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Neuroprotective effect of Shenqi Fuzheng injection 
pretreatment in aged rats with cerebral ischemia/
reperfusion injury 

Introduction
Severe cerebral ischemia/reperfusion injury is the leading 
cause of cerebral resuscitation failure (Vaahersalo et al., 
2014). Hemodynamic disorders may induce chronic brain 
ischemia, decrease cortical cell number, trigger massive 
neurofibrillary and nerve cell degeneration, and cause dif-

fuse demyelination of white matter, ultimately leading to 
deterioration in brain function, and vascular dementia (Lin 
et al., 2002). These changes cause severe impairments in 
cognition and memory (Hailer, 2008; Dirnagl et al., 2009; 
Nakano et al., 2014; Chen et al., 2015; Wang et al., 2015), 
and older people are particularly at risk. Existing preventive 
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and therapeutic drugs focus on the immediate effects of ce-
rebral ischemia/reperfusion damage (Yuan et al., 2011; Li et 
al., 2012; Huang et al., 2014). However, the pathogenesis of 
this type of injury is very complex (Benderro and LaManna, 
2013; Patel et al., 2014), and a single medication is unlikely 
to produce a satisfactory outcome. Shenqi Fuzheng injection 
(SFI) is an extract from Radix Astragali and Radix Codonop-
sis, two Chinese herbs known for strengthening the body’s 
resistance. Indeed, the majority of studies on SFI emphasize 
its beneficial effects on immunity in cancer patients (Dai et 
al., 2008). Radix Codonopsis invigorates the spleen, improves 
vital energy, produces blood fluid, and nourishes the blood. 
We therefore hypothesized that this Chinese drug prepara-
tion will protect the brain and body from cerebral ischemia/
reperfusion damage. Here, we used older rats, aged ≥ 20 
months (Shi, 1999), to model cerebral ischemia/reperfusion 
injury in older people, and demonstrated the therapeutic ef-
ficacy of SFI in these models by improvements in functional, 
morphological and biochemical indicators. 

Materials and Methods
Animals
One hundred and forty male Sprague-Dawley rats, aged 
20–22 months and weighing 200–300 g, were provided by 
the Laboratory Animal Center of Xi’an Jiaotong University 
Health Science Center (Xi’an, Shaanxi Province, China; li-
cense No. b08005). All rats were housed in a room at 24°C 
and 50% humidity. The experimental protocols were ap-
proved by the Animal Ethics Committee of Xi’an Jiaotong 
University Health Science Center in China. The rats were 
randomly allocated to a sham group (n = 40), a model group 
(n = 50) and an SFI group (n = 50).

SFI administration
Rats in the SFI group received 40 mL/kg SFI (containing 
10-g Radix Astragali and 10-g Radix Codonopsis per 250 mL; 
Livzon Pharmaceutical Group Co., Ltd., Zhuhai, Guangdong 
Province, China; batch No. Z19990065) (Xu et al., 2001) into 
the tail vein, once daily for 7 days. Rats in the model and 
sham groups were injected with an equal volume of saline.

Establishment of cerebral ischemia/reperfusion injury 
models
A model of cerebral ischemia/reperfusion injury was es-
tablished using a modification of the method described by 
Longa et al. (1989). In brief, rats were anesthetized with an 
intraperitoneal injection of ketamine (100 mg/kg; Shanghai 
First Pharmaceutical Factory, Shanghai, China) and fixed in 
the supine position on an operating table. The left common 
carotid artery was exposed through a midline neck incision, 
and the external carotid artery and branches were carefully 
separated from the adjacent tissue by electrocoagulation. 
A 5-0 silk suture was tied loosely around the mobilized ex-
ternal carotid artery stump. A 5-cm length of 4-0 monofil-
ament nylon suture was then inserted through the incision 
in the external carotid artery into the internal carotid artery, 
slowly advanced to the anterior cerebral artery, and tightened 

to prevent bleeding. The suture was positioned 20–21 mm 
from the origin of the internal carotid artery, occluding blood 
flow from the middle cerebral artery and collateral blood flow 
from the internal carotid, anterior cerebral, and posterior 
cerebral arteries. This resulted in focal ischemia in the mid-
dle cerebral artery. The incisions were then closed, with the 
nylon suture raised to the level of the incision, and rats were 
returned to their home cages. After 3 hours of middle cerebral 
artery occlusion, and without additional anesthesia, the nylon 
suture was withdrawn until resistance was felt. The suture 
tip was returned to the stump of the external carotid artery 
and reperfusion then started in the ischemic brain area for a 
further 3 hours. Sham-operated rats underwent identical sur-
gical procedures but without carotid occlusion. Respiratory 
rhythm was monitored during surgery and rectal temperature 
was maintained at 37 ± 0.5°C under a heat lamp.

Neurological evaluation
Three hours after reperfusion, rats were scored using a 
5-point evaluation method (Longa et al., 1989): 0, no neu-
rological symptoms; 1, inability to extend the forepaw ful-
ly; 2, circling to the right when walking; 3, falling towards 
the right side; 4, inability to walk spontaneously, or loss of 
consciousness.

Determination of infarct volume
Three hours after reperfusion, rats in the model and SFI 
groups were killed by decapitation, and the olfactory bulb, 
cerebellum and lower brainstem were removed. The remain-
ing brain tissue was sliced into six coronal sections of equal 
thickness using a double-sided blade. The sections were 
stained with 1% TTC solution (Shanghai Chemical Reagent 
Factory, Shanghai, China), incubated in a water bath at 37°C 
for 30 minutes, and fixed in 10% formaldehyde. Whole and 
infarcted brain tissue were weighed using a TG3238 pho-
toelectric analytical balance (Shanghai Balance Instrument 
Factory, Shanghai, China), and infarct volume and inhibition 
rate were calculated according to the following formulae: 
infarct volume (%) = weight of infarcted tissue/weight of 
whole brain × 100%; inhibition rate (%) = (1 − infarct vol-
ume in intervention group/infarct volume in model group) 
× 100%.

Determination of brain water content and Ca2+ level
Brain water content and Ca2+ level were measured using the 
method described by Gotoh et al. (1985). Briefly, 3 hours af-
ter the start of reperfusion, rat brains were quickly harvested, 
and the anterior hemisphere was obtained from the infarcted 
side. The wet tissue was weighed , then dried in an oven for 
48 hours at 105°C, and weighed again. Brain water content 
(%) = [(wet weight − dry weight) / wet weight] × 100%.

Brain tissue was digested in concentrated sulfuric acid and 
mixed with a deionized solution of 1% lauramidopropyl-
amine oxide and 0.5 M HCl. Brain Ca2+ level was detected 
using a 721-UV-visible spectral luminance meter (Shanghai 
Third Analytical Instrument Factory, Shanghai, China) ac-
cording to the atomic absorption spectrometry method (Wu, 
2009).
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Determination of serum lactate dehydrogenase (LDH) and 
creatine kinase (CK) activities
Six hours after the start of reperfusion, orbital blood samples 
were harvested and the serum was separated. Serum LDH 
activity at λ440 nm was detected using an AU640 biochemi-
cal analyzer (Olympus, Shizuoka, Japan) according to a colo-
rimetry method described previously (Gui and Zhou, 2003). 
CK activity at λ520 nm was measured by creatine chromo-
genic assay (Ren et al., 2009).

Determination of superoxide dismutase (SOD) activity 
and malondialdehyde (MDA) content in the rat brain
Three hours after the start of reperfusion, the posteri-
or hemisphere on the infarction side was harvested, and 
the tissue was rinsed with ice-cold saline, patted dry, and 
weighed. The tissue was then added to nine volumes of ice-
cold saline and centrifuged at 1,500 r/min for 20 minutes. 
The supernatant was collected and MDA content was mea-
sured at λ532 nm by TBA assay (Wei, 1984). SOD activity 
was determined by the pyrogallol autoxidation method (Xu 
et al., 2006).

Ultrastructural observation
One rat from each group was used to observe the tissue ul-
trastructure at the infarct site. The animals were perfused 
intracardially with cold saline followed by 4% paraformal-
dehyde, and the brain was dissected out and cut into 2 mm 
thick sections. The fourth section at the infarct site, contain-
ing part of the parietal and frontal cortices, was collected and 
cut into ultrathin (50 nm) sections. The sections were pre-
pared as previously described (Wu et al., 2011) and observed 
under an electron microscope (Shanghai Optical Instrument 
Factory, Shanghai, China). 

Statistical analysis
Data are presented as the mean ± SD. Measurement data be-
tween groups were compared using one-way analysis of vari-
ance and the two-sample t-test. Statistical analysis was per-
formed using SAS 9.1.3 software (SAS Institute, Inc., Cary, 
NC, USA). P < 0.05 was considered statistically significant.

Results
SFI pretreatment improved movement behaviors in aged 
rats with cerebral ischemia/reperfusion injury
Sham-operated rats had normal neurological function. In 
the model group, rats had dyskinesias such as right forelimb 
adduction, internal rotation contracture of the shoulder, 
and right forelimb adhering to the chest when lifting the tail. 
However, rats in the SFI group showed significantly better 
movement and had lower Longa behavior scores than those 
in the model group (P < 0.01; Figure 1).

SFI pretreatment reduced infarct volume in aged rats with 
cerebral ischemia/reperfusion injury
Compared with the model group, infarct volume was signifi-
cantly smaller when SFI was administered before ischemia 
and reperfusion (P < 0.01; Figure 2, Table 1).

SFI pretreatment reduced brain water content in aged rats 
with cerebral ischemia/reperfusion injury
Brain water content was significantly greater in the model 
group than in the sham group (P < 0.01). However, in rats 
that received SFI pretreatment, water content was lower than 
in model rats (P < 0.05; Figure 3).

SFI pretreatment decreased brain Ca2+ level in aged rats 
with cerebral ischemia/reperfusion injury 
Levels of brain Ca2+ were significantly greater in the model 
group than in the sham group (P < 0.01). However, rats that 
underwent SFI pretreatment had significantly less brain Ca2+ 
than those in the model group (P < 0.01), with levels very 
similar to those measured in the sham group (Figure 4).

SFI pretreatment decreased serum LDH and CK activities 
in aged rats with cerebral ischemia/reperfusion injury
Serum LDH and CK activities were significantly greater in 
the model group than in the sham group (P < 0.01), but sig-
nificantly lower after SFI pretreatment compared with levels 
observed in the model group (P < 0.01; Figure 5). 

Effect of SFI pretreatment on brain SOD activity and MDA 
content in aged rats with cerebral ischemia/reperfusion 
injury
SOD activity in rat brain was significantly lower, and MDA 
content significantly greater, in the model group than in 
the sham group (P < 0.01). However, SFI pretreatment pre-
vented these changes, resulting in significantly greater SOD 
activity and lower MDA content in brain tissue in the inter-
vention group than in the model group (P < 0.05; Figure 6). 

SFI pretreatment improved the ultrastructure of brain 
tissue in aged rats with cerebral ischemia/reperfusion 
injury
The sham-operated rat brains showed normal neurons with 
mild condensation of neuronal nuclear chromatin. Organ-
elles were abundant, with mitochondria, rough endoplasmic 
reticulum and ribosomes clearly visible. Mitochondrial 
morphology was normal, well encapsulated and with dense 
cristae. In the model group, there was considerable neuronal 
injury. Organelles were damaged and dissolved, and a large 
degree of cell swelling was observed. Mitochondria were also 
swollen, cristae had disappeared, and vacuoles, peripheral 
nucleoplasm and dilated endoplasmic reticulum were evi-
dent. However, in the SFI group, the damage was noticeably 
attenuated. Neuronal membranes were intact and tortuous, 
chromatin aggregation was visible, mitochondria were mild-
ly swollen with partial cristae, and the nuclear membrane 
was intact. Glial cells in the sham-operated rats were normal, 
whereas in the model group they were shrunken and showed 
nuclear chromatin aggregation, homogeneous cytoplasmic 
changes, and noticeably fewer organelles. In the SFI group, 
however, glial cells were normal, without any visible damage. 
Furthermore, capillaries in the model group were thinner 
than in the sham-operated group, and the vascular wall was 
thickened, with an unclear boundary; after SFI intervention, 
capillary damage was noticeably prevented (Figure 7).
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Discussion
Rat models are widely used in brain research owing to the 
similarity between rat and human brain (Bernstein et al., 
2011). Blood flow and metabolism in the human brain slow 
down with age, meaning that older people are more suscep-
tible to cerebral ischemia/reperfusion injury than younger 
people (Henning et al., 2010). It is therefore necessary to 
model such conditions in aged rats.

SFI is a Chinese materia medica preparation of Radix 
Astragali and Radix Codonopsis. Radix Codonopsis is known 
to invigorate the spleen, improve vital energy, nourish the 
blood and produce blood fluid; furthermore, it improves 
memory in mice (Wang et al., 2013). Radix Astragali also 
functions to invigorate the spleen and improve vital energy. 
Modern pharmacological studies have found that both Radix 
Astragali and Radix Codonopsis dilate blood vessels, lower 
blood pressure, and enhance body immunity, in addition to 
activating and restoring erythrocyte deformability and im-
proving the microcirculation (Gu et al., 2009).

To identify the mechanism underlying the protective 
effects of SFI intervention, we measured various cerebral 
ischemia/reperfusion injury-related indicators. The first 
was brain water content, as brain edema is an inevitable 
consequence of cerebral ischemia/reperfusion (Pu et al., 
1999; Zhao et al., 2013; Rakhunde et al., 2014; Saad et al., 
2015) and significantly affects morbidity and mortality. Af-
ter cerebral ischemia and hypoxia, brain cells show energy 
metabolism disorders which result in noticeable retention of 
intracellular Na+ and water, damage to the cell membrane, 
and abnormally high intracellular fluids (Zhao et al., 2014). 
At the same time, free radicals are generated after hypoxia, 
leading to vascular epithelium lipid peroxidation and blood-
brain barrier damage, increasing vascular permeability, and 
inducing plasma leakage into the extracellular space, ulti-
mately causing cerebral edema (Liu et al., 2014). The results 
from the present study indicate that SFI inhibits swelling and 
water accumulation in the infarcted hemisphere. 

After cerebral ischemia/reperfusion injury, hypoxia causes 
lactic acidosis, and the permeability of the cell membrane 
and capillaries is increased, leading to membrane damage 
and massive protease release (Bederson et al., 1986; Deng et 
al., 2002; Liu et al., 2013; Xia et al., 2013). Intracellular LDH 
and brain-type CK are released into the extracellular fluid, 
then enter the cerebrospinal fluid and blood. As a result, 
the activities of LDH and CK become reduced in the brain, 
and increased in the serum. Increased serum LDH and CK 
activities correlate with the severity and extent of damage 
(Zhang et al., 2008; Zheng et al., 2010; Austin et al., 2011; 
Maslov and Lishmanov, 2012; Joo et al., 2013). Previous 
studies revealed that SFI inhibited the decline of LDH and 
CK activities in aged rats after cerebral ischemia and reper-
fusion, indicating that SFI can stabilize the cell membrane. 
Generation of oxygen free radicals and lipid peroxidation 
are the important mechanisms in ischemia/reperfusion in-
jury (Wang et al., 2008; Park et al., 2009; Sitailo et al., 2009). 
Following cerebral ischemia and reperfusion, an overload of 
intracellular calcium occurs in addition to a large increase 
in free fatty acids and excitatory amino acids. This activates 

a chain reaction producing a large number of free radicals. 
MDA is the end product of lipid peroxidation by free radicals, 
principally affecting unsaturated fatty acids, and as such it 
is an indirect indicator of oxygen radicals in tissue (Maksi-
movich et al., 2014; Song et al., 2014; Wan et al., 2014). In the 
present study, 3 hours after reperfusion, SOD activity in the 
brain tissue was significantly decreased while MDA content 
was significantly elevated. This indirectly confirmed the gen-
eration of oxygen free radicals and lipid peroxidation upon 
ischemia/reperfusion. Our results indicate that, when admin-
istered prior to an ischemic event, SFI increases SOD activity 
in brain tissue, scavenges free radicals, attenuates lipid per-
oxidation, and reduces MDA content. Our finding supports 
previous studies, which found that Radix Astragali increases 
SOD activity and attenuates free radical damage (Wang et al., 
2004; Sun et al., 2014, 2015; Kim et al., 2015; Li et al., 2015; 
Mohammadi and Dehghani, 2015;  Yue et al., 2015).

In summary, SFI pretreatment is neuroprotective in rats 
with focal cerebral ischemia/reperfusion injury, and the pro-
tective mechanism may be related to the inhibition of brain 
Ca2+ accumulation and prevention of lipid peroxidation. 
Our results open up a new avenue for the application of SFI 
in the treatment of cerebrovascular disease.
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Figure 5 Effect of Shenqi Fuzheng injection (SFI) on serum lactate dehydrogenase (LDH; left) and creatine kinase (CK; right) activities in aged 
rats with cerebral ischemia/reperfusion injury.
Data are presented as the mean ± SD (n = 10 rats per group). **P < 0.01, vs. sham group; ##P < 0.01, vs. model group (one-way analysis of vari-
ance and two-sample t-test).

Figure 1 Effect of Shenqi Fuzheng injection (SFI) on behavioral 
deficits in aged rats after cerebral ischemia/reperfusion injury.
Higher Longa scores indicate greater impairment. Data are expressed as 
the mean ± SD (n = 10 per group). ##P < 0.01, vs. model group (one-way 
analysis of variance and two-sample t-test).

Figure 2 Infarct area shown by TTC staining of coronal sections.
(A) Model group; (B) Shenqi Fuzheng injection group. Red staining, 
normal tissue; white (unstained) areas, infarcted tissue.

Figure 3 Effect of Shenqi Fuzheng injection (SFI) on brain water 
content in aged rats with cerebral ischemia/reperfusion injury.
Brain water content (%) = [(wet weight − dry weight)/wet weight] × 
100%. Data are presented as the mean ± SD (n = 10 rats per group). 
Measurement data were compared between groups using one-way anal-
ysis of variance and two-sample t-test. **P < 0.01, vs. sham group; #P < 
0.05, vs. model group.

Figure 4 Effect of Shenqi Fuzheng injection (SFI) on brain Ca2+ level 
in aged rats with cerebral ischemia/reperfusion injury.
Data are presented as the mean ± SD (n = 10 rats per group). **P < 
0.01, vs. sham group; ##P < 0.01, vs. model group (one-way analysis of 
variance and two-sample t-test).
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Table 1 Effect of Shenqi Fuzheng injection (SFI) on infarct volume in 
aged rats with cerebral ischemia/reperfusion injury

Group Infarct volume (%) Inhibition rate (%)

Model 19.72±3.88

SFI 12.22±4.63## 31.8

Infarct volume (%) = weight of infarcted tissue/weight of whole brain 
tissue × 100%. Inhibition rate (%) = (1 − infarct volume in the SFI 
group/infarct volume in the model group) × 100%. Data are presented 
as the mean ± SD (n = 10 rats per group). ##P < 0.01, vs. model group 
(one-way analysis of variance and two-sample t-test).
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Figure 6  Effect of Shenqi Fuzheng injection (SFI) on brain superoxide dismutase (SOD) activity (left) and malondialdehyde (MDA) content 
(right) in aged rats with cerebral ischemia/reperfusion injury.
Data are presented as the mean ± SD (n = 10 rats per group). *P < 0.01, vs. sham group; #P < 0.05, vs. model group (one-way analysis of variance 
and two-sample t-test).

Figure 7 Effect of Shenqi Fuzheng 
injection (SFI) on the 
ultrastructure of brain tissue in 
aged rats with cerebral ischemia/
reperfusion injury (transmission 
electron microscopy, × 6,000).
Sham group: Normal morphology 
of neurons (red arrows), glial cells 
(yellow arrows), blood capillaries 
(green arrows) and neuronal organ-
elles. Model group: Neurons (red 
arrows) were visibly damaged, glial 
cells (yellow arrows) condensed, 
and organelles had disappeared; 
capillaries (green arrows) were 
thinner and the vascular wall was 
thickened. SFI group: Structure 
and morphology of neurons (red 
arrows), glial cells (yellow arrows), 
and capillaries (green arrows) were 
noticeably more normal than in the 
model group.
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