trigger ISR to
the pathogens when localized on the surface of the plant root.

in agreement with the results of previous studies. However, in
our previous study, it was found that colonization of Arabidopsis
roots by AR156 enhanced resistance against a broad-spectrum
disease and that AR156 could elicit ISR by simultaneously
activating the SA and JA/ET two signaling pathways (Niu et al.,
2011). However, in our study, the JA/ET-dependent defense
responses were not potentiated by B. cereus AR156 EPS upon
Pst DC3000 infection. Therefore, how was JA/ET-dependent
signaling activated by AR156 during the ISR process? According
to our results, in addition to the B. cereus AR156 EPS, there must
be other MAMPs that facilitate perception and trigger ISR by
activating the JA/ET-dependent signaling pathway.

Plants have evaluated series of mechanisms to help themselves
against oomycete, fungal, bacterial, and viral infections. All these
defense responses firstly start with the perception of the invading
pathogen by PRRs, which can connect with PAMPs (Bittel and
Robatzek, 2007; Segonzac and Zipfel, 2011). General elicitors
such as flagellin (flg22), peptidoglycan (PGN), elongation factor
Tu (EF-Tu), Ax21 (Activator of XA21-mediated immunity in
rice), lipopolysaccharides (LPS), β-glucans from oomycetes and
fungal chitin are recognized by plant membrane surface localized
PRRs. Series of PAMPs and their corresponding PRRs have been
identified in these years. (Newman et al., 1995, 2013; Umemoto
et al., 1997; Felix et al., 1999; Lee et al., 2001; Kunze et al., 2004;
Gust et al., 2007; Miya et al., 2007). Our study is the first to

show that the EPSss of bacteria can act as novel MAMPs and
induce visible cell death (Figure 1 and Supplementary Figure S1),
cellular defense responses such as ROS production and callose
deposition and defense-related enzymes such as POD and SOD
in the plants tested (Figures 4 and 5 and Supplementary Figure
S3) to trigger ISR to pathogens (Figure 2). These findings suggest
that the B. cereus AR156 EPS may connect with some perception
receptors localized on surface of the plant cell membrane, then
trigger ISR to pathogens.

Microbe-associated molecular patterns-triggered ISR is
important in assisting plants to limit pathogen growth or
generate signals, which were used for adaptation to secondary
infections (Coll et al., 2011; Hao et al., 2014). Many reports
have documented that MAMPs, including flg22, can induce
plant defense responses. However, to be able to implement
this functionality, recognition by PRRs is necessary. A well-
known PRR is the Arabidopsis receptor kinase FLS2, which can
recognizes a bacterial flagellin protein (flg22), which contains a
conserved 22-amino acid N-terminal sequence. FLS2 consist of
an LRR domain (extracellular leucine-rich repeat), a cytoplasmic
kinase domain and a trans-membrane domain (Chinchilla et al.,
2006; Li et al., 2014). The LRR domain can perceive flg22 and
rapidly recruits to BAK1, which was another LRR receptor-like
kinase (Chinchilla et al., 2007; Heese et al., 2007; Schulze et al.,
2010; Li et al., 2014). In this study, we did not identify the
receptors that could recognize B. cereus AR156 EPS. However, to
better understand the function of EPS in the interaction between
plants and rhizobacteria, receptor identification will be the focus
of our future studies.

However, investigations of the chemical compositions and
molecular structures of EPS are important to establish their
functional relationship (Jin et al., 2014). Therefore, in this
study, we also analyzed the characteristics and composition
of EPS extracted from B. cereus AR156 that could act as
a MAMPs. The results of IR spectral analysis showed that
the EPS molecules contained different functional groups, such
as hydroxyl, alkane, and carbonyl groups (Supplementary
Figure S5). This information will be helpful in identifying the
abovementioned receptors.

Some protein kinases belong to the mitogen-activated kinases
(MAPKs) family has been demonstrated as signal transduction
components in a variety of processes in plants (Nühse et al.,
2000). A complete Arabidopsis MAPK cascade consisting of
MEKK1, MPK3/ MPK6, and MKK4/MKK5, may be activated in
response to flg22 was identified in recent years (Asai et al., 2002).
In our study, we also demonstrated that the EPS extracted from
B. cereus AR156 could activate the MAPK cascade in response
to Pst DC3000 infection. At the transcription and protein levels,
we found that the expression of MPK6 could be increased by
B. cereus AR156 EPS treatment in Arabidopsis (Figure 7).

How were the B. cereus AR156 EPS perceived by plants, and
what was their role in the process of B. cereus AR156-ISR? In this
study, we identified B. cereus AR156 EPS as novel MAMPs that
could be perceived by some PRRs and activated plant resistance
to pathogens. A new model of the signal transduction cascade
of EPS-mediated ISR in Arabidopsis was proposed (Figure 8).
We found that the EPS of AR156 could be perceived by some
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PRRs then triggered ISR by activate the SA and MAPK signaling
pathways with an NPR1-dependent manner, thus enhancing the
level of induced disease resistance.

As far as we know, our study is the first to demonstrate that
the EPSs of B. cereus AR156 can act as novel MAMPs and trigger
ISR to the Pst DC3000 in Arabidopsis. Furthermore, this study is
the first to illustrate how AR156 induces systemic resistance to
Pst DC3000 in Arabidopsis. It is also the first to explain how the
plant perceives the colonization of non-pathogenic bacteria and
how rhizobacteria trigger ISR to plant pathogens when they are
localized on the surface of the plant root. Future studies will focus
on investigating how the EPSs are perceived by plants and how
the early downstream of the plant defense response is activated
and identifying the PRRs that can recognize the EPSs.
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