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A B S T R A C T   

NIR sensors, in conjunction with advanced chemometric algorithms, have proven to be a powerful and efficient 
tool for intelligent quality evaluation of sweetpotato roots throughout the entire supply chain. By leveraging NIR 
data in different wavelength ranges, the physicochemical, nutritional and antioxidant compositions, as well as 
variety classification of sweetpotato roots during the different stages were adequately evaluated, and all findings 
involving quantitative and qualitative investigations from the beginning to the present were summarized and 
analyzed comprehensively. All chemometric algorithms including both linear and nonlinear employed in NIR 
analysis of sweetpotato roots were introduced in detail and their calibration performances in terms of regression 
and classification were assessed and discussed. The challenges and limitations of current NIR application in 
quality evaluation of sweetpotato roots are emphasized. The prospects and trends covering the ongoing ad-
vancements in software and hardware are suggested to support the sustainable and efficient sweetpotato pro-
cessing and utilization.   

1. Introduction 

Sweetpotato (Ipomoea batatas) is a starchy root crop that is widely 

consumed around the world. It belongs to the Convolvulaceae family 
and is known for its sweet taste and versatility in cooking. Sweetpotato is 
believed to have originated in the region that is now part of South 
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America, particularly in current Peru and Ecuador. After >5000 years of 
development, sweetpotatoes has spread to other parts of the world 
through human migration and trade routes (Mu & Li, 2019). Sweet-
potato gained popularity in Europe and were cultivated in botanical 
gardens for both ornamental and culinary purposes, and then were 
introduced to Africa and Asia. So far, sweetpotato is cultivated globally 
and grown in over 100 countries. China leads as the largest producer 
with 46.6 tons in 2022, followed by other Asian countries with a com-
bined production of 52.71 tons, according to the latest statistical data 
from Food and Agriculture Organization (FAO), which are shown in 
Fig. 1. Sweetpotato is well-suited to tropical and subtropical climates, 
contributing significantly to the food supply in regions like Southeast 
Asia (Sapakhova et al., 2023). In many developing countries, sweet-
potato is a vital component of subsistence farming, playing a crucial role 
in addressing food shortage issues in part of regions in history, as its 
nature of cold and drought tolerance, good adaptability to different 
climates, as well as reliable source of nutrition (Fuglie, 2007). 

Sweetpotato is recognized for their nutritional benefits, including 
high levels of β-carotene, vitamins (mainly vitamin A, and vitamin C), 
minerals (e.g. potassium), and fiber, which vary in different varieties 
with orange-, white- and purple-flesh (Padmaja, Sheriff, & Sajeev, 
2012). The quality of sweetpotato is affected by several factors, and 
assessed considering aspects of appearance, texture, flavor, nutritional 
contents, etc. A pleasing appearance with vibrant skin color and smooth 
appearance tends to enhance the visual appeal and desire to purchase 
sweetpotato (Purcell, Walter, & Wilson, 2021). High-quality sweet-
potatoes with good texture and flavor will result in more enjoyable and 
satisfying dishes, therefore leading to better cooking performance (Xu 
et al., 2023). As the freshly harvested sweetpotato generally has better 
taste and texture than that stores in an extended period, evaluating the 
quality of sweetpotato is essential to ensure the optimal flavor during 
the storage (commonly in a cool and dark environment), maintaining 
freshness and preventing premature spoilage (van Oirschot, Rees, & 
Aked, 2003). Identifying any signs of spoilage, including mildew, black 
spots, sprouting, or off-flavors allows consumer to avoid purchasing 
potentially spoiled sweetpotato roots (Hedge, Misra, & Jeeva, 2012). In 
fact, different varieties of sweetpotatoes have varying nutritional 

profiles, and the ones that meet consumers’ nutritional preferences and 
dietary requirements can be selected by assessing their quality, 
contributing to the overall health and well-being of human body (Alam, 
2021). In addition, the quality of the sweetpotato directly influences the 
culinary satisfaction when preparing savory dishes, desserts, or snacks 
(Okello et al., 2021). In summary, evaluating the quality of sweetpotato 
is crucial for ensuring freshness, flavor, nutritional value, and overall 
satisfaction in culinary endeavors, enabling to make wise choices that 
contribute to a positive cooking and dining experience. 

Traditional techniques for evaluating the quality of sweetpotato 
mainly involve visual inspection of external surface features (e.g. skin 
color, surface texture, wrinkling, size, shape), manual assessment of 
sensory indicators (e.g. firmness, smell, taste, weight), reagent-based 
measurement of internal chemical and nutritional components (e.g. 
moisture, starch, protein, polysaccharides, vitamins, antioxidants, 
minerals), molecular diagnosis and immunology-based detection of 
sprouting, virus diseases, microbial spoilage and specific gene, etc. 
(Karan & Şanli, 2021; Pavithra, Thangamani, Pugalendhi, & Kumar, 
2023), which are reliable, effective, and frequently-used, but time- 
consuming, partly subjective, destructive, and sometimes require well- 
trained personnel, and specialized equipment to measure. Hence, the 
development of rapid, non-destructive, real-time analysis technology is 
crucial for quality assessment of sweetpotato and its products (Sanchez, 
Hashim, Shamsudin, & Nor, 2020). The necessity and importance of 
developing such technology for sweetpotato are driven by the need to 
enhance food safety, maintain quality, reduce waste, comply with reg-
ulations, and foster consumer trust in an increasingly complex and 
interconnected agri-food system (Raki, Aalaila, Taktour, & Peluffo- 
Ordóñez, 2024). 

NIR spectroscopy emerged as a powerful analytical optical technique 
utilizes the absorption of NIR light by molecular vibrations to provide 
information about the chemical compositions of samples, and has been 
widely applied in the agri-food industry for both quantitative and 
qualitative analysis (Cortés, Blasco, Aleixos, Cubero, & Talens, 2019). Its 
non-destructive nature, rapid analysis, and ability to provide informa-
tion about multiple components make NIR an invaluable tool for quality 
control and process monitoring. With NIR technology, the quality of 

Fig. 1. Statistics of sweetpotato production in different parts of the world from the year 1961–2022, and 2022, respectively.  
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agri-food can be assessed without altering or damaging the product, 
allowing for continuous monitoring throughout the production process. 
Besides, by applying NIR technique, the manufacturers can implement 
precise process control, optimizing various parameters during produc-
tion, and leading to improved efficiency, consistency, and overall 
quality of the final food products (Grassi & Alamprese, 2018). NIR offers 
a cost-effective alternative, reducing the need for extensive lab testing 
and associated expenses and is particularly valuable in high-throughput 
production environments, contributing to faster decision-making and 
reduced processing time. NIR technology is versatile and has been 

applied to a wide range of sweetpotato production, from farming to final 
products. In this review, the wide applications of NIR coupled with 
chemometrics algorithms to assess sweetpotato quality during different 
production stages including planting, storage, processing and products 
are comprehensively summarized, and the specific quality indexes are 
exhibited in Fig. 2. The capabilities of NIR in both quality prediction and 
variety classification of sweetpotato are analyzed in detail. The current 
limitations and challenges of of sweetpotato quality evaluation by NIR 
are pointed out. The future trends and prospects of developing miniature 
NIR special equipment for intelligently monitoring sweetpotato quality 

Fig. 2. Graphical exhibition of quality indexes of sweetpotato at different production stages.  

Fig. 3. Diagram of summarized overstones and combinations of fundamental vibrations of chemical bonds in NIR region (Harris & Altaner, 2013).  
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are finally put forward, aiming to maximize the industrial application 
value of NIR in improving efficiency, reducing costs, and ensuring the 
production and distribution of high-quality sweetpotato in a variety of 
agricultural settings, as well as promoting sustainability in the food 
production process. 

2. NIR application principle and procedure 

NIR, an electromagnetic spectrum between VIS and MIR regions with 
a wave number of about 4000 to 10,000 cm− 1, operates in the 780–2500 

nm region to reflect the energy levels associated with overtones and 
combinations of fundamental vibrations of hydrogen-containing group 
X–H (X = C, O, N, S) and carbon-containing group (mainly C––C, C––O) 
in organic compounds of a food sample (Pasquini, 2018). The NIR bands 
located in different points or intervals can be assigned for 1st overtone, 
or 2nd overtone, or 3rd overtone, or 4th overtone, or combinations of 
specific chemical bonds and their distributions are summarized in detail 
(Workman Jr, 1996), and shown in Fig. 3. 

NIR region is typically divided into two regions of SWNIR 
(780–1100 nm) and LWNIR (1100–2500 nm). SWNIR is commonly used 

Fig. 4a. Sketch of a typical NIR system containing main components.  

Fig. 4b. Flow chart of NIR analysis procedures.  
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for routine quantitative analysis of main components in samples 
including moisture, fat, protein, carbohydrates, and other constituents 
in agri-food products, due to its strong sensitivity to overtones of 
fundamental vibrations of common chemical bonds, particularly those 
involving H, C, O, and N (Ma, Babu, & Amamcharla, 2019). SWNIR is 
advantageous for its ability to quickly analyze major components in 
samples without the need for extensive sample preparation, making it 
suitable for high-throughput applications (Ge et al., 2019). LWNIR is 
frequently employed for the identification of specific compounds, 
detection of chemical groups, and more detailed characterization of 
samples, as it is sensitive to more complex overtones and combinations 
of fundamental vibrations of chemical bonds. In the agri-food industry, 
LWNIR can be used for the in-depth analysis of the chemical composi-
tions of food products, including the identification of specific com-
pounds related to flavor, aroma, and nutritional content (Hussain et al., 
2023), and is suitable for in-line and at-line process monitoring, 
providing real-time insights into the chemical changes during food 
processing (Dixit et al., 2017). The choice between SWNIR and LWNIR 
depends on the specific analytical requirements and the nature of the 
sample being analyzed. In practice, many NIR instruments cover both 
SWNIR and LWNIR ranges, allowing for a broader range of applications 
and versatility in analytical methods. The main components of a typical 
NIR system is shown in Fig. 4a. 

NIR analysis is versatile and can be applied to various agri-food 

parameters, including moisture, protein, fat, fiber, and more. The key 
to successful NIR analysis lies in the careful development and validation 
of calibration models based on the specific characteristics of the agri- 
food products (Vincent & Dardenne, 2021). The whole detailed pro-
cedures of NIR analysis in agri-food products (e.g. sweetpotato) are 
shown in Fig. 4b, mainly including NIR analysis model development and 
application. Among, a representative set of samples that cover the ex-
pected variability are required and should be prepared appropriately by 
considering the form of the material (solid, liquid, or powder). After 
illuminating the samples by NIR light, the reflectance or absorbance 
spectra can be collected and commonly preprocessed by various 
methods, including baseline correction, smoothing, normalization, and 
derivative transformations (e.g. MSC, SNV, DT, SGS, 1D, 2D, BC, NC, 
etc.) (Jiao, Li, Chen, & Fei, 2020). Chemometric analysis, linear 
regression (e.g. PLS, MLR, PCR, LDA, etc.) or nonlinear operation (e.g. 
SVM, ANN, RF, etc.), are then utilized to mine the NIR spectral features, 
correlating the preprocessed NIR spectra with the reference values, i.e. 
modeling. By evaluating the model performance, considering several 
parameters including R, R2, RMSE, RPD, etc., the final best model is 
selected and applied in the analysis of unknown samples. In a word, NIR 
is a powerful tool that can be tailored for either quantitative or quali-
tative analysis based on the specific goals and requirements of the 
application. 

Fig. 5. Summary diagram of chemometric algorithms in NIR analysis of sweetpotato roots.  
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3. Chemometric algorithms for NIR analysis 

Various chemometric algorithms have been used for NIR analysis 
and are key components to enable as much useful information as 
possible to be obtained from the spectrum, thereby improving the 
robustness and accuracy of the analytical results, including linear and 
nonlinear. These algorithms are used in chemometrics, which is the 
application of statistical and mathematical methods to analyze chemical 
data. Choosing between linear and nonlinear algorithms depends on the 
complexity of the relationships in the data. Linear algorithms may be 
sufficient for simpler relationships (Wang et al., 2022), while nonlinear 
algorithms can capture more intricate patterns (Zareef et al., 2020). In 
practice, a combination of linear and nonlinear algorithms may be 
employed to ensure the flexibility needed for accurate calibration and 
prediction in NIR analysis. The choice often involves a trade-off between 
interpretability and model complexity. The algorithms used in NIR 
analysis of sweetpotato are outlined and exhibited in Fig. 5. Among, 
linear algorithms in NIR analysis are commonly used for calibration and 
modeling to establish relationships between the NIR spectra and the 
properties of sweetpotato in a linear fashion. Non-linear algorithms are 
employed in NIR analysis when the relationships between the spectra 
and the properties of sweetpotato are complex and cannot be adequately 
modeled by linear methods. 

3.1. Data dimensionality reduction algorithms 

NIR analysis often involves high-dimensional spectral data, where 
each data point corresponds to a spectrum recorded over a range of 
wavelengths. To handle the challenges of high-dimensional data and 
improve model performance, dimensionality reduction techniques are 
commonly employed (Li, Li, Yang, & He, 2021). For the sweetpotato 
quality evaluation by NIR sensors, two techniques including PCA 
(Fig. 5a) and UMAP (Fig. 5b) are frequently used to reduce the dimen-
sionality of NIR spectral data. 

PCA aims to transform the original high-dimensional spectral data 
into a new set of uncorrelated variables, i.e. PCs, ordered by the amount 
of captured variance (Beattie & Esmonde-White, 2021). The amount of 
variance can be explained by each PC whose contribution is visualized in 
a scree plot or cumulative variance plot (represented as PC score). PCA 
in NIR analysis is a valuable tool for exploratory data analysis, noise 
reduction, and dimensionality reduction, helping identify relevant 
spectral features and facilitates the development of models for various 
applications (Bruni, Cardinali, & Vitulano, 2022). Unlike PCA, UMAP 
can capture non-linear relationships in the data, and is particularly 
beneficial in NIR analysis (Vermeulen, Smith, Eremin, Rayner, & Wal-
ton, 2021). UMAP aims to represent high-dimensional data in a lower- 
dimensional space, typically 2D or 3D, and to maintain the intrinsic 
relationships present in the original data at the same time. UMAP em-
phasizes the preservation of both local and global structures in the data, 
by keeping nearby points close to each other in the low-dimensional 
level, preserving the local relationships, while also capturing the 
global structure. UMAP is often employed for visual exploration of 
spectral datasets, revealing clusters, patterns, and outliers in data that 
might be challenging to observe in the original high-dimensional space. 
UMAP is becoming increasingly popular for visualizing high- 
dimensional data in a lower-dimensional space and has potential ap-
plications in NIR analysis (Guo et al., 2024). 

3.2. Quantitative and qualitative analysis algorithms 

Quantitative analysis in NIR spectroscopy involves predicting the 
concentration or content of specific compounds or properties in a sample 
based on its NIR spectral data. Various algorithms and are employed for 
quantitative analysis in NIR, and the choice often depends on the nature 
of the data and the specific requirements of the analysis. Some quanti-
tative algorithms, involving linear and non-linear, have been applied in 

the quality evaluation of sweetpotato and are shown in Fig. 5. 
MLR is a straightforward and interpretable method used in NIR 

analysis when the relationships between spectral features and target 
variables are primarily linear, offering a useful baseline model for 
comparison with more complex algorithms. It assumes a linear combi-
nation of the predictor variables, and estimates coefficients to best fit the 
observed values of the target variable (e.g., reducing sugar content in 
sweetpotato) (He et al., 2022). MLR can be expressed as Y = a0 + a1X1 +

a2X2 + ••• + anXn + ε (Y is target variable; a0 is intercept; a1, •••, an are 
coefficients; ε is error term). SMLR is sometimes employed in NIR 
analysis for building regression models through selecting the most 
relevant subset of predictor variables (wavelengths in the NIR spectrum) 
that contribute significantly to the prediction of the target variable (e.g., 
polysaccharide concentration in sweetpotato) (Xiao et al., 2022). PLS is 
a widely regression-based multivariate statistical technique in NIR 
analysis for modeling the relationship between NIR data and a response 
variable (e.g., dry matter concentrations in sweetpotato) (Kamruzzaman 
& Villordon, 2022). It is particularly useful when dealing with high- 
dimensional data and situations where there is multicollinearity and 
high dimensionality in NIR data, allowing for the extraction of LVs that 
capture the most relevant information by maximizing the covariance 
between the NIR data and the response variable (Bjørsvik & Martens, 
2007). PLS model can be expressed as Y = b0 + b1X’1 + b2X’2 + ••• +

bmX’m + ε’ (Y is response variable; b0 is intercept; b1, •••, bm are co-
efficients; ε’ is error term). PCR combines PCA for data dimensionality 
reduction with MLR to predict the target variable (e.g., rheological pa-
rameters in sweetpotato) (Chen, Zhang, Devahastin, & Yu, 2021). PCR 
can be expressed as Y = c0 + c1PC1 + c2PC2 + ••• + ckPCk + ε” (Y is 
response variable; c0 is intercept; c1,•••, ck are coefficients; PC1, •••, PCk 
are retained PCs, ε” is error term). MPLS, SOPLS, LWPLS and RBF-PLS 
are extensions or derivative versions of traditional PLS algorithm to 
enhance the capabilities in dealing with complex datasets (Font, del Río- 
Celestino, Luna, Gil, & de Haro-Bailón, 2021; Lesnoff, Metz, & Roger, 
2020). 

SVM is a machine learning algorithm that can be applied to NIR data 
for various analytical purposes, including regression and classification 
tasks (Devos, Ruckebusch, Durand, Duponchel, & Huvenne, 2009). It is 
known for its ability to handle high-dimensional data and nonlinear 
relationships effectively. SVR regression is applied when the goal is to 
predict a continuous variable, such as the concentration of a particular 
compound (e.g. SSC in sweetpotato) (Shao et al., 2020), based on NIR 
spectra. Kernel functions embedded in SVM algorithm are used to cap-
ture complex relationships between the NIR spectra and the target 
variable (Chen et al., 2020). SVM classification is used when the goal is 
to classify samples into different predefined classes based on their NIR 
spectra. It often uses kernel functions (mainly refers to RBF) to implicitly 
map the input data into a higher-dimensional space, making it possible 
to find a hyperplane that separates classes. The choice of kernel function 
can impact SVM performance and its selection may depend on the nature 
of the data and the problem at hand (Savas & Dovis, 2019). In short, 
SVM is powerful in NIR analysis, providing robust models for both 
quantitative and qualitative measurements. The good ability to handle 
high-dimensional data and nonlinear relationships makes SVM suitable 
for extracting meaningful information from complex NIR spectra. ANN, 
a type of machine learning model inspired by the structure and func-
tioning of the human brain, can be applied for NIR analysis by designing 
an architecture of neural network including the number of layers, nodes 
in each layer, and the activation functions, and that may vary based on 
the specific task (regression, classification, and pattern recognition) 
(Jernelv, Hjelme, Matsuura, & Aksnes, 2020). The trained network can 
be used to predict concentrations using new spectra (e.g. moisture in 
sweetpotato) (Su, Bakalis, & Sun, 2020), and classify new spectra into 
the appropriate classes. In addition, by training an unsupervised or self- 
organizing ANN to learn patterns within the NIR data without explicit 
class labels, the ANN can be used to identify deviations from learned 
patterns (Makmuang et al., 2023). It should be noted that it’s essential to 
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carefully design and train the network in NIR analysis, considering the 
specific requirements of the analysis task. BPANN specifically refers to 
an ANN trained using the backpropagation algorithm, and is a super-
vised learning algorithm where the network learns from labeled data by 
adjusting its weights to minimize the error between predicted and actual 
outputs (Wang, Lin, & Dang, 2020). BPANN may excel in capturing 
intricate patterns in high-dimensional data but might require more 
computational resources for training. KNN, a different approach 
compared to ANN, is a simple, non-parametric, and instance-based 
learning algorithm, achieving predictions based on the majority class 
(for classification) or average (for regression) of the k-nearest data 
points in the feature space (Boateng, Otoo, & Abaye, 2020). Unlike ANN, 
KNN doesn’t learn a model during a training phase. Instead, KNN stores 
the entire training dataset and makes predictions based on the proximity 
of new data points to existing points in the feature space. KNN can be 
computationally intensive during prediction, especially with large 
datasets, but it’s simple and effective in low-dimensional spaces. Both 
BPANN and KNN can be used for classification and regression tasks (e.g. 
variety classification of sweetpotato) (Ding, Ni, & Kokot, 2015), but 
represent different philosophies in machine learning. RF, a popular 
ensemble learning algorithm, belongs to the family of decision tree- 
based methods and is known for its robustness and versatility (Savar-
giv, Masoumi, & Keyvanpour, 2022). It also can be applied to NIR 
analysis for both classification and regression (e.g. total flavonoid con-
tent in sweetpotato) (Tang et al., 2023). By training a RF regressor or a 
classifier using the labeled NIR dataset, multiple decision trees are built 
during the training process to make prediction. RF provides a measure of 
feature importance, indicating the contribution of each NIR wavelength 
to the overall prediction, which is valuable for feature selection and 
interpretation. The ensemble nature of RF helps mitigate overfitting and 
can improve the model’s generalization to new data. The ability to 
handle high-dimensional data and capture complex relationships makes 
RF well-suited for the analysis of spectral data (Ayesha, Hanif, & Talib, 
2020). 

3.3. Classification algorithms 

Classification algorithms can be applied to NIR analysis to categorize 
samples into predefined classes based on their spectral data. A few DA 
algorithms are used in NIR analysis for sweetpotato discrimination be-
tween different classes or groups, aiming to find the combination of 
variables (e.g. wavelengths in NIR spectra) that maximizes the separa-
tion between classes (Zeng et al., 2021). 

LDA calculates the mean and covariance matrix for each class to find 
the linear discriminant function coefficients that maximize the ratio of 
between-class variance to within-class variance (Safo & Ahn, 2016). It 
constructs a linear decision boundary, or discriminant function, that 
maximizes the separation between different classes in the feature space. 
The primary objective of LDA in NIR analysis is to classify samples into 
different categories or classes based on their NIR spectral data (e.g. 
classification of healthy and defective sweetpotato) (Shao et al., 2022). 
PLSDA is a multivariate statistical method commonly used in NIR 
analysis, specifically for classification tasks (e.g. discrimination and 
grading of sweetpotato) (Su & Sun, 2016). It combines elements of PLS 
regression and DA to model the relationship between NIR spectra and 
class membership, and is particularly useful when dealing with high- 
dimensional and collinear data, such as spectral data in the NIR range 
(Lee, Liong, & Jemain, 2018). SVMDA is an approach that combines the 
principles of SVM with those of DA for classification tasks, aiming to find 
a decision boundary that maximally separates different classes in the 
feature space, which makes SVMDA suitable for classifying samples 
based on NIR data (e.g. adulteration of sweetpotato flour) (Chen, Gao, 
Ye, Lei, & Zhao, 2019). SVMDA is powerful for classification purposes in 
NIR analysis, especially when dealing with non-linear relationships in 
high-dimensional data (Marcelo et al., 2019). Proper hyperparameter 
tuning and careful consideration of kernel choices contribute to its 

effectiveness (Guido, Groccia, & Conforti, 2023). 

4. Applications of NIR for sweetpotato quality evaluation at 
different stages 

4.1. Planting stage 

Yield is a crucial factor in the quality evaluation of sweetpotato and 
is often considered an important parameter in assessing the overall 
productivity and economic value of the crop (Alam et al., 2024). 
Farmers, researchers, and policymakers often consider yield as a key 
parameter when assessing the success of sweetpotato cultivation 
(Mukhopadhyay, Chattopadhyay, Chakraborty, & Bhattacharya, 2011). 
The rapid evaluation of sweetpotato yield at the planting stage provides 
farmers with timely information to make proactive decisions, optimize 
resource use, and mitigate potential risks, contributing to the overall 
success and efficiency of sweetpotato cultivation throughout the 
growing season. Tedesco, de Almeida Moreira, Júnior, Papa, and da 
Silva (2021) downloaded high-resolution remote sensing satellite im-
ages, and analyzed the spectral changes of canopy containing 785–900 
nm bands to accurately predict the yield of sweetpotato in summer and 
winter fields based on the three market class of roots (Extra A > 0.45 kg, 
0.15 ≤ Extra AA ≤0.45 kg, Extra <0.15 kg), providing a timely insight 
on sweetpotato yield prediction and broadening horizon for harvesting 
high-quality sweetpotato roots. 

At present, there are no specific NIR sensors designed specifically for 
the yield prediction of sweetpotato roots. Employing existing technology 
for this purpose is a common option in precision agriculture. Collabo-
ration with experts, researchers, and equipment manufacturers in agri-
culture may be beneficial to explore the development of specialized 
solutions by NIR sensors in the future. 

4.2. Storage stage 

The storage quality of sweetpotato roots is crucial for maintaining 
their nutritional value, taste, and overall marketability throughout the 
storage period (Zhou, Chen, Chen, Li, & Yang, 2021). Evaluating 
sweetpotato root storage quality involves monitoring and controlling 
the changes of sensory, physicochemical and nutritional attributes, as 
well as variety classification. NIR is important for the storage quality 
evaluation of sweetpotato roots due to its non-destructive nature, rapid 
analysis, ability to assess multiple parameters, predictive capabilities, 
suitability for process monitoring, consideration of varietal differences, 
support for quality control in the supply chain, and cost-effectiveness. 

4.2.1. Sensory quality 
The external sensory quality of sweetpotato roots is critical for 

determining their market value and consumer acceptance. Several fac-
tors (e.g. firmness) can influence the external quality of sweetpotato 
roots during storage, which should be monitored to ensure a high- 
quality product. Firmness is a key indicator of textural quality and can 
influence consumer satisfaction of sweetpotato roots (Nakatumba- 
Nabende et al., 2023). Based on the full range spectra (400–1000 nm), 
the firmness of three varieties of sweetpotato storage roots were eval-
uated with good accuracy achieved from full SNV spectra-based SVR 
model (R2

P = 0.93), but reduced one from nine feature wavelengths- 
based MLR model (R2

P = 0.79) (Ahmed, Lu, Villordon, & Kamruzza-
man, 2023), which is probably because of elimination of some important 
spectral information relevant to firmness prediction during the RFE 
process for wavelength selection, thus weakening the prediction effect. 

4.2.2. Physicochemical and nutritional quality 
The sweetpotato root is composed of various physical, chemical and 

nutritional components. Understanding the physical and chemical 
components of sweetpotato roots is essential for assessing their nutri-
tional value and culinary uses. The nutritional profile of sweetpotatoes 
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makes them a valuable addition to a balanced diet, providing a mix of 
energy, vitamins, minerals, and antioxidants (Amagloh, Yada, Tumu-
himbise, Amagloh, & Kaaya, 2021). The specific composition can vary 
among different varieties and growing conditions. Among, moisture is a 
major component of sweetpotato roots, contributing to their overall 
weight and succulence. However, excessive moisture on the surface can 
cause decay and the growth of mold. Moisture content is a critical factor 
in evaluating the storage quality of sweetpotato roots (Abrham, Beshir, 
& Haile, 2021). Proper control and monitoring of moisture levels are 
essential to prevent various storage-related issues and maintain the 
overall quality of sweetpotato roots. Dry matter represents the portion of 
the root that remains after the removal of water and is a key indicator of 
the composition and overall quality of sweetpotato roots. The impor-
tance of dry matter for sweetpotato root quality evaluation during 
storage lies in its association with texture, starch and sugar content, 
nutrient density, postharvest changes, water content, shelf life, storage 
duration, and suitability for culinary use and processing (Zhang, 
Wheatley, & Corke, 2002). While protein content is not typically the 
primary indicator in evaluating sweetpotato root quality, it can indi-
rectly impact certain aspects of storage and overall quality (Laurie, 
Naidoo, Magwaza, Shimelis, & Laing, 2020). Starch is a crucial 
component in sweetpotato roots and serves as the primary storage car-
bohydrate. Monitoring starch levels helps in making wise decisions 
regarding storage conditions, postharvest changes, and the overall 
quality of sweetpotato roots for both fresh consumption and processing 
(Guo et al., 2019). Besides starch, sweetpotato roots contain sugars, 
including sucrose, fructose, glucose, and maltose, influencing the overall 
sweetness flavor, and overall quality of roots (Shen, Xiang, Wu, Li, & 
Luo, 2021). Cellulose contributes to the structural integrity of sweet-
potato cells and increases the overall fiber content (de Albuquerque, 
Sampaio, & de Souza, 2019). The antioxidant components including 
anthocyanins, phenolic compounds, and flavonoids in sweetpotato roots 
help preserve the color, flavor, nutritional value, and overall quality 
(Tang et al., 2019). These antioxidants contribute significantly to the 
root’s ability to withstand storage-related challenges and maintain high- 
quality standards. Minerals are essential for the growth, development, 
and overall quality of sweetpotato roots. Adequate mineral levels 
contribute to the maintenance of root quality, including texture, color, 
and overall marketability (Dos Santos et al., 2019). 

All these quality indicators during the period of sweetpotato roots 
storage were investigated by NIR analysis and a rapid and reagent- 
independent approach was expected to be developed as a alternative 
tool, and the specific results are summarized and shown in Appendix. 
Through comparative analysis, it was observed that the vast majority of 
indicators of sweetpotato roots were well evaluated by linear calibration 
algorithms (PLS & MLR) with R2

P larger than 0.80 (Magwaza, Naidoo, 
Laurie, Laing, & Shimelis, 2016; Su & Sun, 2017a; Bu, Li, & Yan, 2018; 
Bu et al., 2018; Tian, Huang, Bai, Lv, & Sun, 2019; Tian et al., 2021; He 
et al., 2022; Xiao et al., 2022; He et al., 2023; Tang et al., 2023; He et al., 
2023; He et al., 2023), while the maltose, cellulose, and minerals were 
poorly predicted (Amankwaah et al., 2023; Lebot, Malapa, & Jung, 
2013; Lebot, Ndiaye, & Malapa, 2011), which may due to the very small 
amounts of the three substances, as NIR sensor typically performs better 
in predicting substances with higher contents (Porep, Kammerer, & 
Carle, 2015). In a few studies, only calibration datasets were applied for 
modeling, while no prediction datasets were provided, which meant that 
the reliability and robustness of the results had not been further verified 
(Kamruzzaman & Villordon, 2022; Tang et al., 2013; Tang, Li, & Ma, 
2008). Based on the spectral data of 400–1000 nm range, SVR algorithm 
allowed for the better performance in predicting SSC with 18 feature 
wavelengths (R2

P = 0.8581, RMSEP = 0.2951◦Brix, RPD = 2.56), than 
MLR algorithm with 36 ones (R2

P = 0.8153, RMSEP = 0.2744◦Brix, RPD 
= 2.09) (Shao et al., 2020), for two different sweetpotato cultivars. By 
measuring the spectral variations within the full 760–1420 nm range, 
the starch hydrolysis process of sweetpotato roots were assessed via the 
estimation of moisture and starch contents (Kim, Choi, & Shin, 2021). 

The ripening viscosity (expressed by peak torque) and sweetness 
(expressed by soluble sugar) were also determined by VIS-NIR 
(350–1100 nm) to evaluate the eating quality of sweetpotato roots 
(Bu, Li, & Yan, 2018; Bu, Peng, et al., 2018). 

In general, NIR performed well in monitoring various physico-
chemical and nutritional quality indicators of sweetpotato roots during 
the storage except cellulose. Implementing NIR technology during 
storage allows for real-time insights into the quality of sweetpotato 
roots, enabling timely interventions and optimization of storage condi-
tions to preserve nutritional quality and market appeal. 

4.2.3. Variety recognition and classification 
Variety recognition and classification are essential components of 

sweetpotato roots quality evaluation during storage, playing a signifi-
cant role in ensuring consistency, marketability, and consumer satis-
faction (Qin, Naumovski, Ranadheera, & D’Cunha, 2022). Implementing 
effective variety-specific grading systems enhances the overall quality 
management of sweetpotato roots throughout the storage and marketing 
process. NIR contributes to the precision and efficiency of quality 
evaluation processes, supporting optimal storage conditions and 
ensuring that sweetpotato roots of different varieties meet market 
demands. 

Based on three different levels of moisture content (40–59%, 
60–73%, 76–84%), the sweetpotato storage roots cultivars originated 
from USA, UK, Ireland and Egypt were recognized by mining the 
944–1678 nm range data using supervised PLSDA algorithm, allowing 
for the 6 selected wavelengths to generate R2

CV from 0.917 to 0.989, and 
RMSECV of 0.049–0.136%, as well as overall 0 classification error for all 
the three levels (Su & Sun, 2016), which revealed a good potential of 
NIR in variety recognition of sweetpotato roots. By applying the same 
PLSDA analysis, a 100% overall classification accuracy was also ob-
tained with the eight wavelengths selected from same spectral range (Su 
& Sun, 2017b), five wavelengths selected from 964 to 1645 nm (Su, 
Bakalis, & Sun, 2019), and five wavelengths selected from 400 to 1000 
nm (Kamruzzaman & Villordon, 2022). However, the four studies did 
not provide an independent samples sets for prediction. More in-
vestigations should be conducted to further verify the model effective-
ness and reliability. The healthy and defective (frostbitten and diseased) 
of sweetpotato storage roots were accurately discriminated by executing 
LDA algorithm, resulting in 99.52% accuracy in prediction for either ten 
wavelengths selected by SPA, or ten wavelengths selected by RF (Shao 
et al., 2022), which provides a feasible ideas for the automatic NIR- 
based classification of stored sweetpotato roots. 

In summary, NIR is important for sweetpotato root quality evalua-
tion during storage and provides valuable insights into key quality pa-
rameters, facilitating real-time monitoring, process control, and 
informed decision-making to maintain optimal storage conditions and 
preserve the quality of sweetpotato roots. 

4.3. Processing stage 

Sweetpotato roots processing involves various methods (e.g. drying, 
cutting, steaming, cooking, etc.) to convert raw sweetpotato roots into a 
range of products for consumption or industrial use. The processing help 
not only add value to the sweet potatoes roots but also offer a diverse 
range of products for consumers, contributing to food security and 
economic opportunities for farmers and food processors (Mu, Sun, 
Zhang, & Wang, 2017). The choice of specific processing method de-
pends on the desired end product and market demand. 

During the processing stage, NIR can be used for quality control of 
sweetpotato. For example, the earliest research on starch, moisture, and 
sugar content prediction of sliced fresh sweetpotato roots was reported 
by Katayama, Komaki, and Tamiya (1996). Calibrated MLR model based 
on three years of NIR data (680–1235 nm) predicted starch and moisture 
content in slices adequately (RP ≥ 0.930, SEP ≤ 2.00%), but sugar 
weakly, which may be due to the narrow spectral information involved 
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in analysis. After cooking by a microwave oven, the cooking loss of 
sweetpotato roots was well-predicted by a full 964–1645 nm range 
spectra-based PLS model (R2

P = 0.951, RMSEP = 0.049). The selected 
five wavelengths improved the prediction efficiency while reduced the 
accuracy obviously (R2

P = 0.913, RMSEP = 0.058) (Su et al., 2019). 
During drying process, the moisture was quantified with excellent per-
formance observed by applying PLS and BPANN (R2

P > 0.95) based on 
either full range spectra or selected optimal wavelengths (Heo, Choi, 
Kim, & Moon, 2021; Su et al., 2020), significantly better than using MLR 
and SVM algorithm (Peng et al., 2021; Sun et al., 2017). It was indicated 
that LWNIR spectra was more suitable for moisture prediction than 
SWNIR spectra, which may due to the presence of more functional 
groups related to water absorption in the LWNIR region. According to 
the dryness degree, the purple-flesh sweetpotato were discriminated 
with overall accuracy of >80% (Heo et al., 2021). In addition, consid-
ering SWNIR data (400–1050 nm), the anthocyanin content in purple- 
flesh sweetpotato slices during drying process was estimated with 
satisfying results (0.86 < R2

P < 0.90, RMSEP≦0.302 mg/g) (Liu et al., 
2017; Peng et al., 2021), allowing for the slight better performance from 
SVM prediction than from MLR calculation, which meant that there may 
be more nonlinear relationships between NIR data and anthocyanin 
concentration than linear ones. 

By comparison, it was observed that moisture was one of the most 
studied quality parameters used for quality evaluation of sweetpotato 
roots at the processing stage, and its prediction effect based on NIR 
technique was better than other indexes (starch, sugar, anthocyanin). 
Less than nine wavelengths were selected for improving PLS model ef-
ficiency in moisture prediction, which provides a new perspective of 
developing simple equipments for rapid and real-time spot investiga-
tion. Overall, the NIR technique performed good in both prediction of 
chemical compositions and classification purpose at the processing 
stage. The dynamic changes of other quality indicators of sweetpotato 
roots during the processing based on NIR sensors should be studied to 
enhance the universality and applicability of NIR technology. 

4.4. Product stage 

Sweetpotato roots can be processed into a variety of products (e.g. 
starch, flour, noodle) that cater to different tastes, dietary preferences, 
and culinary applications, contributing to the overall popularity and 
marketability of sweetpotato in various food industries (Al-Maqtari 
et al., 2023; Bach, Bedin, Lacerda, Nogueira, & Demiate, 2021). The use 
of NIR spectroscopy in the quality evaluation of processed sweet potato 
products offers advantages such as speed, non-destructiveness, and the 
ability to analyze multiple parameters simultaneously. 

The thermal properties of sweetpotato starch was initially analyzed 
by mining LWNIR data (1100–2500 nm) in terms of Tc, To, Tp, Tr and 
ΔH and gave the good MPLS modeling performance (R2

P = 0.838–0.889) 
(Lu, Huang, & Zhang, 2006a). With the same range of NIR information 
and the same data analysis algorithm, the physiochemical qualities 
(amylose, AP, starch, protein, phosphorus, solubility, SP) and pasting 
properties (granule property: AGD, BGP, MGP, SGP, crystallinity; RVA 
property: PKV, HPV, breakdown, setback, Ptemp) of sweetpotato starch 
were measured with high R2

P values of 0.815–0.917 for all these pa-
rameters except MGP (Lu, Huang, & Zhang, 2006b). The two in-
vestigations showed the sufficient accuracy and effectiveness of NIR 
technique in rapid evaluation of sweetpotato starch. Large numbers of 
new sweetpotato starch samples with wide range of quality parameters 
should be considered to improve model calibrations in future work. 
Further works are required to improve the accuracy of other sweetpotato 
starch quality indexes. 

Sweetpotato starch can be used as a good raw material to produce 
noodles that a low-carb alternative to traditional pasta. Three parame-
ters including CL, CR and SWD were used to indicate the quality of 
sweetpotato noodles and nondestructively evaluated by NIR technique, 
with good performance observed in CR prediction (R2

P = 0.887, SEP =

0.528), and weak behaviors in other two parameters (Lu et al., 2006a). 
By contrast, a better result was achieved in quantifying TVC presented 
on the surface of semi-dried purple-flesh sweetpotato noodles with 
almost the same range of spectral information. Based on the smell, color 
and TVC, the semi-dried noodles were classified into three categories of 
fresh, semi-fresh and not fresh with 100% accuracy (Cao et al., 2016). By 
mixing two kinds of starch (corn and cassava) into sweetpotato starch to 
produce noodles, the sweetpotato noodles with non-adulterants and 
adulterants were 100% identified by NIR-based SVMDA model. The 
SNV + 1D spectra-based SVM calibration allowed for the rapid quanti-
fication of the two mixed starches in the starch mixture with RP values 
larger than 0.92 (Chen et al., 2019). Noodles are one of the main 
products in the processing of sweetpotato starch, and there are a small 
number of reports on the application of NIR for quality evaluation of 
sweetpotato noodles. Future work should focus on the comprehensive 
evaluation of sweetpotato noodle quality via NIR analysis. 

Sweetpotato flour is a versatile and nutritious ingredient that is 
derived from sweetpotato roots and produced by drying and then 
grinding sweetpotato roots into fine powders. This flour is gaining 
popularity as a gluten-free and nutrient-dense alternative to traditional 
wheat flour (Ayo-Omogie, 2021). Quality evaluation of sweetpotato 
flour is essential to ensure that the product meets specific standards and 
requirements. Using NIR spectroscopy for sweetpotato flour quality 
evaluation has been investigated in aspects of various indexes (listed in 
Appendix). The physicochemical and nutritional quality including 
moisture, protein, fiber, AIS, starch, amylose, glucose, cellulose, nitro-
gen, carbon, carbon and nitrogen isotopes, minerals, iodine blue value, 
and anthocyanin were evaluated by different research groups. Among, 
most of the quality parameters were well-predicted by the combination 
of NIR and linear multivariate calibration algorithms (i.g. MLR and PLS) 
(R2

P > 0.80), which are listed in Table 1. (Bu and Li, 2018; Diaz, Veal, & 
Chinn, 2014; Ding et al., 2015; Gouveia, Lebot, & Pinheiro de Carvalho, 
2020; He et al., 2024). Among, the accuracy of protein prediction 
through NIR analysis reduced significantly for the freeze-dried sweet-
potato flour processed by enzymes (R2

P changed from 0.99 to 0.69). 
Differently, the fiber was quantified in enzyme-treated sweetpotato flour 
(R2

P = 0.65–0.85), but not in unprocessed flour (Diaz et al., 2014). The 
δ13C was very poorly measured and that meant the very weak linear 
relationship between NIR and δ13C values (Gouveia et al., 2020). Be-
sides, six feature NIR wavelengths (700, 772, 912, 1528, 1950, and 
2400 nm) were selected to estimate the antioxidant activity of sweet-
potato flour in terms of ABTS, DPPH, and Fe2+ chelating and performed 
very well (RP > 0.97). Meanwhile, the powdered, pure, and adulterated 
flour samples were recognized with 100% accuracy based on the full 
700–2500 nm data (Ding, Ni and Kokot, 2015). Mixed with different 
contents of water, purple sweetpotato flour were made into pastes and 
their rheological properties (G’, G", G*, K) were determined with good 
prediction accuracy by applying any of PLS, PCR, and BPANN algorithm 
to correlated with NIR data (921–1361 nm) (R2

P > 0.96), which could 
support the indirect but rapid prediction of 3D printability of sweet-
potato pastes (Chen et al., 2021). In recent years, most studies focused 
on the quality evaluation of mixed sweetpotato flour based on NIR 
analysis. After oven-drying, both chemical and nutritional quality of 
mixed flours (sweetpotato, arrowroot, canna, cassava, taro) in terms of 
moisture, protein, and polysaccharides (starch, amylose, glucose, cel-
lulose) concentrations were well-predicted by PLS models based on 
appropriate preprocessed spectral data within the 1000–2500 nm 
(4000–10,000 cm− 1) range (0.83 ≤ R2

P ≤ 0.97) (Kandpal et al., 2022; 
Masithoh et al., 2022; Masithoh, Amanah, Yoon, Joshi, & Cho, 2021; 
Masithoh, Lohumi, Yoon, Amanah, & Cho, 2020). The accuracies of 
predicting both moisture and protein were higher than that of other 
indexes, which is most likely due to the more NIR absorption of the two 
components in the spectral range. Using the same range spectral infor-
mation, such mixed flours have also been classified with 100% accuracy 
generated using SNV spectra-based PCA analysis (Yuliyanda, Masithoh, 
Khuriyati, & Saputro, 2019), and 67% accuracy using SG2D + SNV 

Y. Wang et al.                                                                                                                                                                                                                                   



Food Chemistry: X 22 (2024) 101449

10

spectra-based SIMCA analysis (Masithoh & Yuliyanda, 2019), indicating 
the different classification performance when employed different pre-
processed spectra. In addition, considering the same range spectra, 
Masithoh, Amanah, and Cho (2020) used FT-NIR sensor to discriminate 
the root flours (canna, cassava, white sweetpotato) having similar color, 
aiming to minimize misclassification or avoid adulteration when using 
naked eyes. The results showed a 100% accuracy in discriminating all 
types of flours by PLSDA analysis. Both SG1D spectra-based PLSDA and 
feature wavelengths-based PLSDA also yielded perfect ability for 
discrimination (R2

P > 0.99). 
It can be seen from all the studies, most of the research focused on 

NIR rapid detection of sweetpotato storage quality and product quality, 
which is driven by is driven by the need to enhance efficiency, reduce 
losses, meet consumer expectations, and optimize the economic and 
environmental sustainability of sweet potato production and distribu-
tion, highlighting the importance of addressing challenges in post- 
harvest handling, storage, and marketability. Sweetpotato roots are 
often stored for extended periods before consumption. Monitoring 
storage quality using NIR technology is crucial for preventing post- 
harvest losses, reducing spoilage, and ensuring the high quality attri-
butes of sweetpotato roots during storage (Raju, 2021). NIR allows for 
non-destructive and rapid assessment of various quality parameters such 
as moisture, starch, and sugar contents, which is vital for preserving the 
texture, taste, and nutritional quality of sweetpotato roots, thus main-
taining their market values. Rapid detection of storage quality 
employing NIR helps streamline the supply chain. By identifying po-
tential issues at the early stage of storage, farmers and distributors can 
take corrective actions to minimize losses, improving work efficiency 
and supplying more consistent and high-quality sweetpotato roots 
(Prusky, 2011). The economic impact of post-harvest losses and reduced 
product quality is a significant driver for research in this area. Mini-
mizing post-harvest losses and optimizing storage quality align with 
sustainability goals in agriculture (Stathers et al., 2020). Rapid detection 
of quality attributes using NIR contributes to cost savings, improved 
marketability, and increased economic returns for sweetpotato farmers. 
NIR studies focusing on product quality aim to meet market demands 
and consumer expectations, contributing to increased market competi-
tiveness. On the other hand, consumer preferences for fresh, high- 
quality product promote the need for technologies that can rapidly 

assess and maintain the quality of sweetpotato roots (Ssali et al., 2021). 
In brief, NIR spectroscopy offers a rapid and non-destructive analytical 
method for assessing multiple quality parameters in sweetpotato prod-
ucts, contributing to improved process control and product quality. The 
NIR-based protocol developed from these studies can be used for 
screening large number of starch samples in food enterprises and 
sweetpotato breeding programs. In addition, importantly, to implement 
NIR spectroscopy for quality evaluation of sweetpotato roots and their 
products, a calibration model needs to be developed using representa-
tive samples with known properties. It’s essential to regularly update 
and validate the calibration model to account for variations in raw 
materials and processing conditions. 

5. Challenges and prospects 

Although NIR spectroscopy is a powerful analytical tool, there are 
still several challenges and limitations in the application of sweetpotato 
root quality evaluation via NIR analysis, which are pointed out and 
shown in Fig. 6a. Several aspects in terms of sweetpotato variety, NIR 
instrument stability, calibration model reliability and high-efficiency, as 
well as minimal external interference affect the future scale application 
of NIR technology for quality assessment of sweetpotato roots. Different 
sweetpotato varieties may have varying physical properties (e.g. skin 
thickness, color, surface roughness) and chemical compositions (e.g. 
moisture, starch, polysaccharide, other constituents), and that can affect 
the accuracy of NIR measurements. Besides, sweetpotato roots hetero-
geneity in terms of size, shape, and internal compositions also poten-
tially impact the NIR prediction if the developed calibration cannot 
cover all the variations within and between different varieties. As for 
NIR instrument itself, NIR light has limited penetration depth into the 
sample, leading to the insufficient information captured from the inner 
layers of thick or dense sweetpotato roots, and thus influencing the 
inaccurate NIR measurements of internal compositions. For some some 
trace components or subtle varies, the NIR sensitivity may be limited. 
The modeling process with calibration and validation requires a 
comprehensive dataset, and the model applicability may be affected by 
the variations of growing environments, storage, or processing of 
sweetpotato roots. NIR spectra can be mainly influenced by moisture 
levels and various environmental factors. NIR is sensitive to moisture 

Fig. 6a. Challenges and limitations associated with NIR application for sweetpotato root quality evaluation.  
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content, and variations in the water content of sweetpotato roots can 
affect the accuracy of NIR determinations. Moisture concentration can 
vary not only among different sweetpotato varieties but also within the 
same variety with the changes of environmental conditions and storage. 
The temperature and humidity are especially important environmental 
factors influencing the NIR accuracy as some errors may be introduced. 
To address these limitations, it’s essential to develop robust calibration 
models that encompass a wide range of sweetpotato varieties by 
considering sample variability, genetic diversity, moisture content, and 
environmental conditions. In addition, combining NIR technology with 
complementary analytical techniques may enhance the overall accuracy 
and reliability of sweetpotato root quality assessment. 

Despite these challenges and limitations, NIR spectroscopy remains a 
valuable and widely used technology for sweetpotato root quality 
evaluation when appropriately applied and carefully managed. 
Continuous advancements in instrumentation, calibration methods, and 
data analysis techniques contribute to addressing and mitigating these 
challenges, making NIR an increasingly reliable and accessible tech-
nology for agricultural quality assessment. 

The prospects and trends of NIR technology for sweetpotato root 
quality evaluation in terms of hardware, software, application and 
integration with other technologies are proposed and shown in Fig. 6b, 
which indicate a promising future with ongoing advancements and 
increasing adoption of NIR analysis. The NIR instrument improvements 
including sensitivity, precision, and robustness will promote the NIR 
performance. More compact, portable, miniature and user-friendly NIR 
instruments will be designed and developed for field applications and 
on-farm use during sweetpotato cultivation. The software advancements 
mainly involving open-source programs, database sharing, integration 
of AI and ML, as well as model customization will facilitate collabora-
tions between different disciplines and allow for the higher levels of NIR 
predictions and real-time decision-making. During application, portable 
or handheld or pocket-size NIR devices can be developed for on-farm 
use, allowing for farmers to assess the sweetpotato roots quality and 
facilitating immediate decisions for planting and harvesting of sweet-
potato roots. Automatic sorting and grading based on NIR measurements 
can be used in processing, and that will improve the efficiency and 
consistency of large-scale operations. NIR sensors can also be integrated 
with IoT technology for real-time monitoring and data sharing of 
sweetpotato roots, or embedded into UAV for remote sensing 

applications of sweetpotato crops. 
Through ongoing technological advancements, increased accessi-

bility, integration with other emerging technologies, and a growing 
emphasis on sustainability and precision agriculture, the development of 
NIR applications and collaborative efforts within the scientific com-
munity will further enhance its capabilities for supporting efficient and 
quality-focused sweetpotato cultivation and processing. 
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with non-destructive technologies for crop-based food safety: A comprehensive 
review. Foods, 13(1), 11. 

Safo, S. E., & Ahn, J. (2016). General sparse multi-class linear discriminant analysis. 
Computational Statistics & Data Analysis, 99, 81–90. 

Sanchez, P. D. C., Hashim, N., Shamsudin, R., & Nor, M. Z. M. (2020). Applications of 
imaging and spectroscopy techniques for non-destructive quality evaluation of 
potatoes and sweet potatoes: A review. Trends in Food Science & Technology, 96, 
208–221. 

Sapakhova, Z., Raissova, N., Daurov, D., Zhapar, K., Daurova, A., Zhigailov, A., … 
Shamekova, M. (2023). Sweet potato as a key crop for food security under the 
conditions of global climate change: A review. Plants, 12(13), 2516. 

Savargiv, M., Masoumi, B., & Keyvanpour, M. R. (2022). A new ensemble learning 
method based on learning automata. Journal of Ambient Intelligence and Humanized 
Computing, 13(7), 3467–3482. 

Savas, C., & Dovis, F. (2019). The impact of different kernel functions on the performance 
of scintillation detection based on support vector machines. Sensors, 19(23), 5219. 

Shao, Y., Liu, Y., Xuan, G., Shi, Y., Li, Q., & Hu, Z. (2022). Detection and analysis of sweet 
potato defects based on hyperspectral imaging technology. Infrared Physics & 
Technology, 127, Article 104403. 

Shao, Y., Liu, Y., Xuan, G., Wang, Y., Gao, Z., Hu, Z., Han, X., Gao, C., & Wang, K. (2020). 
Application of hyperspectral imaging for spatial prediction of soluble solid content in 
sweet potato. RSC Advances, 10, 33148–33154. 

Shen, S. F., Xiang, C., Wu, L. H., Li, B., & Luo, Z. G. (2021). Analysis on the characteristics 
of soluble sugar components in sweetpotato storage root and its relationship with 
taste. Scientia Agricultura Sinica, 54(1), 34–45. 

Ssali, R., Carey, E., Imoro, S., Low, J. W., Dery, E. K., Boakye, A., … Etwire, P. M. (2021). 
Fried sweetpotato user preferences identified in Nigeria and Ghana and implications 
for trait evaluation. International Journal of Food Science & Technology, 56(3), 
1399–1409. 

Stathers, T., Holcroft, D., Kitinoja, L., Mvumi, B. M., English, A., Omotilewa, O., 
Kocher, M., Ault, J., & Torero, M. (2020). A scoping review of interventions for crop 
postharvest loss reduction in sub-Saharan Africa and South Asia. Nature 
Sustainability, 3(10), 821–835. 

Su, W. H., Bakalis, S., & Sun, D. W. (2019). Chemometrics in tandem with near infrared 
(NIR) hyperspectral imaging and Fourier transform mid infrared (FT-MIR) 
microspectroscopy for variety identification and cooking loss determination of sweet 
potato. Biosystems Engineering, 180, 70–86. 

Su, W. H., Bakalis, S., & Sun, D. W. (2020). Chemometric determination of time series 
moisture in both potato and sweet potato tubers during hot air and microwave 
drying using near/mid-infrared (NIR/MIR) hyperspectral techniques. Drying 
Technology, 38(5–6), 806–823. 

Su, W. H., & Sun, D. W. (2016). Potential of hyperspectral imaging for visual 
authentication of sliced organic potatoes from potato and sweet potato tubers and 
rapid grading of the tubers according to moisture proportion. Computers and 
Electronics in Agriculture, 125, 113–124. 

Su, W. H., & Sun, D. W. (2017a). Hyperspectral imaging as non-destructive assessment 
tool for the recognition of sweet potato cultivars. Biosystems Engineering Research 
Review, 22, 21. 

Su, W. H., & Sun, D. W. (2017b). Chemical imaging for measuring the time series 
variations of tuber dry matter and starch concentration. Computers and Electronics in 
Agriculture, 140, 361–373. 

Sun, Y., Liu, Y., Yu, H., Xie, A., Li, X., Yin, Y., & Duan, X. (2017). Non-destructive 
prediction of moisture content and freezable water content of purple-fleshed sweet 
potato slices during drying process using hyperspectral imaging technique. Food 
Analytical Methods, 10, 1535–1546. 

Tang, C., Jiang, B., Ejaz, I., Ameen, A., Zhang, R., Mo, X., & Wang, Z. (2023). High- 
throughput phenotyping of nutritional quality components in sweet potato roots by 
near-infrared spectroscopy and chemometrics methods. Food Chemistry: X, 20, 
Article 100916. 

Tang, J., Wang, S. Q., Hu, K. D., Huang, Z. Q., Li, Y. H., Han, Z., … Zhang, H. (2019). 
Antioxidative capacity is highly associated with the storage property of tuberous 
roots in different sweetpotato cultivars. Scientific Reports, 9(1), Article 11141. 

Tang, Z., Li, H., Li, Q., Wei, M., Liu, Z., & Ding, Y. (2013). Prediction of starch and sugar 
contents in sweet potato root by near-infrared spectroscopy (NIRS). Jiangsu Journal 
of Agricultural Sciences, 29(6), 1260–1265. 

Tang, Z. H., Li, H. M., & Ma, D. F. (2008). Studies on the application of analysis model for 
protein content in sweet potato by near infrared reflectance spectroscopy (NIRS). 
Journal of Chinese Institute of Food Science and Technology, 8(4), 169–173. 

Y. Wang et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0260
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0260
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0260
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0265
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0265
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0265
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0270
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0270
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0270
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0275
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0275
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0275
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0280
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0280
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0280
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0285
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0285
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0285
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0290
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0290
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0290
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0295
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0295
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0295
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0300
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0300
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0300
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0305
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0305
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0305
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0310
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0310
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0310
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0310
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0315
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0315
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0315
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0315
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0320
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0320
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0320
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0320
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0325
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0325
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0325
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0325
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0330
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0330
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0330
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0335
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0335
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0335
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0335
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0340
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0340
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0340
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0340
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0345
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0345
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0345
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0350
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0350
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0355
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0355
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0360
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0360
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0360
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0365
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0365
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0365
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0365
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0365
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0370
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0370
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0370
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0375
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0375
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0375
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0375
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0380
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0380
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0385
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0385
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0390
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0390
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0390
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0395
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0395
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0395
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0395
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0400
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0400
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0400
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0405
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0405
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0410
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0410
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0415
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0415
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0415
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0420
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0420
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0425
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0425
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0425
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0430
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0430
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0435
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0435
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0435
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0435
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0440
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0440
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0440
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0445
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0445
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0445
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0450
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0450
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0455
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0455
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0455
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0460
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0460
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0460
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0465
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0465
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0465
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0470
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0470
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0470
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0470
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0475
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0475
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0475
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0475
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0480
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0480
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0480
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0480
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0485
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0485
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0485
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0485
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0490
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0490
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0490
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0490
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0495
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0495
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0495
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0500
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0500
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0500
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0505
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0505
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0505
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0505
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0510
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0510
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0510
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0510
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0515
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0515
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0515
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0520
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0520
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0520
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0525
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0525
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0525


Food Chemistry: X 22 (2024) 101449

14

Tedesco, D., de Almeida Moreira, B. R., Júnior, M. R. B., Papa, J. P., & da Silva, R. P. 
(2021). Predicting on multi-target regression for the yield of sweet potato by the 
market class of its roots upon vegetation indices. Computers and Electronics in 
Agriculture, 191, Article 106544. 

Tian, X. Y., Aheto, J. H., Bai, J. W., Dai, C., Ren, Y., & Chang, X. (2021). Quantitative 
analysis and visualization of moisture and anthocyanins content in purple sweet 
potato by Vis–NIR hyperspectral imaging. Journal of Food Processing and Preservation, 
45(2), Article e15128. 

Tian, X. Y., Huang, X. Y., Bai, J. W., Lv, R. Q., & Sun, Z. Y. (2019). Detection of 
anthocyanin content of purple sweet potato during storage period based on near 
infrared spectroscopy. Transactions of the Chinese Society for Agricultural Machinery, 
50, 350–355. 

Vermeulen, M., Smith, K., Eremin, K., Rayner, G., & Walton, M. (2021). Application of 
uniform manifold approximation and projection (UMAP) in spectral imaging of 
artworks. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 252, 
Article 119547. 

Vincent, B., & Dardenne, P. (2021). Application of NIR in agriculture. In Near-infrared 
spectroscopy: Theory, spectral analysis, instrumentation, and applications (pp. 331–345). 
Springer.  

Wang, H. P., Chen, P., Dai, J. W., Liu, D., Li, J. Y., Xu, Y. P., & Chu, X. L. (2022). Recent 
advances of chemometric calibration methods in modern spectroscopy: Algorithms, 
strategy, and related issues. TrAC Trends in Analytical Chemistry, 153, Article 116648. 

Wang, X., Lin, X., & Dang, X. (2020). Supervised learning in spiking neural networks: A 
review of algorithms and evaluations. Neural Networks, 125, 258–280. 

Workman, J. J., Jr. (1996). Interpretive spectroscopy for near infrared. Applied 
Spectroscopy Reviews, 31(3), 251–320. 

Xiao, Z. M., Li, J. X., Zhang, Y., Song, W. J., Meng, D., Li, X. L., … Wang, C. (2022). Rapid 
determination of sweet potato polysaccharide content based on near-infrared 
spectroscopy. Journal of Food Safety and Quality, 13(10), 3228–3236. 

Xu, X., Wu, S., Chen, K., Zhang, H., Zhou, S., Lv, Z., … Lu, G. (2023). Comprehensive 
evaluation of raw eating quality in 81 sweet potato (Ipomoea batatas (L.) Lam) 
varieties. Foods, 12(2), 261. 

Yuliyanda, I., Masithoh, R. E., Khuriyati, N., & Saputro, A. D. (2019). Classification of 
crop flours based on protein contents using near infra-red spectroscopy and principle 
component analysis. In IOP Conference Series: Earth and Environmental Science, 355 
(1), Article 012002. 

Zareef, M., Chen, Q., Hassan, M. M., Arslan, M., Hashim, M. M., Ahmad, W., … 
Agyekum, A. A. (2020). An overview on the applications of typical non-linear 
algorithms coupled with NIR spectroscopy in food analysis. Food Engineering Reviews, 
12, 173–190. 

Zeng, J., Guo, Y., Han, Y., Li, Z., Yang, Z., Chai, Q., … Fu, C. (2021). A review of the 
discriminant analysis methods for food quality based on near-infrared spectroscopy 
and pattern recognition. Molecules, 26(3), 749. 

Zhang, Z., Wheatley, C. C., & Corke, H. (2002). Biochemical changes during storage of 
sweet potato roots differing in dry matter content. Postharvest Biology and Technology, 
24(3), 317–325. 

Zhou, S., Chen, L., Chen, G., Li, Y., & Yang, H. (2021). Molecular mechanisms through 
which short-term cold storage improves the nutritional quality and sensory 
characteristics of postharvest sweet potato tuberous roots: A transcriptomic study. 
Foods, 10(9), 2079. 

Y. Wang et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0530
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0530
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0530
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0530
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0535
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0535
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0535
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0535
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0540
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0540
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0540
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0540
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0545
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0545
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0545
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0545
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0550
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0550
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0550
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0555
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0555
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0555
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0560
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0560
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0565
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0565
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0570
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0570
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0570
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0575
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0575
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0575
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0580
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0580
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0580
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0580
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0585
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0585
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0585
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0585
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0590
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0590
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0590
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0595
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0595
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0595
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0600
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0600
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0600
http://refhub.elsevier.com/S2590-1575(24)00336-5/rf0600

	NIR sensors combined with chemometric algorithms in intelligent quality evaluation of sweetpotato roots from ‘Farm’ to ‘Tab ...
	1 Introduction
	2 NIR application principle and procedure
	3 Chemometric algorithms for NIR analysis
	3.1 Data dimensionality reduction algorithms
	3.2 Quantitative and qualitative analysis algorithms
	3.3 Classification algorithms

	4 Applications of NIR for sweetpotato quality evaluation at different stages
	4.1 Planting stage
	4.2 Storage stage
	4.2.1 Sensory quality
	4.2.2 Physicochemical and nutritional quality
	4.2.3 Variety recognition and classification

	4.3 Processing stage
	4.4 Product stage

	5 Challenges and prospects
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


