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Abstract: Streptococcus suis causes severe infections in both swine and humans, making it a serious
threat to the swine industry and public health. Insight into the physiology and pathogenesis of S.
suis undoubtedly contributes to the control of its infection. During the infection process, a wide
variety of virulence factors enable S. suis to colonize, invade, and spread in the host, thus causing
localized infections and/or systemic diseases. Enzymes catalyze almost all aspects of metabolism
in living organisms. Numerous enzymes have been characterized in extensive detail in S. suis,
and have shown to be involved in the pathogenesis and/or physiology of this pathogen. In this review,
we describe the progress in the study of some representative enzymes in S. suis, such as ATPases,
immunoglobulin-degrading enzymes, and eukaryote-like serine/threonine kinase and phosphatase,
and we highlight the important role of various enzymes in the physiology and pathogenesis of this
pathogen. The controversies about the current understanding of certain enzymes are also discussed
here. Additionally, we provide suggestions about future directions in the study of enzymes in S. suis.
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1. Introduction

Streptococcus suis is an important bacterial pathogen that causes a severe threat to public health and
great economic losses in the pig industry worldwide [1]. It is associated with meningitis, septicaemia,
arthritis, and other infections in swine [2]. A recent survey revealed that it was the most prevalent
bacterial pathogen in Chinese pig farms from 2013 to 2017 [3]. In addition, S. suis can be transmitted to
humans and cause severe infections, such as meningitis, septicemia, and streptococcal toxic shock-like
syndrome [1]. S. suis infection in human was first recorded in Denmark in 1968 [2]. Since then,
human cases have been reported in many countries, although most of them are sporadic [4]. However,
two large outbreaks of S. suis epidemics occurred in China in 1998 and 2005, resulting in 240 human
cases with 53 deaths in total [5,6]. The repeated outbreaks of S. suis infections in humans have
suggested that S. suis is an emerging zoonotic pathogen [2]. By the end of 2013, worldwide reported S.
suis infections in humans reached 1642 cases [1]. Human cases have also been frequently reported
worldwide in recent years [7–11], suggesting that the threat of S. suis infection still exists.

S. suis possesses capsular polysaccharides (CPS) that cover on the surface of bacterial cells [12].
Initially, 35 serotypes (1–34, and 1/2) were described for S. suis, based on the serological reaction
with its CPS [13]. Subsequently, serotypes 20, 22, 26, and 32–34 were proposed to be novel bacterial
species, and the remaining 29 serotypes were referred to as genuine S. suis [14–17]. Globally, serotype 2
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(S. suis 2) is the most predominant serotype associated with clinical S. suis infection in both swine and
humans [1].

In swine, the main route of S. suis infection is the upper respiratory tract, yet the gastrointestinal
tract cannot be excluded as a secondary route. In China and in Western countries, small skin injuries
are considered to be the main route of S. suis infection in humans, while in Southeast Asian countries,
the gastrointestinal tract (consumption of contaminated pork by-products) seems to be the main
route [12,18].

During the infection process, a wide variety of virulence-associated factors enable S. suis to colonize,
invade, and spread in the host, thus causing localized infections and/or systemic diseases [12,19].
Enzymes function as catalysts that catalyze almost all aspects of metabolism in living organisms.
It has been well established that many enzymes are involved in the pathogenesis of S. suis [19].
Moreover, some enzymes play important roles in bacterial physiology, even though they are not
virulence-associated factors. In this review, we emphasize the role of some representative enzymes in
the physiology and pathogenesis of S. suis (Table 1), and we also discuss the controversies about the
current understanding of certain enzymes.

Table 1. Characterization of some representative enzymes in Streptococcus suis.

Enzyme Main Functions References

CopA Copper efflux [20]

PmtA Ferrous iron and cobalt efflux, tolerance to hydrogen
peroxide-induced oxidative stress [21]

MsmK Utilization of multiple carbohydrates, pathogenesis [22,23]

IdeSsuis Degradation of porcine IgM, complement evasion [24–26]

IgdE Degradation of porcine IgG [27]

IgA1 protease/ZmpC Degradation of human IgA1, pathogenesis 1 [28–31]

eSTK Maintaining bacterial morphology, tolerance to
stresses, pathogenesis [32–34]

eSTP Virulence, cell adhesion, and immune evasion 2 [35,36]

SspA-1 Virulence, trigger of proinflammatory cytokines [37,38]

SspA-2 Pathogenesis, proinflammatory response in
macrophages [39–41]

Superoxide dismutase Oxidative stress resistance, virulence [42,43]

NADH oxidase Tolerance to oxidative stress, virulence [44,45]

SsnA Degradation of human and porcine neutrophil
extracellular traps, pathogenesis [46–48]

EndAsuis Degradation of neutrophil extracellular traps [49]

Enolase Binding of extracellular matrix components,
pathogenesis [50–58]

LuxS
Growth, biofilm formation, capsule synthesis,

hydrogen peroxide resistance, resistance to
fluoroquinolones, pathogenesis

[59–61]

Peptidyl isomerase PrsA Induction of proinflammatory cytokines, secretion of
selected virulence factors, pathogenesis [62–64]

(p)ppGpp synthetases (RelA,
RelQ) Pathogenesis, adaptation to glucose starvation (RelA) [65,66]

1 The role of IgA1 protease/ZmpC in the degradation of human IgA1 and in the pathogenesis of S. suis is controversial.
2 The role of eSTP in cell adhesion and immune evasion appears to be contradictory between S. suis 2 and 9.
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2. ATPases

Recently, we identified two P-type ATPases (CopA and PmtA) that function as metal efflux
pumps in S. suis [20,21]. In certain Gram-positive bacteria, copA is a component of the cop operon
that is a copper-responsive system [67,68]. Although not arranged as an operon in S. suis, copA
expression is significantly upregulated when the bacterium is treated with copper. In line with this
result, CopA protects S. suis against bactericidal effects conferred by copper through copper efflux [20].
While pmtA expression is induced by ferrous iron, cobalt, and nickel, the ∆pmtA mutant exhibits
impaired growth under ferrous iron, ferric iron, cobalt, and zinc excess conditions. Compared with
the wild-type (WT) and complementation strains, ∆pmtA also accumulates higher levels of iron
and cobalt, and is more sensitive to streptonigrin, a ferrous iron-activated antibiotic. The addition
of manganese could alleviate the growth defect of ∆pmtA under ferrous iron and cobalt excess
conditions. Furthermore, PmtA is involved in the tolerance to oxidative stress induced by hydrogen
peroxide [21]. Despite the homologs of CopA and PmtA having been shown to be required for
bacterial virulence [69–72], these two ATPases have exhibited no obvious role in the pathogenesis of S.
suis [21,44,45]. Thus, it is necessary to study even well-characterized genes in different species.

In addition to CopA and PmtA, another ATPase, MsmK, has been identified in S. suis [22,23].
Similar to its homologs in Streptococcus pneumoniae [73], MsmK is required for the utilization of multiple
carbohydrates, such as raffinose, melibiose, and maltotetraose in S. suis [22]. Deletion of msmK results
in a longer chain length, decreased hemolytic activity, and an impaired ability to tolerate osmotic
and oxidative stresses [23]. The ∆msmK mutant also exhibited reduced survival in mouse blood,
increased susceptibility to macrophages, and an attenuated ability to colonize the mouse brain [22,23].
These results clearly demonstrated that MsmK contributes to the pathogenesis of S. suis.

3. Immunoglobulin-Degrading Enzymes

Immunoglobulins (Igs) are important components of the host immune defense system. Based on
the differences in their heavy chains, Igs are divided into five classes, including IgG, IgA, IgM,
IgD, and IgE. In S. suis, two Ig-degrading enzymes, i.e., IdeSsuis and IgdE, have been extensively
characterized [24–27,74]. IdeSsuis is a novel IgM-degrading enzyme that can degrade IgM but neither
IgG nor IgA. IdeSsuis is host-specific, since it specifically cleaves porcine IgM, but not IgM from
six other investigated species [24]. Vaccination of piglets with recombinant IdeSsuis elicited specific
immunity that led to the efficient killing of S. suis in porcine blood, and thus, protected piglets against
S. suis infection [74]. In addition, IgM cleavage activity of IdeSsuis is involved in complement evasion,
although it does not seem to be critical for the virulence of S. suis in piglets [25,26]. IgdE is a novel
IgG-degrading protease that targets the hinge region of porcine IgG. Similar to IdeSsuis, only porcine
IgG can be a substrate of IgdE. Therefore, this enzyme is also host-specific. The IgG proteolytic activity
is present in all S. suis strains investigated, and specific antibodies against IgdE were detectable in
piglet serum [27]. These findings suggest that IgdE is expressed during infection; thus, it is a putative
virulence factor and a potential vaccine candidate.

Another Ig-degrading enzyme, i.e., IgA1 protease, has been reported to cleave human IgA1 [28].
This enzyme has also been shown to contribute to the pathogenesis of S. suis and to serve as a protective
antigen [29,75]. However, IgA1 protease activity was not detected in three S. suis strains in another
study [30]. Recently, the enzyme was demonstrated to be ZmpC, a zinc metalloprotease in S. suis.
Moreover, ZmpC is not a critical virulence factor, as it has no role in adherence to porcine bronchial
epithelial cells or colonization of the upper respiratory tract of pigs [31].

4. Eukaryote-Like Serine/Threonine Kinase and Phosphatase

The eukaryote-like serine/threonine kinases and phosphatases (eSTKs/eSTPs) have important
roles in the physiology and pathogenesis of Streptococci [76]. In S. suis, eSTK is involved in bacterial
morphology, stress tolerance, and pathogenesis [32–34]. The eSTK-deletion mutant exhibits much
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longer chain length and increased cell size [32,33]. Subsequent research revealed that DivIVA, a substrate
of eSTK, is involved in cell division regulation [77]. The morphological differences between the WT
strain and the mutant might be due to the different phosphorylation levels of DivIVA in these two
strains. The mutant displayed impaired growth when cultured under stress conditions, including high
temperature, high osmolarity, acidic pH, and oxidative stresses [32]. In line with these phenotypes,
seven metabolic pathways were significantly repressed in the mutant [33]. The involvement of eSTK in
S. suis pathogenesis has been demonstrated by the following findings: firstly, the mutant showed a
decreased ability to adhere to and invade cells, and had reduced survival in pig whole blood [32,34];
secondly, the ability of the mutant to cross the blood-brain barrier (BBB) was reduced [34]; thirdly,
virulence of the mutant was attenuated in both murine and pig infection models; finally, the expression
of some virulence-associated genes were down-regulated in the mutant [32,33]. These findings suggest
that in S. suis, eSTK participates in multiple steps of the infection process.

eSTP has been identified as a putative virulence factor of S. suis serotype 9 by suppressing
subtractive hybridization. Furthermore, the eSTP gene was present in most of the virulent strains,
but absent in the avirulent strain. In S. suis 9, the eSTP-defective mutant exhibited decreased adherence
to HEp-2 cells, reduced survival in pig whole blood, and attenuated virulence in the murine infection
model. Consistent with these results, the expression of a few genes involved in adhesion and virulence
was down-regulated in the mutant [35]. As has been observed in S. suis 9, deletion of eSTP attenuated
the virulence of S. suis 2 in a murine infection model. However, the eSTP mutant of S. suis 2 displayed
an enhanced ability to adhere to HEp-2 and bEnd.3 cells, to survive in RAW 264.7 macrophage cells,
and to resist reactive oxygen species. The role of eSTP in cell adhesion and immune evasion seems to
be contradictory between S. suis 2 and 9. Given that eSTP shares high level of homology between S.
suis 2 and 9 [36], further studies should be performed to determine whether the opposite conclusions
are attributable to the different serotypes.

5. Subtilisin-Like Serine Proteases

The subtilisin-like serine protease-1 (SspA-1) was identified by screening a S. suis 2 genomic
expression library using convalescent-phase pig sera [37]. Later, SspA-1 was identified as an effector
secreted by the type IV secretion system (T4SS) of S. suis 2 by using a shotgun proteomics approach and
western blot analysis [38]. Quantitative real-time PCR analysis demonstrated that SspA-1 expression
in vivo was markedly higher than that in vitro, indicating that SspA-1 might be involved in S. suis
virulence [37]. Consistent with this speculation, the SspA-1 knockout mutant exhibited attenuated
virulence in both murine and pig infection models [37,38]. Compared with the WT strain, the mutant
induced much lower levels of interleukin 6, tumor necrosis factor-α, and interleukin 12p70 in mice;
treatment of THP-1 cells with purified recombinant SspA-1 resulted in massive production of these
cytokines. These results suggested that SspA-1 plays an important role as a trigger of proinflammatory
cytokines. Furthermore, the reaction of SspA-1 with convalescent-phase pig sera revealed that SspA-1
might be a protective antigen. As expected, immunization of mice with SspA-1 elicited a specific
immune response, producing a SspA-1 specific antibody that protected mice against S. suis infection [38].

The subtilisin-like serine protease-2 (SspA-2) was identified by screening a S. suis mutant library
to isolate mutants deficient in proteinase activity. The sspA-2 gene was present in all detected S.
suis strains, including serotype 2 and other serotypes [39]. Different from SspA-1, the secretion of
SspA-2 was not affected by T4SS [38]. A contribution of SspA-2 to the pathogenesis of S. suis has
been revealed by several lines of evidence. Firstly, the recombinant SspA-2 displayed toxicity against
brain microvascular endothelial cells. Secondly, SspA-2 could react with convalescent-phase pig sera,
suggesting that it is expressed during infection [40]. Thirdly, the SspA-2 inactive mutant was more
susceptible to killing by human whole blood. Fourthly, mice infected with the mutant had a lower
mortality rate than those infected with the WT strain [39]. Finally, SspA-2 induced a pro-inflammatory
response in macrophages, which might promote meningitis [41].
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6. Superoxide Dismutase and NADH Oxidase

Superoxide dismutase (SOD), usually coupled with a metal cofactor, can catalyze the reaction
of superoxide to oxygen and hydrogen peroxide, and it is involved in oxidative stress resistance and
virulence in many bacterial species [78]. In S. suis, manganese, instead of iron, is required for the
activity of SOD [79]. The sod gene deletion mutant loses its SOD activity, and it is more sensitive
to hydrogen peroxide and paraquat-induced oxidative stress. The mutant also shows decreased
survival in RAW264.7 macrophages, attenuated virulence in mice, and an impaired ability to colonize
the tissues of mice [42]. Subsequently, further studies demonstrated that the involvement of SOD
in anti-autophagic responses was mediated by the scavenging of reactive oxygen species (ROS) in
infected macrophages [43]. Superoxide dismutase appeared to be regulated by the two-component
system Ihk/Irr and the SpxA1 regulator in S. suis, since expression of the sod gene was significantly
down-regulated in the Ihk/Irr and spxA1 deletion mutants [80,81].

NADH oxidase (Nox) can catalyze the reduction of oxygen to hydrogen peroxide or water,
combined with the oxidation of NADH to NAD+ in bacteria [82]. In Streptococcus mutans, there are two
nox genes, i.e., nox-1 and nox-2, which encode a hydrogen peroxide-forming Nox-1 and a water-forming
Nox-2, respectively [83]. However, only one Nox, either Nox-1 or Nox-2, is present in many other
bacterial species. For example, Mycoplasma bovis possesses Nox-1 [84], whereas Streptococcus pneumoniae,
Group B Streptococcus, and Streptococcus sanguinis possess Nox-2 [82,85,86]. In S. suis, a homolog of
Nox-2 was identified to be regulated by the SpxA1 regulator [81]. The nox gene deletion mutant
displayed reduced tolerance to oxidative stress induced by environmental oxygen, hydrogen peroxide,
and SIN-1. Deletion of nox resulted in attenuated virulence in S. suis in both murine and pig
infection models [44]. Very recently, in vivo transcriptome analysis and coinfection experiments further
confirmed the involvement of Nox in S. suis virulence [45]. In addition, it was demonstrated that the
enzymatic activity of Nox contributed significantly to oxidative stress resistance, and to a lesser extent,
to the virulence of S. suis [44]. Given that Nox of S. pneumoniae elicits a protective immune response in
mice, S. suis Nox may have vaccine potential.

7. Nucleases

Two nucleases, i.e., SsnA and EndAsuis, have been intensively studied in S. suis [46–49,87].
SsnA possesses a secretion signal peptide sequence at the N-terminus and a cell wall anchoring motif
(LPKTG) at the C-terminus [46,87]. In accordance with its structure, SsnA is cell-wall located, with a
portion secreted into the supernatant [47]. SsnA targets single- and double-stranded linear DNA,
and its activity is dependent on Ca2+ and Mg2+ [46,87]. Reverse transcription-PCR analysis showed
that the ssnA gene is expressed throughout the S. suis growth stages and western blotting revealed that
SsnA is expressed during infection. Results from different research teams all demonstrated that SsnA
plays a role in the pathogenesis of S. suis. Fontaine et al. showed that most of the S. suis field strains
isolated from internal organs displayed a nuclease phenotype, whereas less than half of the surface
isolates exhibited the same phenotype [87]. Consistently, comparative proteomics analysis revealed
that SsnA is expressed in a virulent S. suis 9 strain, but is absent in an avirulent strain [88]. Haas et al.
found that a DNase-deficient mutant, in which transposon Tn917 was inserted into the ssnA gene,
exhibited attenuated virulence in an amoeba model and induced lower levels of cytokines and matrix
metalloproteinase-9 in a macrophage model [46]. de Buhr et al. demonstrated that SsnA is involved
in the degradation of human and porcine neutrophil extracellular traps (NETs), thus protecting S.
suis against the antimicrobial activity mediated by NETs [47]. Recently, Li et al. confirmed the role of
SsnA in S. suis virulence. The ssnA deletion mutant showed markedly decreased adherence to and
invasion of HEp-2 cells. Deletion of ssnA in S. suis led to attenuated virulence in a CD1 mouse infection
model [48]. The recombinant SsnA protein could elicit a significant immune response in mice and pigs.
However, only mice were protected against S. suis challenge [89,90].

EndAsuis is a novel nuclease of S. suis that showed a high level of homology to the pneumococcal
endonuclease A. EndAsuis is cell membrane-anchored, and its activity could not be detected in the
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supernatant. In contrast to SsnA, the activity of EndAsuis is dependent on Mg2+, but not on Ca2+.
Interestingly, although EndAsuis is involved in the degradation of NETs, the endAsuis deletion mutant
exhibited no significant difference in resistance to the antimicrobial activity mediated by neutrophils
or NETs compared to the parent strain [49]. Further studies are necessary to elucidate the role of
EndAsuis in the pathogenesis of S. suis.

8. Enolase

Enolase of S. suis has attracted a lot of attention since it was first identified. Enolase could bind to
extracellular matrix components, including fibronectin, plasminogen, fibrinogen, and laminin [50–53],
which further promotes S. suis adhesion to and invasion of host cells. Moreover, the involvement of
enolase in S. suis adhesion to host cells has been clearly demonstrated using various methods [50,53–56].
Through interactions with human fibrinogen, enolase contributes to S. suis resistance to phagocytosis
by neutrophils, thus enhancing S. suis survival in human blood [52]. In addition, S. suis enolase plays
a role in disrupting the integrity of the blood-brain barrier by inducing interleukin-8 release [57].
Very recently, enolase of S. suis was identified to be a pig and human IgG-binding protein, and the two
binding domains in the C-terminal exhibited specificity to interact with pig and human IgGs [58].

While there is no debate about the role of enolase in the pathogenesis of S. suis, the subcellular
localization and vaccine potential of enolase appear to be strongly controversial. Feng et al. showed that
S. suis enolase is a cell surface protein using multiple approaches, whereas Esgleas et al. reported that
enolase is present in the supernatant, cell wall, and cytoplasm [50,56]. Recently, Liu et al. showed that
enolase was significantly increased in both secreted and surface-associated fractions of the prsA
deletion mutant [64]. Based on these results, we speculate that after synthesis in the cell, enolase can be
transported to the cell surface of S. suis, with a portion secreted to the supernatant. It is worth noting
that studies carried out by different research teams obtained opposite results regarding the protective
ability of enolase against S. suis infection in mice, despite a strong antibody response being induced
following immunization with this protein [55,56,91,92]. Considering that these studies were conducted
using a mouse infection model, further studies using the natural host of S. suis (pig) are still required.

9. S-ribosylhomocysteinase (LuxS)

LuxS is one of the enzymes required for the production of autoinducer-2 (AI-2, a signal molecule
involved in quorum sensing), although the transcription level of luxS is not correlated with AI-2
production [93,94]. In S. suis, expression of luxS is positively regulated by small RNA rss04 [95].
The functions of LuxS in the physiology and pathogenesis of S. suis have been extensively studied.
Figure 1 shows the gene regulation and functions of LuxS in S. suis. Deletion of luxS in S. suis led to
various phenotypic changes, including impaired growth, decreased biofilm formation and hemolytic
activity, reduced adherence to epithelial cells, thinner capsular, enhanced resistance to hydrogen
peroxide, and increased susceptibility to fluoroquinolones [59–61]. The luxS deletion mutant also
displayed attenuated virulence in both zebrafish and piglet infection models. The contribution of LuxS
to the pathogenicity of S. suis might be partly due to its positive regulation of several virulence-associated
genes [59,60]. The involvement of S. suis LuxS in the resistance to fluoroquinolones is mediated by
regulating the fluoroquinolone efflux pump SatAB [61].
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Figure 1. Gene regulation and functions of S-ribosylhomocysteinase (LuxS) in S. suis. LuxS is positively
regulated by small RNA rss04. LuxS regulates the expression of multiple genes associated with various
phenotypes of S. suis.

10. Peptidyl Isomerase PrsA

The peptidyl isomerase PrsA is a potential substrate of the type IV-like secretion system (T4SS)
in S. suis. Deletion of the T4SS component VirD4 resulted in significant down-regulation of PrsA in
secreted proteins upon exposure to hydrogen peroxide. PrsA exhibited significant cytotoxicity to
bEnd.3 cells and induced production of proinflammatory cytokines in RAW264.7 cells [62]. It has also
been demonstrated that PrsA is expressed in intracellular, surface-associated and secreted proteins.
The prsA gene is highly conserved among S. suis strains, and immunization with PrsA induced antibody
responses in mice and conferred protection against both S. suis 2 and S. suis 9 challenges [63]. Recently,
the role of PrsA in the pathogenesis of S. suis has been partly elucidated. Deletion of prsA resulted
in increased chain length, decreased growth, enhanced adhesion to but weakened invasion of host
epithelial cells, reduced survival in RAW264.7 cells and pig whole blood, and attenuated virulence
in mice. Suilysin, a virulence factor involved in the hemolytic activity of S. suis, was markedly
reduced in surface-associated and secreted proteins of the prsA gene deletion mutant. In contrast,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase, two adhesion-associated factors
of S. suis, were significantly increased [64]. These results suggested that PrsA could be involved in the
secretion of selected virulence factors, thus contributing to the pathogenesis of S. suis.

11. (p)ppGpp Synthetases

The alarmones guanosine tetraphosphate and guanosine pentaphosphate, collectively termed
(p)ppGpp, are involved in the regulation of growth and stress responses in bacteria. (p)ppGpp
synthetases play a key role in controlling the cellular levels of (p)ppGpp [96]. There are two (p)ppGpp
synthetases, i.e., RelA and RelQ, in S. suis. Simultaneous deletion of RelA and RelQ resulted in
different phenotypes and attenuated pathogenicity compared to the wild type S. suis strain. The mutant
exhibited a longer chain, a reduced ability to adhere to and invade HEp-2 cells, decreased resistance
to blood killing and phagocytosis by THP-1 cells, attenuated virulence in mice, and ensured easier
clean-up in mouse tissues. Moreover, the expression of several virulence factors was down-regulated
in the mutant, suggesting that (p)ppGpp synthetases could modulate virulence genes expression
in S. suis [65]. Zhang et al. further explored the role of individual (p)ppGpp synthetases in the
stringent response induced by glucose starvation. The results showed that only RelA plays a role
in the adaptation to glucose starvation. Transcriptome analysis revealed that RelA is involved in
the regulation of protein synthesis, DNA replication, cell division and growth, cell wall/membrane
biogenesis, carbohydrate transport, glycolysis, and carbon catabolite in S. suis [66]. Recently, it was
shown that the CodY regulator could bind to the promoter of relA in a manner independent of GTP,
and the expression of relA was positively regulated by CodY in S. suis [97].
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12. Conclusions

S. suis remains one of the most severe swine bacterial pathogens and it is a serious threat to public
health. Understanding of the physiology and pathogenesis of S. suis undoubtedly contributes to the
control of its infections. This review highlights the role of various enzymes in the physiology and
pathogenesis of S. suis. Many enzymes have a role, either confirmed or potential, in the physiology and
pathogenesis of S. suis, despite only some representative enzymes being introduced here. It should be
noted that previous studies were mainly carried out in S. suis 2. Since some enzymes are present in
various serotypes of S. suis, further investigation of these enzymes in other serotypes of S. suis should
be performed. For certain enzymes, the controversial results obtained from different teams need to
be clarified. Given that enzymes play important roles in a wide variety of intracellular processes,
a promising approach is to design novel antimicrobial drugs targeted to certain enzymes.
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