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Abstract: The use of beamforming for efficient transmission has already been successfully
implemented in practical systems and is absolutely necessary to even further increase spectral and
energy efficiencies in some configurations of the next-generation wireless systems and for low earth
orbit satellites. A remarkable capacity increase is then achieved and spectral congestion is minimized.
In this context, this article proposes a novel complex multiple-input multiple-output radial basis
function neural network (CMM-RBF) for transmitter beamforming, based on the phase transmittance
radial basis function neural network (PTRBFNN). The proposed CMM-RBF is compared with the least
mean square (LMS) algorithm for beamforming with six dipoles arranged in a uniform and circular
array and with 16 dipoles in a 2D-grid array. Simulation results show that the proposed solution
presents lower steady-state mean squared error, faster convergence rate and enhanced half-power
beamwidth (HPBW) when compared with the LMS algorithm in a nonlinear scenario.

Keywords: artificial neural networks; radial basis function networks; complex-valued kernel;
nonlinear transmitter beamforming; adaptive array.

1. Introduction

In the last decades, artificial neural networks (ANNs) have attracted much attention, performing
specific tasks in different applications, such as clustering, prediction, classification, pattern recognition,
machine learning and artificial intelligence. As ANNs are mainly designed to mimic the human
brain, a considerable number of approaches only handle real-valued signals [1–4]. However,
some engineering problems are intrinsically dependent on complex-valued signals (e.g., channel
equalization and beamforming). In order to circumvent this limitation, ANN algorithms based on
complex numbers have already been proposed for some applications, such as channel equalization [5–7]
and adaptive beamforming for wireless receivers [8–11].

Digital communication systems over wireless channels may suffer severe signal distortions
due to multipath propagation, additive white Gaussian noise (AWGN) [12,13], Doppler effects
and, not infrequently, nonlinearities at the receiver front-end and at the transmitter high power
amplifier [5,7]. Since nonlinear impairments usually worsen the performance of linear channel
equalizers, nonlinearities in the channel are better dealt with using robust nonlinear equalizers [5,7,14].
In this context, based on the phase transmittance radial basis function neural network (PTRBFNN)
equalizer [7], a blind fuzzy controller algorithm was applied to increase the concurrent neural
network equalizer (CNNE) convergence speed and decrease the residual mean squared error (MSE) [5].
Another equally important technique is the butterfly neural equalizer (BNE) which, when applied to
optical communications with two-dimensional digital modulation, is able to mitigate nonlinearities
in the photo-electric converters and simultaneously compensate chromatic and polarization mode
dispersions [6].
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For beamforming at the receiver, ANN architectures such as the bi-dimensional neural
beamformer with joint error (BNB-JE), the butterfly neural beamformer (NB-Butterfly), and the
beamformer neural network (BNN) are potential algorithms for improving receiver performance [9–11].
On the other hand, beamforming for efficient transmission is necessary to increase spectral and
energy efficiencies in some configurations of the next-generation wireless systems [15]. In addition,
for low earth orbit (LEO) satellites, the use of beamforming techniques is economically important to
mainly reduce the power consumption and to increase the data throughput [16,17]. Also, nonlinear
beamfoming algorithms can play a key role for band-limited systems employing nonlinear power
amplifiers, as in satellite communication systems [18].

In communication systems with beamforming at the transmitter, arrays with several antennas
are applied to focus the electromagnetic signal towards the desired receiver [19]. These arrays
can be controlled by three different architectures: digital, analog, and hybrid. Usually, in digital
beamforming the channel knowledge is required at the transmitter and some precoding technique
is necessary [20–25], impacting the hardware with very high computational complexity and energy
consumption. [26]. On the other hand, in analog beamforming the RF signals are manipulated by
means of controlling phase shifters and/or variable gain amplifiers (VGAs). Although this architecture
has low computational complexity and power consumption, it is less flexible and presents inferior
results when compared with digital beamforming [26,27].

In the context of LEO satellites, the use of the classical digital beamforming techniques [20–25]
is prohibitive due to the power and computational complexity constraints, which is why analog
beamforming techniques are employed in this area [16,17]. However, by means of a digital beamforming
without channel knowledge and precoding, as proposed here, it is possible to perform a low power digital
architecture which is more flexible than the analog one. This problem can be modeled as a set of electric
currents whose phases and amplitudes are modulated in such a way that the antenna radiation pattern
points to the correct direction. A useful method to determine the beamformer electric currents is via the
least mean square (LMS) algorithm. In this linear method, the filter weights, which represent the array of
electric currents, are updated by a convex cost function [28] to minimize the error between the obtained
and the desired radiation patterns [29]. However, LEO satellites frequently operate with high power
amplifiers which suffer severe signal distortion due to the nonlinearities [18]. This nonlinear scenario
reduces the LMS performance because of its linear design.

Differently from the LMS, neural networks can operate like nonlinear filters [30]. The nonlinear
structure of a neural network is modeled by nonlinear activation functions in multilayer perceptrons
(MLPs) or by Gaussian neurons in radial basis function neural networks (RBFNNs) [30]. The RBFNNs
Gaussian neurons have two free parameters, namely the Gaussian centers and the variances. Besides,
there is a linear free vector parameter of weights, which linearly weighs the output of the neurons
to yield the network output [7]. Via these three free parameters, RBFNNs can represent high-order
nonlinear spaces without the necessity of increasing the number of layers, reducing its complexity
in comparison with deep neural networks. Although artificial neural networks have been employed
for beamforming, the ANN architectures presented in the literature are unfeasible for the proposed
application, since they are designed for beamforming in receiver devices or require channel information
and/or precoding.

In such context, this article proposes a novel architecture of RBFNN, based on a complex
multiple-input multiple-output (MIMO) RBFNN (CMM-RBF) for beamforming transmitters, in contrast
to [9–11] which are designed to beamforming receivers. The proposed system applies a MIMO
variation of the multiple-input single-output (MISO) phase transmittance RBFNN (PTRBFNN) [7] to a
beamforming structure to generate a unified nonlinear solution. The PTRBFNN model was chosen
due its lower computational complexity in comparison with deep neural networks, and due to its
important role in avoiding any phase invariance at the output of the neurons in comparison with
a complex RBFNN [7]. Results show that the proposed architecture achieves enhanced half-power
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beamwidth (HPBW), faster convergence rate and lower steady-state mean squared error (MSE) when
compared with LMS beamforming in a nonlinear scenario.

The remainder of this article is organized as follows. In Section 2, a mathematical modeling is
described for a general arrangement of antennas. The LMS algorithm and the proposed complex MIMO
radial basis function for beamforming are presented in Sections 3 and 4, respectively. In Section 5,
simulation results of the CMM-RBF are compared to results obtained by LMS, considering half-power
beamwidth (HPBW), steady-state mean squared error, and convergence rate in a nonlinear scenario.
Conclusions are discussed in Section 6.

2. Antenna Array Modeling

In a transmitter, when operating with an antenna array with P dipoles of length l and
an arrangement of Q sensors around the antenna array, the matrix of steering vectors ΨΨΨ =

[ψψψT
1 ψψψT

2 · · · ψψψT
Q]

T is

ΨΨΨ = ζζζVVV ∈ CQ×P,

in which [·]T is the transpose operator. The qth steering vector ψψψq ∈ CP×1 expresses the radiation
pattern towards the qth sensor. The matrix of relative intensity of the electric field ζζζ ∈ RQ×Q is

ζζζ =


ζ1 0 · · · 0

0 ζ2 · · · 0
...

...
. . .

...

0 0 · · · ζQ

 . (1)

The qth element of the main diagonal of ζζζ is

ζq =
cos(πl cos(θq)λ−1)− cos(πlλ−1)

sin(θq)
,

in which λ = c/ f is the signal wavelength, c = 299, 792, 458 m/s is the speed of light in vacuum,
f is the frequency of the transmitted signal, and θq is the zenith angle of the qth sensor. Figure 1
presents the angular position of the qth sensor (θq, ωq) and the related radiation pattern (dq), for any
arrangement of dipoles.

z

x

yθq

ωq

sensor

qthdq

Figure 1. Representation of the angular position of the qth sensor around the array of antennas.

The matrix VVV = [vvvT
1 vvvT

2 · · · vvvT
Q]

T ∈ CQ×P is

VVV = exp(2πλ−1ΩΩΩCCC),
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where exp(·) is the scalar exponential function, CCC ∈ R3×P is the matrix of Cartesian coordinates (x, y,
z) of the dipoles:

CCC =


x1 x2 · · · xP

y1 y2 · · · yP

z1 z2 · · · zP

 , (2)

and ΩΩΩ ∈ RQ×3 is the sensors matrix of angular position:

ΩΩΩ =


sin θ1 cos ω1 sin θ1 sin ω1 cos θ1

sin θ2 cos ω2 sin θ2 sin ω2 cos θ2

...
...

...

sin θQ cos ωQ sin θQ sin ωQ cos θQ

 , (3)

in which ωr is the azimuth angle of the rth sensor.
Note that this modeling is applicable for any array setup in three dimensions, taking into account

the matrix of Cartesian coordinates Equation (2) and the sensors matrix of angular position Equation (3).
This Section was based on [31] (Chapter VI), in which the array equations are presented in a generalized
matrix structure.

3. Least Mean Square Algorithm for Beamforming

Considering a beamforming transmission with P antennas and an arrangement of Q sensors
around the antenna array, then the vector of radiation pattern ggg towards the sensors is given by

ggg = ΨΨΨiii ∈ CQ×1,

where iii ∈ CP×1 is the vector of antenna electric currents. Figure 2 presents the LMS architecture
for beamforming.

ψq,1 gq
_

+

dq

ψq,2

ψq,P

qth steering
vector

update
function

electric
currents

!q

i1

i2

iP

∑

Figure 2. Least mean square (LMS) architecture for beamforming.

In order to control the array boresight, it is chosen a set of radiation conditions ddd ∈ CQ×1, verified
by Q sensors, which well describes the desired radiation pattern. Thus, with ddd, ggg and ψψψ, the LMS
algorithm can be used to estimate iii to the qth sensor at the uth training epoch by the minimization of
the following cost function:

Jq[u] =
1
2
|dq − gq[u]|2, (4)

where | · | stands for absolute value and (dq, gq) are the qth target components of (ddd, ggg).
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Thus, by means of the steepest descent algorithm, the update of the pth electric current of the
LMS algorithm, to the qth steering vector, is given by:

ip[u] = ip[u]− ηl∇i Jq[u], (5)

in which ηl is the LMS adaptive step and ∇i is the complex gradient operator of ip.
Applying the complex gradient operators (∇i) to Equation (4) yields:

ip[u] = ip[u] + ηlεq[u]ψ∗q,p, (6)

where [·]∗ denotes the complex conjugate operator and εq[u] = dq − gq[u] is the instantaneous error
for the qth sensor at the uth training epoch. Finally, generalizing Equation (6) for iii[u]:

iii[u] = iii[u] + ηlεq[u]ψψψ∗q .

In this LMS algorithm, each training epoch is composed of Q updates over iii, and at the beginning
of each training epoch iii[u] , iii[u − 1]. However, if u = 0, then the vector of currents starts with
iii[0] , 000 + 000.

4. Complex MIMO Radial Basis Function Neural Network for Beamforming

As in the LMS beamforming technique, the input signal to the CMM-RBF algorithm is the set of
steering vectors of ΨΨΨ, as shown in Figure 3. The CMM-RBF architecture, with N neurons, has three free
parameters: the matrix of synaptic weights WWW ∈ CP×N , the matrix of center vectors ΓΓΓ ∈ CN×P and the
vector of variances σ2σ2σ2 ∈ CN×1. Besides the fact that the CMM-RBF is an extension of the PTRBFNN
for multiple outputs, the key difference between both architectures is the linear layer which relates the
obtained vector of electric currents with the desired radiation pattern.

ψq,1

∑

∑∑

∑∑

∑

i1

gq

ψq,1

i2

ψq,2

iP

ψq P,

_

+

dq

ψq,2

ψq,P

neurons

synaptic weights

qth steering
vector

update
function

qth steering
vector

electric
currents

ΦN N
( , )g σ

2

N

Φ2 2( , )g σ
2

2

Φ1 1( , )g σ
2

1

w1,1

w1,2

w1,N

w2,1

w2,2

w2,N

wP,1

wP,2

wP N,

"q

Figure 3. Complex multiple-input multiple-output radial basis function neural network architecture
for beamforming.



Sensors 2020, 20, 378 6 of 15

The output vector of electric currents is then given by

iii[u] = WWW[u]φφφ[u].

Following the complex-valued radial basis function presented in [7], the nth neuron output of the
CMM-RBF (φn), for the qth steering vector of ΨΨΨ, is

φn = exp
(
−
||Re{ψψψq} − Re{γγγn}||22

Re{σ2
n}

)
+  exp

(
−
||Im{ψψψq} − Im{γγγn}||22

Im{σ2
n}

)
, (7)

where || · ||2 is the operator which returns the Euclidean norm of its argument and Re{·} and
Im{·} are the respective real and imaginary parts of their arguments. Additionally, as shown in
Figure 3, the output of the neurons can be represented by the vector φφφ = [φ1 φ2 · · · φN ]

T ∈ CN×1.
This kernel partitioning into real and imaginary components has an important role in avoiding any
phase invariance at the output of the neurons. As the steering vector phase is important to define
the electric currents to the desired boresight, a complex RBFNN is not suitable for this application.
As addressed in [7], the kernel of the complex RBFNN is not partitioned into real and imaginary
parts, which implies that the Euclidean norm eliminates the phase component of the input signal.
Consequently, a complex RBFNN is only suitable for phase independent systems.

Thus, by means of the steepest descent algorithm, the update of the CMM-RBF free parameters,
to the qth steering vector, is given by:

wp,n[u] = wp,n[u]− ηw∇w Jq[u],

γγγn[u] = γγγn[u]− ηγ∇γ Jq[u], (8)

σ2
n [u] = σ2

n [u]− ησ∇σ Jq[u],

in which ηw, ηγ and ησ are the adaptive steps of wp,n, γγγn and σ2
n , respectively. Also, ∇w, ∇γ and ∇σ

are, respectively, the complex gradient operators of wp,n, γγγn and σ2
n .

The CMM-RBF cost function is the same utilized in the LMS algorithm Equation (4). Applying
the complex gradient operators (∇w, ∇γ and ∇σ) to Equation (4) yields:

∇w Jq[u] = −εq[u]ψ∗q,pφn[u]∗,

∇γ Jq[u] = −ξn[u](Re{αααn[u]}+ Im{αααn[u]}) + ξn[u]∗(Re{αααn[u]} − Im{αααn[u]})], (9)

∇σ Jq[u] = −ξn[u](Re{βn[u]}+ Im{βn[u]}) + ξn[u]∗(Re{βn[u]} − Im{βn[u]})],

in which εq[u] = dq − gq[u], as in the LMS algorithm. The synaptic transmittance of the nth neuron
ξn[u] is

ξn[u] = εq[u]∗
P

∑
p=1

ψq,pwp,n[u]. (10)

The nth element of the vector of weighted kernel βββ[u] = [β1[u] β2[u] · · · βN [u]]T ∈ CN×1 is:

βn[u] =
Re{φn[u]}||Re{ψψψq} − Re{γγγn[u]}||22

Re{σ2
n [u]}2 + 

Im{φn[u]}||Im{ψψψq} − Im{γγγn[u]}||22
Im{σ2

n [u]}2 . (11)

Similarly, the matrix of weighted centers is represented as AAA[u] = [αααT
1 [u] αααT

2 [u] · · · αααT
N [u]]

T ∈
CN×P, where the nth vector of AAA[u] is

αααn[u] =
Re{φn[u]}(Re{ψψψq} − Re{γγγn[u]})

Re{σ2
n [u]}

+ 
Im{φn[u]}(Im{ψψψq} − Im{γγγn[u]})

Im{σ2
n [u]}

. (12)
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Finally, applying Equation (9) into Equation (8), the update of the CMM-RBF free parameters for
beamforming is expressed as follows:

wp,n[u] = wp,n[u] + ηwεq[u]ψ∗q,pφn[u]∗,

γγγn[u] = γγγn[u] + ηγ[ξn[u](Re{αααn[u]}+ Im{αααn[u]}) + ξn[u]∗(Re{αααn[u]} − Im{αααn[u]})], (13)

σ2
n [u] = σ2

n [u] + ησ[ξn[u](Re{βn[u]}+ Im{βn[u]}) + ξn[u]∗(Re{βn[u]} − Im{βn[u]})].

Generalizing Equation (13) to matrix structures, results in:

WWW[u] = WWW[u] + ηwεq[u]ψψψ∗qφφφ[u]H ,

ΓΓΓ[u] = ΓΓΓ[u] + ηγ[ΞΞΞ[u](Re{AAA[u]}+ Im{AAA[u]}) +ΞΞΞ[u]H(Re{AAA[u]} − Im{AAA[u]})], (14)

σ2σ2σ2[u] = σ2σ2σ2[u] + ησ[ΞΞΞ[u](Re{βββ[u]}+ Im{βββ[u]}) +ΞΞΞ[u]H(Re{βββ[u]} − Im{βββ[u]})].

in which [·]H denotes the transpose conjugate operator and ΞΞΞ[u] is the diagonal matrix of
synaptic transmittance:

ΞΞΞ[u] =


ξ1[u] 0 · · · 0

0 ξ2[u] · · · 0
...

...
. . .

...

0 0 · · · ξN [u]

 ∈ CN×N . (15)

Although Equation (14) minimizes the error between the obtained and the desired radiation
patterns, as the neurons are dependent on exponential functions, a risk of instability is assumed
if the exponential argument is positive. In order to circumvent this issue, based on Theorem A1
(Appendix A), the real and imaginary parts of each scalar component of the vector of variances is
lower bounded by the limit µ > 0, which, consequently, bounds the real and imaginary parts of the
neurons output from 0 to 1.

As in the LMS algorithm, each training epoch is composed of Q updates, due to the Q sensors,
and at the beginning of each training epoch WWW[u] , WWW[u− 1], ΓΓΓ[u] , ΓΓΓ[u− 1], and σ2σ2σ2[u] , σ2σ2σ2[u− 1].
However, for u = 0, the CMM-RBF free parameters are initialized following some criterion defined by
the user (e.g., based on the probability distribution of the input data).

5. Simulations and Discussion

The proposed complex MIMO RBF architecture was evaluated and compared with the LMS
algorithm for beamforming at 2.4 GHz. Simulations consider two array arrangements with dipoles
of equal length l = 0.5λ = 6.25 cm and separation distances sd = 0.25λ = 3.12 cm: (1) uniform
and circular array (UCA) with P = 6 dipoles; and (2) 2D-grid array (2D-GA) with P = 16 dipoles.
For each array arrangement, the matrix of steering vectors is computed via Algorithm A1 (Appendix B).
The vectors of angular position θθθ ∈ RQ×1 and ωωω ∈ RQ×1 have their number of components (Q) defined
by the number of sensors, which is selected by the user in a manner to well describe the desired
radiation pattern. Besides, each component of the desired radiation pattern ddd is defined between 0 and
1, in which 0 is used for nulls and 1 is used for the maximum value of the radiation pattern.

As practical systems may suffer severe signal distortion due to occurrence of nonlinearities at
the transmitter high power amplifier, based on [32], the nonlinearities are introduced as: gq[u] =
ψψψT

q (ρ1iii[u] + ρ2i2i2i2[u] + ρ3i3i3i3[u]), where ρρρ = [ρ1 ρ2 ρ3]
T = [0.8 0.3 0.2]T is the coefficient vector of

nonlinearities, i2i2i2[u] = [i1[u]2 i2[u]2 · · · iP[u]2]T and i3i3i3[u] = [i1[u]3 i2[u]3 · · · iP[u]3]T . Note that, if
ρ1 = 1.0 and ρ2 = ρ3 = 0.0, it is the linear case, since gq[u] = ψψψT

q iii[u].
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The LMS and the CMM-RBF were implemented using Algorithms A2 and A3 (Appendix B),
respectively. The vector of electric currents is initialized with iii[0] , 000 + 000, for both beamforming
techniques. The free parameters of the CMM-RBF are initialized as: WWW[0] = 000+ 000; each center vectors of
ΓΓΓ[0] starts with an unique steering vector of ΨΨΨ divided by 10; and σ2σ2σ2[0] = 555 + 555. Also, as discussed in
Section 4, µ = 0.1 to bound the real and imaginary outputs of the neurons of the CMM-RBF. In order to
well represent the set of inputs (steering vectors) into the nonlinear space of the proposed neural network,
while maintaining a low computational complexity, we have found by trial and error that N = 4 neurons
implemented in the CMM-RBF is sufficient. By trial and error, the adaptive steps of the LMS and the
CMM-RBF were found to be around ηl = 0.1, ηw = 0.7, ηγ = 0.5, and ησ = 0.5 for the linear and circular
arrays. On the other hand, for the 2D-grid array, we found that the adaptive step of the LMS should
be reduced to ηl = 0.035. These adaptive steps were chosen to maximize the convergence rate and the
HPBW, maintaining the side lobe of the radiation pattern smaller than −20 dB.

The performance of the proposed CMM-RBF is evaluated against LMS by means of the resulting
MSE and HPBW for a specified boresight ω̂. The MSE is computed considering an average of
500 simulations for each ω̂. In addition, via the 500 MSE computations, the mean of the normalized
radiation patterns were selected to graphically illustrate the HPBW.

5.1. Uniform and Circular Array

In this scheme, six dipoles of equal length are spatially distributed as shown in Figure 4. Both of
the presented beamforming techniques share the same Q = 10 restrictions, given by the position of the
sensors depicted in Table A1 (Appendix C). Restrictions were generalized for the boresight angle ω̂.

l = 0.5λ

s d
=

0.25λ

z

x
y

Figure 4. Uniform and circular array (UCA) with six dipoles, where l is the dipole length and sd is the
distance between dipoles.

Figure 5 presents the evolution of the simulated mean squared error (MSE) of the LMS and
CMM-RBF algorithms for UCA with ω̂ = 160◦. As a fast convergence rate characteristic is extremely
important for LEO satellites, it is assumed here that convergence for both algorithms is reached when
the respective MSE drops below −35 dB. Notice that the MSE for both algorithms decrease similarly
up to the second training epoch, after that, the MSE of the CMM-RFB decreases at a much faster rate.
It is clear, therefore, that the CMM-RBF achieves a faster convergence rate and delivers a 2.3 dB lower
residual MSE (after only three epochs) in comparison with the LMS.

Training epoch ( )u

M
S

E
 [

d
B

]

Figure 5. Mean squared error (MSE) of the complex multiple-input multiple-output radial basis
function neural network (CMM-RBF) and least mean square (LMS) algorithms for three training
epochs: uniform and circular array (UCA) with target ω̂ = 160◦.
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Figure 6 shows the radiation diagram of the LMS and CMM-RBF algorithms for θ = 90◦ and
ω̂ = 160◦. One may note that both algorithms presented similar performance, however, the CMM-RBF
enhanced HPBW by 4.12◦ in comparison with LMS.

N
o

rm
a

li
ze

d
 r

a
d

ia
ti

o
n

 p
a
tt

er
n

 [
d

B
]

ω [º]

HPBW = 80.58º

HPBW = 76.46º

Figure 6. Normalized radiation pattern of the complex multiple-input multiple-output radial basis
function neural network (CMM-RBF) and least mean square (LMS) algorithms for the uniform and
circular array (UCA) with θ = 90◦ and ω̂ = 160◦.

In addition, maintaining the same initialization scheme, but varying the boresight angle from 0◦

to 360◦, in steps of 10◦, a number of 500 simulations were performed for each boresight. The mean
HPBW and MSE of each boresight is used to compute the statistical results presented in Table 1.
The proposed CMM-RBF algorithm is able to enhance the HPBW of the antenna arrays by about 4.15◦

when operating under the same conditions as the LMS, taking into account the nonlinearities of the
transmitter power amplifier.

Table 1. Half-power beamwidth (HPBW) and mean squared error (MSE) statistical results for the
uniform and circular array (UCA), varying the boresight angle from 0◦ to 360◦.

Algorithm mean HPBW std HPBW mean MSE std MSE

LMS 81.00◦ 0.52◦ −33.94 dB 0.15 dB

CMM-RBF 76.85◦ 0.64◦ −36.05 dB 0.37 dB

5.2. 2D-Grid Array

In this scheme, 16 dipoles of equal length are spatially distributed in a squared grid, as shown in
Figure 7. The Q = 10 restrictions are depicted in Table A2 (Appendix C).

l = 0.5λ

sd = 0.25λ

s d

z

x y

Figure 7. 2D-grid array (2D-GA) with 16 dipoles, where l is the dipole length and sd is the distance
between dipoles.

Figure 8 presents the evolution of the simulated mean squared error (MSE) of the LMS and
CMM-RBF algorithms for 2D-GA with ω̂ = 160◦. Convergence is reached when the MSE drops below
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−35 dB. In this case, diferently from the UCA simulation, the MSE of the CMM-RFB decreases at a
faster rate since the first training epoch. At the 3rd epoch, the CMM-RBF delivers a 2.27 dB lower
residual MSE in comparison with the LMS.

Training epoch ( )u

M
S

E
 [

d
B

]

Figure 8. Mean squared error (MSE) of the complex multiple-input multiple-output radial basis
function neural network (CMM-RBF) and least mean square (LMS) algorithms for three training
epochs: 2D-grid array (2D-GA) with target ω̂ = 160◦.

Figure 9 shows the radiation diagram of the LMS and CMM-RBF algorithms for θ = 90◦ and
ω̂ = 160◦. Both algorithms presented similar performances, however, the CMM-RBF enhanced HPBW
by 3.85◦ in comparison with LMS.
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Figure 9. Normalized radiation pattern of the complex multiple-input multiple-output radial basis
function neural network (CMM-RBF) and least mean square (LMS) algorithms for the 2D-grid array
(2D-GA) with θ = 90◦ and ω̂ = 160◦.

Moreover, varying the boresight angle from 0◦ to 360◦, in steps of 10◦, a number of 500 simulations
were also performed for each boresight and for both architectures, as in Table 1. Results for the mean
and standard deviation are presented in Table 2. As in the UCA, the proposed CMM-RBF algorithm
is able to enhance the HPBW of the 2D-grid array by about 4.15◦ when operating under the same
conditions as the LMS, taking into account the nonlinearities of the transmitter power amplifier.
In 77.78% of the simulations, the CMM-RBF was able to maintain the side lobes of the radiation
pattern smaller than −20 dB; on the other hand, the LMS only achieved this condition for 44.45% of
the simulations.

Table 2. Half-power beamwidth (HPBW) and mean squared error (MSE) statistical results for the
2D-grid array, varying the boresight angle from 0◦ to 360◦.

Algorithm Mean HPBW Std HPBW Mean MSE Std MSE

LMS 52.57◦ 0.88◦ −35.36 dB 1.28 dB

CMM-RBF 48.42◦ 0.33◦ −37.80 dB 1.04 dB
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6. Conclusions

This work presented a novel artificial neural network beamforming scheme for wireless
transmission affected by nonlinearities of the transmitter power amplifier. The proposed complex
MIMO RBFNN (CMM-RBF) is an extension of the PTRBFNN, used for channel equalization, which
is able to handle multiple complex-valued outputs, keeping the phase transmittance information.
With the proposed architecture it is possible to simultaneously achieve fast convergence rate, lower
MSE and enhanced HPBW in comparison with the LMS in nonlinear scenarios.

The performance of the proposed approach was compared with the LMS for beamforming with a
uniform and circular array (6 dipoles of equal length) and a 2D-grid array (16 dipoles of equal length),
operating at 2.4 GHz. A set of 36 boresight angles was evaluated and from each generated radiation
diagram the respective HPBW was obtained; besides, for each boresight the convergence rate was
estimated for the minimum number of epochs possible, in order to obtain a faster tracking.

The proposed MIMO artificial neural network architecture proved to be robust, independent of
the boresight angle, achieving faster convergence rate in only three training epochs (after crossover
with the LMS) and reducing the MSE by about 2 dB when compared with the LMS algorithm. As for the
HPBW, the results obtained with the CMM-RBF are 4.15◦ better than with the LMS. As the nonlinear
behavior of the transmitter power amplifier becomes more prominent when the number of antennas
is increased and when operating with a more complex architecture (2D-GA), the LMS beamforming
presented a poor performance regarding side lobe restrictions, correctly operating in less than half of
the cases. Conversely, the CMM-RBF achieved the side lobe restrictions in more than three quarters of
the simulations.

The proposed algorithm finds potential applications in some configurations of the next-generation
wireless systems and in satellite communications. For LEO satellites, the CMM-RBF can be implemented
using low-power graphical processing units (LPGPUs), taking advantage of the neuron’s parallelism.
Thus, in the proposed architecture the CMM-RBF can work with low-power consumption, with the
ability to handle the distortions of nonlinear power amplifiers while maintaining a fast convergence rate.
It should be emphasized that a fast convergence characteristic is extremely important for LEO satellites,
since they orbit non-stationarily at low altitudes.

Author Contributions: All the authors have contributed to various degrees to ensure the quality of this
work: Conceptualization, K.S.M.; methodology, K.S.M. and J.A.S.; formal analysis, K.S.M., J.A.S. and D.S.A.;
writing—original draft preparation, K.S.M.; writing—review and editing, K.S.M., J.A.S. and D.S.A.; supervision,
D.S.A. All authors have read and agreed to the published version of the manuscript.

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior—Brasil (CAPES)—Finance Code 001.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Theorem A1. For any two vectors of same size xxx, yyy ∈ Rn×1 and a scalar z ∈ R, a kernel function f (xxx, yyy, z) ,

exp
{
− ||xxx−yyy||22

z

}
is bounded between 0 and 1, if z > 0.

Proof. By the properties of nonnegativity and definiteness, which state that the norm is always
nonnegative (see [33], p. 46), let d = ||xxx− yyy||2 ≥ 0. Also, let g(d) = −d2/z, where z is a constant scalar.
As g(d) is continuous for any z > 0 (see [34], p. 43), its natural domain is (−∞,+∞). In order to define
the extremes of the image of g(d) it is necessary to assess the extremes of the natural domain and the
second derivative test theorem (see [34], p. 186) of g(d). Firstly, we verify the extremes of g(d) for z > 0:

lim
d→−∞

g(d) = −∞,
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lim
d→+∞

g(d) = −∞.

We then analyze the first derivative, equating its result to zero:

∂g(d)
∂d

= −2d
z

= 0,

which implies that g(d) has only one point of minimum, maximum, or inflection. Due to this, verifying
the second derivative of g(d) for d = 0:

∂2g(d)
∂d2 = −2

z
< 0,

thus, d = 0 is the maximum point of g(d), which yields g(0) = 0 and, consequently, g(d) ≤ 0.
Finally, with h(g) , exp (g(d)), we can verify the image of h(g):

lim
g(d)→−∞

h(g(d)) = 0,

lim
g(d)→0

h(g(d)) = 1,

which yields h(g(d)) ∈ (0, 1] ∀d ∈ R and z > 0.

Appendix B

Algorithm A1 Steering vectors computation.

1: procedure COMPUTESTEERINGVECTORS(CCC, θθθ, ωωω, Q, f , l)
2: c← 299, 792, 458 m/s
3: λ← c/ f
4: ΩΩΩ← compute Equation (3) with θθθ and ωωω

5: VVV ← exp(2πλ−1ΩΩΩCCC)
6: for q← 1, Q do
7: ζq ← sin(θq)−1[cos(πl cos(θq)λ−1)− cos(πlλ−1)]
8: end for
9: ζζζ ← compute Equation (1) with ζ1 ζ2 · · · ζQ

10: ΨΨΨ← ζζζVVV
11: return ΨΨΨ
12: end procedure

Algorithm A2 LMS for beamforming.

1: procedure LMS(iii[0], ΨΨΨ, ddd, ηl , ρρρ, Q, U)
2: for u← 1, U do
3: iii[u]← iii[u− 1]
4: for q← 1, Q do
5: i2i2i2[u]← [i1[u]2 i2[u]2 · · · iP[u]2]T

6: i3i3i3[u]← [i1[u]3 i2[u]3 · · · iP[u]3]T

7: gq[u]← ψψψT
q (ρ1iii[u] + ρ2i2i2i2[u] + ρ3i3i3i3[u])

8: εq[u]← dq − gq[u]
9: iii[u]← iii[u] + ηlεq[u]ψψψ∗q

10: end for
11: end for
12: return iii[U]
13: end procedure
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Algorithm A3 CMM-RBF for beamforming.

1: procedure CMM-RBF(iii[0], WWW[0], ΓΓΓ[0], σ2σ2σ2[0], ηw, ηγ, ησ, µ, ρρρ, ΨΨΨ, ddd, Q, U, N)
2: for u← 1, U do
3: iii[u], WWW[u], ΓΓΓ[u], σ2σ2σ2[u]← iii[u− 1], WWW[u− 1], ΓΓΓ[u− 1], σ2σ2σ2[u− 1], respectively.
4: for q← 1, Q do
5: i2i2i2[u]← [i1[u]2 i2[u]2 · · · iP[u]2]T

6: i3i3i3[u]← [i1[u]3 i2[u]3 · · · iP[u]3]T

7: gq[u]← ψψψT
q (ρ1iii[u] + ρ2i2i2i2[u] + ρ3i3i3i3[u])

8: εq[u]← dq − gq[u]
9: for n← 1, N do

10: φn[u]← compute Equation (7) with γγγn[u], σ2
n [u] and ψψψr[u]

11: ξn[u]← compute Equation (10) with ψψψq, WWW[u], and εq[u]
12: βn[u]← compute Equation (11) with ψψψq, γγγn[u], φn[u], and σ2

n
13: αααn[u]← compute Equation (12) with ψψψq, γγγn[u], φn[u], and σ2

n
14: end for
15: ΞΞΞ[u]← compute Equation (15) with ξ1[u] ξ2[u] · · · ξN [u]
16: WWW[u]←WWW[u] + ηwεq[u]ψψψ∗qφφφ[u]H

17: ΓΓΓ[u]← ΓΓΓ[u] + ηγ[ΞΞΞ[u](Re{AAA[u]}+ Im{AAA[u]}) +ΞΞΞ[u]H(Re{AAA[u]} − Im{AAA[u]})]
18: σ2σ2σ2[u]← σ2σ2σ2[u] + ησ[ΞΞΞ[u](Re{βββ[u]}+ Im{βββ[u]}) +ΞΞΞ[u]H(Re{βββ[u]} − Im{βββ[u]})]
19: for n← 1, N do
20: if Re{σ2

n [u]} < µ then
21: Re{σ2

n [u]} ← µ

22: end if
23: if Im{σ2

n [u]} < µ then
24: Im{σ2

n [u]} ← µ

25: end if
26: end for
27: iii[u]←WWW[u]φφφq[u]
28: end for
29: end for
30: return iii[U]
31: end procedure

Appendix C

Table A1. Beamformer restrictions of the uniform and circular array (UCA) with 6 dipoles: ω̂ is the
generalized boresight.

Sensor (r) Zenith θr Azimuth ωr Desired Radiation Pattern dr

1 90◦ ω̂ 1.0
2 90◦ ω̂ + 180◦ 0.0
3 90◦ ω̂ + 50◦ 0.5
4 90◦ ω̂− 50◦ 0.5
5 90◦ ω̂ + 60◦ 0.2
6 90◦ ω̂− 60◦ 0.2
7 90◦ ω̂ + 115◦ 0.0
8 90◦ ω̂− 115◦ 0.0
9 90◦ ω̂ + 155◦ 0.0

10 90◦ ω̂− 155◦ 0.0
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Table A2. Beamformer restrictions of the 2D-grid array (2D-GA) with 16 dipoles: ω̂ is the
generalized boresight.

Sensor (r) Zenith θr Azimuth ωr Desired Radiation Pattern dr

1 90◦ ω̂ 1.0
2 90◦ ω̂ + 180◦ 0.0
3 90◦ ω̂ + 30◦ 0.5
4 90◦ ω̂− 30◦ 0.5
5 90◦ ω̂ + 40◦ 0.2
6 90◦ ω̂− 40◦ 0.2
7 90◦ ω̂ + 70◦ 0.0
8 90◦ ω̂− 70◦ 0.0
9 90◦ ω̂ + 105◦ 0.0

10 90◦ ω̂− 105◦ 0.0
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