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Abstract

Computational models have great potential to revolutionise psychiatry research and clinical 

practice. These models are now used across multiple subfields, including computational psychiatry 

and precision psychiatry. Their goals vary from understanding mechanisms underlying disorders 

to deriving reliable classification and personalised predictions. Rapid growth of new tools and 

data sources (eg, digital data, gamification, and social media) requires an understanding of 

the constraints and advantages of different modelling approaches in psychiatry. In this Series 

paper, we take a critical look at the range of computational models that are used in psychiatry 

and evaluate their advantages and disadvantages for different purposes and data sources. We 

describe mechanism-driven and mechanism-agnostic computational models and discuss how 

interpretability of models is crucial for clinical translation. Based on these evaluations, we provide 

recommendations on how to build computational models that are clinically useful.
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Introduction

Over the past decade, computational models have become more prominent in psychiatric 

research and—aligned with the fourth industrial revolution—are also finding their way 

into clinical and commercial solutions for psychiatry. In this Series paper, we chart 

the landscape of computational models in psychiatry, highlight the communalities and 

differences between different types of computational models, discuss their advantages 

and disadvantages for research and clinical practice, and distinguish between mechanism-

driven and mechanism-agnostic models, which have traditionally served different purposes. 

Mechanism-driven models are biology-inspired models that mimic processes in the brain 

and are interpretable in their mechanisms. Conversely, mechanism-agnostic models use 

complex machine-learning methods to distil information from large datasets and often 

provide little insight into the relevant mechanisms. Here we show that these model types 

are complementary and describe how models from both domains can be brought together to 

build more interpretable models that are more likely to find a place in clinical practice than 

using each model-type in isolation.

The digital psychiatrist

The COVID-19 pandemic has inadvertently put mental health into the spotlight. Psychiatric 

symptoms have strongly increased and the demand for remedies is higher than ever.1,2 

These changes have not gone unnoticed in the corporate sector. Mental health solutions 

are more popular than ever and startups in mental health have become a hot commodity. 

Companies that pursue automated and online-based solutions have gained much attraction 

from investors, and technology giants, such as Apple, have ventured into predicting mental 

health problems using our ever-present smartphones.3

At the core of this excitement is the promise that computational approaches can help 

improve and broaden access to mental illness detection, prediction, and intervention. 

However, computational approaches to psychiatry are already well established in academic 

research, with the fields of computational psychiatry (panel 1) and precision psychiatry 

existing for almost a decade.4 In the first paper in this Series, we will selectively review 

the different computational approaches and their respective data sources that have been used 

in academic research. Rather than present a systematic literature review, we will provide 

a narrative description of the field and illustrate what we consider important contributions 

using selected examples from computational psychiatry and precision psychiatry. Although 

a delineation of these two fields is not clear cut and the terms are sometimes used 

interchangeably, traditionally computational psychiatry has focused more on understanding 

the mechanisms underlying mental disorders whereas precision psychiatry has focused on 

prediction and individualised treatment. We discuss how different modelling approaches 

can be meaningfully brought together to overcome limitations and move towards clinically 

useful models. As academics, clinicians, and the industry are moving closer together, 

computational approaches could be greatly beneficial, but an in-depth crosstalk between 

these different fields is essential to build meaningful models.
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What are the application areas of computational modelling in psychiatry?

Computational modelling in psychiatry aims to achieve different objectives that can be 

roughly divided into four categories.4–7

Mechanism

Many academic studies aim to understand the biological mechanisms that cause mental 

illness, often investigating the neural mechanisms that underpin mental disorders. The goal 

of these approaches is to understand how processes in the brain go wrong, which can 

facilitate the development of better biomarkers for diagnosis, prevention, and therapeutic 

intervention.4,5,7

Subtyping

A longstanding challenge for psychiatry is that we know little about the biological 

causes of mental health problems. Current diagnostic manuals are not informed by any 

neurobiological mechanisms, and their purely descriptive analyses of symptoms have been 

criticised because of doubts of the validity of diagnostic labels.8 Therefore, there is hope 

that computational models will be able to deconvolve the heterogeneity of psychiatric 

disease taxonomy by generating new measures that are more objective and biologically 

driven.4,5 These approaches largely rely on unsupervised models, such as clustering, aimed 

at discovering meaningful patterns in the data that are then evaluated against external 

measures, like treatment outcomes.

Status prediction

An important goal is to predict a mental health status, either concurrently or before the 

development of disease to predict the changes that are about to emerge.9 Predicting mental 

illness before its development is particularly important because it might allow the prevention 

of adverse disease courses in a timely and efficient manner. These endeavours are most 

commonly used in the early psychosis field, in which high-risk states are well established, 

providing highly valuable windows of opportunity for preventive interventions.10

Treatment stratification

From a therapeutic perspective, predicting which patient will benefit from a particular 

treatment is essential. Psychiatry has developed a variety of non-pharmacological and 

pharmacological treatments, but a substantial proportion of patients will not benefit from 

these treatments. Finding out which patients benefit from a specific treatment is often a 

tedious and slow trial and error process. Therefore, the hope is that computational models 

can help improve treatment predictions, be it either to select between different types of 

therapeutic strategies (eg, psychotherapy vs medication) or to select the specific form 

of treatment (eg, selective serotonin reuptake inhibitors vs serotonin and noradrenaline 

reuptake inhibitors).
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Computational models: from mechanism-agnostic to mechanism-driven 

models

Why do we need computational models?

Computational models attempt to structure information using mathematical equations. By 

doing so, computational models describe a lawful association between a set of input 

variables (eg, neural activity, self-reported outcomes, and smartphone geolocations [panel 

2]) and one or multiple output variables (eg, behaviour, psychiatric diagnosis, and treatment 

response). Because these associations are specified mathematically, computational models 

can quantify how well they capture these output variables (ie, model fit), and even simulate 

such outputs, which allows us to interrogate these systems in silico to better understand how 

they work.

The elegance of computational models is primarily in their ability to detect meaningful 

hidden patterns in complex data. Often, mental health-relevant information is not directly 

observable in collected raw data (eg, brain activity or current social media usage), but only 

through aggregating this input data can one extract clinically useful patterns (eg, information 

processing biases in the brain and stereotyped behaviours). Therefore, the function of 

computational models is to condense and aggregate data, but also to determine the structure 

of meaningful variation, which can help forecast clinically relevant developments.

In this Series paper, we sort computational models according to how they are 

mechanistically formulated (figure 1A). On one hand, mechanism-agnostic models provide 

no information about how input variables meaningfully relate to or explain output variables

—in machine learning these models are termed black box models because the model creator 

is oblivious about how the model works.20 On the other hand are mechanism-driven models, 

also known as white box or glass box models,21 for which the link between input and output 

variables is clearly described and directly observable from the model formulation.

Mechanism-driven computational models

A key goal of academic research in mental health is to understand why psychiatric disorders 

arise and what the neural underpinnings and mechanisms are. To this end, researchers 

combine neuroscience methods (eg, functional MRI) with computational modelling. These 

models are inspired by our knowledge about the brain function and imitate the information 

processing that takes place in the brain.

Due to brain complexity, most computational neuro-scientists do not attempt to replicate the 

brain one to one, but use abstractions based on principles that are known to guide brain 

function. This allows the computational models to remain interpretable. A key challenge for 

this approach in modelling mental ill health is to determine the right level of abstraction. 

If a psychiatric disorder arises from an ion channel impairment, then these channels should 

be explicitly characterised in the model. However, if a breakdown takes place at the level 

of communication between different hierarchically organised brain regions, then modelling 

single synapses and neurons is probably not necessary and they can be approximated as 

entire ensembles.22,23 Thus far, computational psychiatry has seen approaches at many 
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different levels of abstraction,23–27 but a superiority for one level of abstraction has yet to be 

shown.

Some of the most exciting recent insights are from approaches that allow movement between 

different levels of abstraction, allowing models to map processes spanning different layers 

of disease pathology. Spiking neural networks with hundreds of neurons can be simplified 

while keeping many of the key features and the versatility of the original models.24–28 Such 

models of neuronal populations can then be used to go beyond single brain regions and 

model the interactions between regions and even whole brain connectivity (figure 2).28,29 

Having translatable models at these different levels of abstraction is also appealing because 

they can accommodate distinct brain recording modalities.

These network models are of great promise because they can capture key features of 

psychiatric disorders (such as schizophrenia),30–33 and extensions even allow modelling 

specific neurotransmitters directly. One can now assess how specific drugs can affect brain 

functioning and work towards finding the best possible treatment on the basis of a patient’s 

specific network imbalances.34–36 These models provide a mechanistic insight into brain 

function and dysfunction, but might also be useful for informing psychiatry about new 

biologically driven subtypes and help to predict treatment response.

A second set of mechanism-driven modelling approaches focuses on capturing behaviour 

as closely as possible and is less tightly connected to the specific brain implementation. 

Specifically, reinforcement learning, Bayesian, and similar models are promising for 

representing complex behaviours and behavioural biases in patients and linking behaviour 

with subjective experiences and clinically relevant symptoms.37–40

Pervasive indecisiveness present in patients with obsessive-compulsive disorder41–44 is 

traditionally assessed using clinical interviews; by contrast patients with schizophrenia who 

show a jumping to conclusions.45–47 To objectively measure patient indecisiveness, we and 

others have used information gathering tasks (figure 3) to assess how much information 

participants accumulate before making a decision. Using Bayesian computational modelling, 

we can quantify how much they deviate from optimal behaviour48 and allow to closely 

capture participants’ behaviour. Because model parameters are well defined and functionally 

transparent, one can directly compare these model parameters and identify biased cognitive 

processes in developmental cohorts and patients.48,49 Moreover, by pairing modelling with 

causal brain-related interventions, such as pharmacological treatments, one can investigate 

the role of different brain and neurotransmitter systems in specific computational processes, 

such as indecisiveness.50

Although mechanism-driven models facilitate a better understanding of which neural or 

cognitive processes are impaired in patients these models are not yet used to predict 

psychiatric phenotypes (diagnoses and outcomes) in clinical practice. Most models are used 

to find differences between groups, rather than using these model parameters to estimate 

an individual’s psychiatric status. Studies suggest that mechanism-driven, model-derived 

parameters are better at predicting disease status or longer-term outcomes than standard 

neural, behavioural, or sometimes even clinical predictors51,52 (with balanced out-of-sample 
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accuracies of up to 80%). However, how well these mechanism-driven models perform 

compared with mechanism-agnostic models, and how they can be supplemented with other 

data sources is yet to be determined.

Mechanism-agnostic computational models

Since the advent of modern machine learning methods there has been considerable 

enthusiasm for their use, including deep learning, for precision psychiatry. Unlike 

mechanism-driven strategies, mechanism-agnostic models are usually complex with 

hundreds or thousands of free parameters. These models have achieved previously unseen 

performance in a wide range of tasks, from image classification to predicting protein 

structures.53–55

In mental health, mechanism-agnostic models are being used together with different forms 

of data, including clinical records, brain-based measures, and passively collected smartphone 

or social media data (panel 2). The aim of most of these studies is to predict mental health 

status, either a specific future psychiatric disorder, or a specific mental health syndrome, 

such as suicidality.56

Clinical data—With an ongoing digitalisation of health-care records across health-care 

systems, large clinical datasets for mental health are becoming available for interrogation. 

Although these datasets are sometimes limited in terms of data quality, organisation, and 

accessibility, as described by Koutsouleris and colleagues in Series paper 2,11 several studies 

have used mechanism-agnostic models with the primary aim of condensing and distilling 

information about mental health status and symptoms.57

In psychiatry, large amounts of clinical notes and medical records are difficult to condense 

because much of the relevant information is captured in the clinician’s notes, rather than in 

laboratory test indicators (eg, inflammation markers). Studies have successfully used natural 

language processing (NLP) algorithms, which allow the extraction of specific information 

from written text to help predicting outcomes, such as hospitalisation duration, readmission 

likelihood,58,59 and risk of suicide60,61 (with out-of-sample area under the receiver operating 

characteristic curve prediction from 0·58 to >0·80). However, these studies also make 

another key challenge apparent: what language features should these algorithms be trained 

on? Training NLP algorithms on specific language features relevant to psychiatry, such as 

research domain criteria-related content, might help improve these predictive models over 

standard semantic corpus labels.

It is relevant to note that mechanism-agnostic models are not confined to written notes. 

These approaches also hold great promise for more complex data, such as audio and 

video recordings from assessments and therapy sessions. These algorithms could assist 

clinicians by alerting them to subtle (emotional) reactions and other features that might go 

unnoticed.62

Complex research data—Scientific investigations of patients with psychiatric disorders 

often generate large data sets with many datapoints per participant. Neuroimaging (eg, 

MRI) data contain tens of thousands of datapoints per participant. This high dimensionality 
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poses considerable challenges for analysing the data with traditional statistical approaches. 

Mechanism-agnostic models have been used mostly in two distinct approaches, either using 

data directly to classify and predict participants’ mental health, or using unsupervised (eg, 

clustering or factorisation) algorithms to create lower dimensional features, which can then 

be used for linkage with mental health status.

To predict current or future mental health status, many studies have used different variants 

of MRI data10,63,64 and deployed a wide range of machine learning models (with an out-of-

sample predictive accuracy of usually >70%). Although these methods can discriminate 

between groups (eg, between patients and controls), newer studies have shown that 

these predictions improve significantly when integrating neuroimaging data with other 

data sources, such as clinician ratings, genetic data, and neuropsychological tests.64 This 

complementarity of neuroimaging data to other data sources also has implications for 

interpretability, because it allows a better understanding of the degree to which different 

sources are complementary, and how mechanism-driven features might shed light onto 

mechanism-agnostic features.

An alternative approach to analysing neuroimaging data is to use unsupervised models to 

generate low-dimensional brain organisation patterns, which can then be used to predict 

mental health status. Various methods have been used to generate such brain fingerprints, 

from clustering algorithms to canonical correlation analyses combining brain and behaviour 

to deep autoencoders.65–70 An advantage of these methods is that the intermediary brain 

fingerprints are often more interpretable and less noisy than when predicting mental health 

status directly from raw data, which can also help us to better understand the mechanisms 

underlying a specific status. For example, by using deep autoencoders of diffusion tensor 

imaging data, Chamberland and colleagues66 were not only able to predict various 

neurological and psychiatric disorders (area under the receiver operating characteristic curve 

from >0·6 to >0·8), but also generate anomaly metrics that allowed them to establish which 

fibre tracts were most relevant for each disorder.

Digital phenotyping—The use of digital data for predicting mental health has seen a 

substantial increase over the past few years. Because smartphones and social media are 

ubiquitous in our lives, they have become promising tools for collecting large amounts of 

data from participants capturing their dynamic real-world experiences;70 thus, smartphones 

are becoming ideal companions for data-hungry models. Many different types of measures 

can be extracted from digital data (panel 2). Generally, one distinguishes between passively 

collected or unobtrusive data, which do not require active responding by the participant, 

and active data collection, for which the participants are requested to engage (eg, mood 

self-reports). An advantage of passive data collection is that they only require minimal 

contributions from the participant, which greatly improves study compliance enabling 

efficient longitudinal data collection.13

Mental health has been linked to various types of passively collected data, including 

geolocation,71,72 sleep disturbance data,58,73 and smartphone usage patterns.15,74 Although 

the passive data collected using smartphones might not be as informative as in-depth clinical 

measurements, the minimally invasive nature over longer time periods might lead these data 
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to be considered to be as valuable as more costly data acquisition methods, especially when 

combined across multiple data sources. Of particular interest are data from social media, 

such as usage patterns or content of messages. These data have been used to predict mental 

health status and outcomes,56 as well as the likelihood of upcoming readmission to hospital. 

The wide range of predictive accuracy in these studies is likely due to different data sets, 

data features, and time horizons.75

The promise of using digital data is substantial and evidenced by a surge in research 

papers.56 This trend can be observed in many start-ups entering this field, and technology 

giants, such as Facebook, already using similar models for suicide prevention on their 

platforms.

Building useful models

Barriers for models to become useful

Both mechanism-driven and mechanism-agnostic models have shown their potential for 

psychiatry. However, unlike other fields (eg, judicial system),76 few models have found their 

way into clinical practice.77 Of note, mechanism-driven and mechanism-agnostic models 

seem to have distinct implementational constraints and difficulties.

For mechanism-driven models, a key challenge is their predictive performance. 

Traditionally, mechanism-driven models are developed and optimised to capture behaviour 

or neural responses. Because these models are not optimised to predict mental health 

status, ideal therapeutic response, or long-term outcomes, these parameters often display 

a more restricted predictive power than models optimised to predict mental health-related 

phenotypes. Attempts to overcome this weakness use generative embedding strategies, 

which use mechanism-driven algorithms as a dimensionality reduction step before the 

subsequent generation of optimally predictive mechanism-agnostic models.78 Another 

limitation of mechanism-driven models is that many rely on complex data collection, which 

substantially restricts their use outside of academic settings.

For mechanism-agnostic models, the key challenge is understanding how these models 

operate and what they predict. Their complexity renders them opaque,79 but improving 

our understanding of them is crucial for three reasons: (1) only through understanding 

mechanism-agnostic models will we be able to establish which input variables are relevant 

and which could be removed, which is challenging in complex and non-linear mechanism-

agnostic models; (2) understanding enables us to detect biases and faults of the model that 

arise through biased training sets;11 (3) predictions from unexplainable models can pose a 

substantial challenge when used in clinics because the uptake of model predictions strongly 

depends on clinical staff understanding and trusting them. We propose to use three strategies 

that could help alleviate these limitations.

Translation: from the laboratory and into the real world—Many mechanistic 

assessments, such as computational psychiatry and neuroimaging tasks,80 have only been 

evaluated in small samples of highly selected participants, and little is known about their 

potential for predicting mental health status in real-world clinical cohorts. Therefore, we 
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need to examine the use of mechanistic assessments outside of overly selective laboratory 

samples in large, epidemiologically sampled populations.11 This is crucial because these 

assessments still rely heavily on the experimenters’ instructions. For any assessment that 

should be applied to clinical practice, assessments that are robust to experimenter biases are 

required (panel 3). In addition, long assessments using expensive neuroimaging methods are 

unlikely to become clinically viable; this means that proxies that substitute these measures in 

clinical settings require development.

A move towards online-based task assessments over the last decade constitutes a first 

step towards clinically usable data assessment tools.88,89 Using online worker platforms, 

researchers have developed methods for instructing complex tasks that are entirely 

digital,2,39 showing similar behavioural patterns as observed in the laboratory.86 However, 

paid participants on such platforms are often professional experiment participants, and might 

not reflect the population that these tests will be used in.

Consequently, studies have now entirely departed from traditional participant pools towards 

more population-reflective, crowd-sourced data collection. The use of gamified smartphone 

applications (eg, Brain Explorer, Great Brain Experiment [UCL, London], and Neureka 

[Trinity College, Dublin]) has proven to be promising.86,90–92 By recruiting participants 

worldwide and from diverse demographic backgrounds, such big data approaches open 

promising new avenues for collecting data that are more representative of the reality 

encountered in clinics.

Although gamified approaches are unable to replace neuroimaging markers directly, they 

can help to inexpensively approximate potential mechanisms. By using similar tasks used 

in neuroimaging scanners, we can use computational models to infer the probable neural 

mechanisms relevant for imbalanced processing. Moreover, by using pharmacological 

manipulations, we can obtain relevant information about possible neurotransmitter 

involvement that can be helpful for pharmacological treatment predictions.43,93

A key advantage of mobile assessment platforms is that they are more amenable for 

repeated and triggered assessments. They can be combined with self-reports collected as 

ecological momentary assessments. In addition, bringing assessments together with passive 

data collection or physiological data, such as pupillometry,94 might provide additional 

crucial information.

Explanation: from black to grey boxes—The inability to understand many 

mechanism-agnostic models not only challenges their usability, but also threatens their 

uptake in clinics and might become a regulatory requirement. Over the past few years, 

various techniques, predominantly in image classification, have been developed trying to 

explain black box models (eg, deep dreaming95 and attention maps96). However, these 

explanations are not undisputed because they only provide an approximation to the true 

model. This means that they are unable to fully capture the model and could provide false 

explanations for a considerable number of cases.79
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Complementarily, an important new trend in machine learning is the use of causal 

models that allow advancement beyond simple correlational effects. This is particularly 

relevant in psychiatry to identify factors that are causal for mental health and not simply 

coincidental. Although there are several different forms of models that allow the assessment 

of causality,97,98 methods for more complex mechanism-agnostic models are only slowly 

emerging.99,100 Therefore, it is important to build mechanism-agnostic models that are 

transparent by selecting interpretable algorithms by design (eg, XGBoost).

Another method to increase interpretability is to use dimensionality reduction approaches 

before using these lower dimensional features for prediction. this modularisation is useful 

to assess the performance of each compartment independently and exploit the relatively 

low dimensionality of the final prediction model to establish better understandability. An 

example of such an approach is the prediction of psychosis onset, in which a combination 

of separately aggregated clinical, neuroimaging, and neuropsychological predictors have 

revealed partly additive and explainable effects.10 Therefore, it is important to carefully 

consider the complexity of a model and to balance interpretability and complexity in 

accordance with the demand.

Combination: bringing together different sources and models—Thus far, the 

computational modelling in psychiatry mainly consists of many scattered, independent 

approaches to explain mental health, but these different promising attempts have not yet 

been brought together. Building clinically useful models will require us to overcoming 

these fragmented aspirations to pursuing the integration of different data sources following 

modelling strategies that maximise complementarity and interpretability (figure 4). For 

example, for treatment prediction and stratification, a series of person-specific and disorder-

specific factors that predict success in treatment are known. Task-derived mechanistic 

models101 and digital markers56,101–103 could complement such data and improve 

performance.

When approaching data integration, it is crucial to be aware of the complementarity of 

the data. Data sources that capture entirely distinct data types (eg, computational tasks) 

are likely to be non-overlapping and thus add meaningful new dimensions that can help 

elucidate mental health heterogeneity. Therefore, by combining these different data sources 

and models, we might be able to more comprehensively parametrise a person’s mental 

health.

Focus should be directed towards mechanism-driven models and data sources that extract 

meaningful features of rich data; by bringing these data sources together in shallower 

and interpretable mechanism-agnostic models, we will be able to identify the role of 

each of these condensed features. Such approaches also allow us to assess which data 

sources contribute to prediction the most, and which can be eliminated without losing 

predictive power. The first attempts for fusing different data and modelling modalities show 

promise,64,96 but their clinical usefulness is yet to be determined. Moreover, by bringing 

together mechanism-driven and mechanism-agnostic models, we can detect shortcomings of 

our mechanism-driven models and improve our mechanistic understanding.104
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Conclusion

A wealth of computational approaches to psychiatry make navigating this complex, rapidly 

evolving space challenging and understanding the uniqueness versus the relatedness of these 

models more difficult. A stricter standardisation of modelling strategies and enforcement 

of comparability is needed to achieve a transparent landscape of computational modelling 

in psychiatry. In this Series paper, we show how to dissociate these models based on their 

purpose. Moreover, we have highlighted the importance of bringing these disparate models 

and data sources together to increase both prediction and interpretability. In particular, the 

combination of mechanism-driven and mechanism-agnostic models hold great promise to 

derive biologically informed and transparent prediction models, which could help to develop 

novel treatments and interventions.
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Panel 1:

Glossary

Bias-variance trade-off

A conflict between two types of errors that must be minimised when developing a 

computational model. Bias error arises due to underfitting and the model not capturing 

the relevant associations between features and output labels. Variance error mostly arises 

if the model is overfitting the training set and interprets random noise as meaningful 

variation.

Computational psychiatry

A field of research that seeks to characterise mental dysfunction in terms of aberrant 

computations over multiple scales.

Cross-validation

A procedure to split data into train and validation sets to provide unbiased estimates 

of model performance. The model is fitted on the training data and evaluated on the 

validation data that were not used to fit the model. This procedure is k-times repeated 

until all the data has been used in the test data once (eg, k=5-folds) to evaluate model 

robustness and prevent overfitting.

Deep autoencoders

Class of deep learning algorithms that have found great use for unsupervised learning 

problems. Using two symmetrical deep networks, the autoencoders are optimised to 

produce output data that resemble the input data via a compressed representation of the 

latter.

Deep learning, deep neural networks

A branch of machine learning that uses multilayer artificial neural networks to derive 

model predictions. Stacking several layers of artificial neurons on top of each other 

allows fitting of highly dimensional data with complex non-linear relationships, but 

it comes at the cost of increased model complexity (can reach several million free 

parameters) and problems with interpretability (black box models).

Dimensionality

Dimensionality of the data is determined by the number of input features. Highly 

dimensional data are rich in information and potentially more robust against noise, 

but they often require special models that can account for the redundancy and high 

covariance between features (eg, regularised models).

Diffusion tensor imaging

An MRI technique used to estimate the white matter (axonal) organisation of the brain.

Ecological momentary assessment
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Methods of repeated sampling of an individual’s behaviour and experiences in real-time 

and in natural environments.

Effect size

A quantity that measures the strength of the dependency between dependent (features) 

and independent (labels) variables.

Functional MRI

An MRI technique that indirectly measures brain activity by registering differences 

in blood oxygen level. This is a common method to understand the functional neural 

organisation of cognition and behaviour.

Gamification

Describes the approach of making cognitive (and other) tasks more game-like using 

principles and design elements successfully used in electronic games with the goal of 

making them more entertaining and, therefore, increase user engagement.

Model features

Data or an aggregated substrate thereof is used to train a computational model to 

predict a label. Features could be continuous (numerical, such as height or weight of 

an individual), categorial (eg, gender), or more complex, such as text strings, graphs, or 

multidimensional syntactic features.

Model fitting

A process of finding model parameters so that the model’s predictions maximally 

resemble the data (parameter optimisation). Model fitting can be implemented through 

different optimisation methods.

Model labels

Outcome variables that the model tries to predict. Similarly, to model features, model 

labels could be numeric (continuous, such as the duration of hospitalisation), discrete 

(eg, whether an individual will develop a psychiatric disorder or not), or more complex 

entities (eg, the next word in a sentence).

Model selection

An important step in finding good computational models for mental health is to 

establish the best model among a pool of different possible models for the data given. 

Traditionally, selection considers the model fit and the model complexity, to avoid 

overfitting and underfitting. However, in this Series paper we discussed other aspects 

of model selection, such as mechanism-agnostic versus mechanism-driven models or 

interpretability of models that are less easily quantifiable. Therefore, it is crucial for 

researchers to have a clear understanding of the advantages and disadvantages of the 

models chosen, and to use the adequate selection criteria.

Natural language processing
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A branch of machine learning focused on the algorithms that process, predict, and 

generate natural language and speech.

Occam’s razor

A principle of constructing explanations formulated by scholastic philosopher William 

Ockham in the 13th century which states that “pluralitas non est ponenda sine 
necessitate”, translated to “plurality should not be posited without necessity.” This 

principle favours a simple theory or model over more complex one if the former can 

explain the phenomenon.

Overfitting

A situation when the model explains the data too well because of poor model fitting 

procedure. Overfitting describes when the model takes the negligible deviations in the 

data into account and is unlikely to perform well with unseen data.

Parameter optimisation

A set of procedures of finding a set of parameter values in the model that will maximise 

the model’s objective function (eg, likelihood).

Precision psychiatry

An approach for the treatment and prevention of psychiatric disorders that considers 

individual variability in genes, biology, cognition, environment, and lifestyle.

Recurrent neural networks

A term used for two separate types of models: (1) a type of artificial neural networks that 

allows for information to be retained over time enabling memory in these networks and 

(2) network models with multiple artificial neurons that are connected to each other.

Regularisation

A set of constraints that are imposed on model parameters (eg, weights or coefficients) 

to prevent them from taking large values. These techniques stop the model from putting 

too much weight on some of the features, reduce model complexity, and help prevent 

overfitting.

Reinforcement learning

A domain of artificial intelligence that focuses on building intelligent agents who learn 

by trial and error to take actions that maximise their cumulative future reward.

Reliability

Quantifies how consistently a method or a model measures a phenomenon of interest (see 

panel 3: challenges).

Spiking neural networks

A type of artificial neural networks that incorporate spiking properties of natural neurons.

Support-vector machines
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A type of machine learning supervised algorithms that are used for classification 

and predictive modelling. Support-vector machines construct linear and non-linear 

hyperplanes, which allow for separate data points to be put into different classes.

Validity

Quantifies how accurately a method or a model measures a phenomenon of interest.
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Panel 2:

Data sources

Computational models in psychiatry have used a wide variety of different data sources, 

and they substantially differ in their advantages and disadvantages.

Clinical data

Data collected in the context of mental health care can range from hospitalisation 

duration to detailed notes on the patient from clinical staff. However, privacy concerns 

and missing data infrastructures make it challenging to harvest such data for modelling 

purposes.11,12

Laboratory-based data

Data collected in controlled environments for scientific studies. These often entail 

behavioural and biology-derived data. Due to the well controlled settings and often 

selective participant recruitment, noise in the data is reduced to yield maximal effect 

sizes. However, sample sizes due to expensive data collection methods are often restricted 

and translation to clinics is challenging as models are not prepared for the increased 

heterogeneity and noise in real-world clinical samples.

Digital data

Digital data can be roughly divided into passive and active data and includes any data 

that was collected from the participant using digital devices.13 Most commonly used data 

stems from mobile phones and social media.

• Active data requires the participant to interact with a request from the 

experimenters. Most common are probes that assess one’s self-reported 

mood and experiences. A second promising avenue are game-like cognitive 

assessments with smartphones. These short games help overcome the 

limitations of laboratory-based studies and to collect large samples.14 Such 

approaches also allow for repeated longitudinal assessments and context-

specific assessments.

• Passive data does not require the participant to respond to the study, 

which has the advantage that participants are less likely to drop out and 

such data collection is well suited for longitudinal studies.13 Data ranges 

from social media activity and communication patterns to sensor data from 

smartphones and wearable devices. Social media activity and geolocation data 

has been particularly popular in mental health research,13,15,16–18 but other 

data sources, such as light sensors, voice recordings, accelerometers, and 

physiological recordings, also hold promise. Bringing together passive and 

active data sources, for example by collecting eye gazing data during game 

play,19 could yield new insights in future studies.
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Panel 3:

Challenges for computational models

Despite the plethora of computational models in psychiatry, they are all built on the same 

computational pillars and face similar challenges.

Noisy data

Noise in the data affects model quality and reliability and can add bias. Measurement 

noise can arise from participant inconsistencies (particularly in poorly controlled data 

collection environments),81 imprecise data collection (eg, MRI artifacts), or insensitive 

task measures.

Missing and sparse data

Missing data is one of the main concerns for model building and often requires additional 

statistical preprocessing and corrections, especially in longitudinal studies.82 Sparse data 

(eg, imbalanced samples) can lead to substantial biases even in large data sets and 

especially for minority populations.14

Validation

When using computational models, it is crucial that the model’s performance is validated 

against an independent test dataset (out-of-sample prediction, cross-validation). If such 

an approach is not used (ie, within-sample prediction), then the accuracy might be 

inflated and the results are prone for overfitting. Validation is crucial in contexts in 

which, besides the model parameters, hyperparameters are optimised, which requires a 

careful delineation of datasets.

Small sample size and reproducibility

Laboratory-based studies tend to include smaller and biased sample sizes, which could 

lead to non-reproducible effects and low statistical power.83–85 A solution to this can 

be online or smartphone-based data collection,86 which is particularly promising for 

assessing game-like computational tasks.

Reliability and validity

For computational models to produce generalisable and replicable results, it is important 

that the assessments produce reliable results. Unfortunately, little is known about 

psychometric properties of computational models and their data sources. Studies have 

assessed the reliability of tasks and introduced methods and task-related measures 

to improve reliability.87 Similarly, a low reliability of psychiatric diagnoses renders 

prediction more difficult.8

Temporal dynamics

Many data sources (mental health symptoms, brain activity, cognitive variables, and 

social media) show fluctuations and oscillations on different time scales (from seconds 

to years). These temporal dynamics might be disorder relevant or entirely independent. 

Because these dynamics cannot be detected when using cross-sectional or temporally 
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sparse assessments, it is important to use repeated longitudinal assessments to assess and 

exploit these dynamics for modelling mental health.19

Generalisability

Generalisability describes the ability to use models beyond the data that were used to 

develop the original model (ie, predicting the labels correctly in new data). This is crucial 

for the clinical success of modelling efforts, but also a key challenge especially if the data 

samples differ substantially from clinical reality.
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Search strategy and selection criteria

Ideas and content of this Series paper were developed through a series of discussions 

evolving between the authors and taking place between May and December, 2021. 

The wide angle of perspectives on the development and integration of AI tools in 

future mental health care led to the formulation of two primary foci on modelling 

and implementation challenges of AI in mental health care. The two primary foci were 

discussed in-depth, respective content ideas were grouped into sections, and keywords 

for literature search on PubMed and Google Scholar were formulated for each section. 

For this Series paper the search terms to gather the published material associated 

with mechanism-driven models were [“computational psychiatry”, (“computational 

model” OR “Neural network” OR “Reinforcement Learning” OR “Bayesian model”) 

AND (“Psychiatry” OR “Mental Health” OR “Psychiatric”)], for mechanism-agnostic 

models the search terms were [(“machine learning” OR “Computational Model”) AND 

(“Psychiatry” OR “Mental Health” OR “Psychiatric”)], and for models using digital data 

the search terms were [(“social media” OR “smartphone”) AND (“machine learning” 

OR “Computational”) AND (“Psychiatry” OR “Mental Health” OR “Psychiatric”)]. 

In addition, relevant references from the obtained papers were also considered. 

Obtained papers (published after 2010) were non-systematically selected based on the 

representativeness of the work for the given section topics and based on the quality of 

research. The selection of references was discussed and supplemented as required to 

substantiate the authors’ viewpoints from different perspectives. The focus was on papers 

published in English, but papers in languages the authors spoke were also considered.
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Figure 1: Trade-offs between models and data sources
(A) Models differ in their transparency of the mechanisms, which determines their best 

use. Although most complex models often achieve higher predictive performance, white box 

models allow an understanding of the underlying mechanisms. (B) The choice of data source 

matters. High quality data (such as laboratory experimental studies) are often expensive (eg, 

functional MRI). Passive data collection is inexpensive, but the features are often unclear 

and not well defined. By transforming laboratory-based methods (eg, using gamification), 

substantially larger datasets can be collected at lower costs.
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Figure 2: Mechanistic models of brain function
Schematic representation of different levels of abstraction used in modelling brain 

functioning from spiking network models (A) to neural populations (B) to models 

incorporating multiple brain regions (C).
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Figure 3: Computational modelling of indecisiveness
(A) Laboratory information gathering task in which a participant is asked to determine 

which of the two colours is the more plentiful by drawing cards on the board.

(B) This task-based measure of indecisiveness is linked to indecisiveness as assessed using 

traditional clinical interviews and showing ecological validity.

(C) Computational modelling of drawing behaviour revealed that humans are suboptimal 

when making their decision, gathering too little information when it was cost-free, but 

gathering too much when information collection was costly.

(D) Best fitting models showed that participants accumulate subjective costs that promote 

early decisions, and a bias in this accumulation process was driving the difference between 

participants with and without with obsessive compulsive disorder.

(E) Gamification of this task allows the assessment of indecisiveness outside the laboratory 

in large samples of diverse backgrounds using smartphone apps, such as Brain Explorer. 

Parts B and D were reproduced from Hauser et al48 and were published under a creative 

commons attribution (CC BY). (E) from Brain Explorer app (www.brainexplorer.net). 

OCD=obsessive compulsive disorder.
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Figure 4: Bringing data sources together to improve modelling in psychiatry
Although most research has focused on single data sources for their models, bringing 

complementary data sources together can help improve model performance. Therefore, 

mechanism-driven model indicators can help with the interpretability of black box models. 

Substituting complex in-laboratory data sources with more readily available proxies, such 

as smartphone-based games, can help bring research-led findings into a real-world setting. 

These extended strategies might help build clinically useful models.
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