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Abstract 

Background:  The classification of benign and malignant microcalcification clusters 
(MCs) is an important task for computer-aided diagnosis (CAD) of digital breast tomos-
ynthesis (DBT) images. Influenced by imaging method, DBT has the characteristic 
of anisotropic resolution, in which the resolution of intra-slice and inter-slice is quite 
different. In addition, the sharpness of MCs in different slices of DBT is quite different, 
among which the clearest slice is called focus slice. These characteristics limit the per-
formance of CAD algorithms based on standard 3D convolution neural network (CNN).

Methods:  To make full use of the characteristics of the DBT, we proposed a new 
ensemble CNN, which consists of the 2D ResNet34 and the anisotropic 3D ResNet to 
extract the 2D focus slice features and 3D contextual features of MCs, respectively. 
Moreover, the anisotropic 3D convolution is used to build 3D ResNet to avoid the influ-
ence of DBT anisotropy.

Results:  The proposed method was evaluated on 495 MCs in DBT images of 275 
patients, which are collected from our collaborative hospital. The area under the curve 
(AUC) of receiver operating characteristic (ROC) and accuracy of classifying benign and 
malignant MCs using decision-level ensemble strategy were 0.8837 and 82.00%, which 
were significantly higher than the experimental results of 2D ResNet34 (AUC: 0.8264, 
ACC: 76.00%) and anisotropic 3D ResNet (AUC: 0.8455, ACC: 76.00%). Compared with 
the results of 3D features classification in the radiomics, the AUC of the deep learning 
method with decision-level ensemble strategy was improved by 0.0435, and the F1 
score was improved from 79.37 to 85.71%. More importantly, the sensitivity increased 
from 78.13 to 84.38%, and the specificity increased from 66.67 to 77.78%, which effec-
tively reduced the false positives of diagnosis

Conclusion:  The results fully prove that the ensemble CNN can effectively integrate 
2D features and 3D features, improve the classification performance of benign and 
malignant MCs in DBT, and reduce the false positives.
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Background
Breast cancer has the highest morbidity and mortality among women’s cancers [1], 
and early diagnosis and treatment can effectively improve the prognosis of breast can-
cer [2]. According to clinical statistics, 30% and 50% of breast cancers are accompa-
nied by microcalcification clusters (MCs) [3]. As an important early manifestation of 
breast cancer, MCs is of great significance for early screening of breast cancer [4–6]. 
Correct classification of benign and malignant MCs by imaging examination is signifi-
cant and can reduce unnecessary biopsy [7, 8].

Digital mammography (DM) and digital breast tomosynthesis (DBT) are now 
widely used to diagnose MCs. DM is considered to be the most reliable and effec-
tive method for breast cancer screen. However, there is overlap between the lesion 
and dense tissue in DM, which can easily lead to misdiagnosis of the MCs. DBT is 
an innovative imaging technique that can reconstruct 3D breast volume by acquiring 
low-dose mammogram projection views from a limited angle. It can overcome the 
effects of tissue overlap and improve the classification accuracy [9–11].

However, the following challenges still exist in the diagnosis of MCs in DBT. First, 
MCs is distributed in multiple slices of DBT, which is not conducive to the over-
all observation of the lesions. DBT images need to be scanned slice by slice, which 
brings a great workload to radiologists. Second, artifacts of microcalcification may 
be present due to reconstruction or potential movement of the patient, affecting the 
radiologist’s diagnosis of MCs. Computer-aided diagnosis (CAD) system can assist 
radiologists in reading DBT images by automatically identify benign and malignant 
MCs, which can improve the diagnostic accuracy and efficiency for radiologists.

Related works
To this end, various studies have been proposed for the CAD algorithm of MCs in 
DM and DBT. Fanizzi et al. [12] firstly performed multi-scale wavelet decomposition 
of the lesion area in the DM images, and extracted the texture features of each sub-
image and its corresponding gray-level co-occurrence matrix, and the benign and 
malignant MCs were then classified using random forest (RF) [13] classifier. Consid-
ering the multi-scale connectivity relationship between microcalcifications, George 
et  al. [14] extracted graph connectivity features at each scale to classify benign and 
malignant MCs in DM images. Zhang et al. [15] extracted radiomics features from the 
tomographic volume, projection image and focus slice of DBT, respectively, to classify 
whether the candidate was MCs or false positive sample. The results showed that the 
fusion of features of three data can effectively reduce false positives.

Among the most relevant tasks, Peng et  al. [16] proposed a radiomics method to 
classify benign and malignant MCs. The method extracted 2D features from the 
maximum intensity projection image (MIP) and the focus slice, respectively, and 
3D features were extracted from the tomographic volume. Finally, the comparative 
classification experiments of 3D features, 2D features and the combination of 3D 
features and 2D features were performed. The experimental results showed that the 
best result can be obtained when only 3D features before classification were used for 
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classification, and the direct fusion of 2D features and 3D features in the radiomics 
method may not achieve better experimental results due to the feature redundancy.

All the above studies used the radiomics method to classify the MCs. However, radi-
omics method is based on artificially designed feature and a carefully selected classifier, 
so it has a limited generalizability. While deep learning (DL)-based method can extract 
features and classify them automatically, so DL-based method can easily generalize to 
new data.

At present, some DL methods have been proposed to classify MCs. Cai et al. [17] com-
pared the classification performance of DL features and handcrafted features on benign 
and malignant MCs in DM. The experimental results showed that the classification 
result of DL features was better than handcrafted features. Considering the local char-
acteristics of MCs and the surrounding tissue background, Wang et  al. [18] proposed 
a context-sensitive deep neural network to reduce false positives, in which two CNNs 
were used to extract the features of MCs in DM at different scales. In the features-level 
ensemble, the feature vectors of two CNNs after global pooling were concatenated for 
the final classification. Samala et  al. [19] designed a CNN to classify MCs detected in 
the prescreening stage. The method used the multiscale bilateral filtering regularized 
simultaneous algebraic reconstruction to classify the MIP of MCs in DBT, and classify 
whether the input image has MCs. MIP image is obtained by projecting DBT among Z 
axis, which is a compression of 3D information. So 3D image turn to MIP image may 
lose key information and lead misdiagnosis of the algorithm.

Contributions
The main contributions of this study are as follows: (1) an ensemble CNN was proposed 
to classify benign and malignant MCs in DBT. The network can fuse the classification 
results of 2D intra-slice features and the 3D spatial features to improve the classifica-
tion performance. To the best of our knowledge, this is the first ensemble CNN for clas-
sification of MCs in DBT. (2) The anisotropic 3D convolution was adopted to extract 
3D spatial features, so as to avoid the influence of DBT anisotropic resolution. (3) The 
method was experimented on a clinical DBT dataset. We compared the classification 
performance of the proposed method with the independent 2D ResNet34 and aniso-
tropic 3D ResNet, as well as with the representative radiomics method. Experimental 
results showed that the proposed ensemble CNN achieved the best performance.

Results
A. Performance evaluation measures

We drew the receiver operating characteristic (ROC) curve to visually compared the 
diagnostic performance between different models. In addition, we used the area under 
the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), specificity (SPEC), preci-
sion, recall and F1 score to evaluate the performance of the models, where sensitivity 
describes the ability of the model to classify positive cases as positive. The lower the 
sensitivity, the more likely the model is to misdiagnose positive cases as negative cases. 
The specifically describes the ability of the model to classify negative cases as negative. 
The lower the specificity, the more likely the model lead missed diagnosis of malignant 
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patients. F1 is the harmonic average of the two evaluation indexes, giving consideration 
to both precision and recall. The definitions of these criteria are as follows:

The specific meanings of TP, TN, FP and FN are shown in Table 1.
In the analysis of experimental results, we calculated the AUC of view level and lesion 

level, respectively. At the view level, the mediolateral oblique (MLO) and craniocaudal 
(CC) images of the same lesion were taken as independent lesion to calculate the cri-
teria, respectively. At the lesion level, the MLO and CC images of the same lesion were 
seen as the same sample, and the final prediction scores were averaged.

B. Comparison of 2D CNNs with different depths

In the study of 2D CNN, the focus slice was selected as the input, and the image 
size was resized from 300 × 300 × 1 to 224 × 224 × 1. We firstly trained ResNet18, 
ResNet34 and ResNet50 to classify the focus slices and compared the performance 

(1)ACC =
TP+ TN

TP+ FP+ TN+ FN
,

(2)SEN =
TP

TP+ FN
,

(3)SPEC =
TN

TN+ FP
,

(4)Precision =
TP

TP+ FP
,

(5)Recall =
TP

TP+ FN
,

(6)F1 Score =
2 ∗ Precision ∗ Recall

Precision+ Recall
.

Table 1  Two-class confusion matrix

True condition Predicted condition

Positive Negative

Positive TP (true positive) FN (false negative)

Negative FP (false positive) TN (true negative)

Table 2  Classification performance of 2D CNNs

Models AUC​ ACC (%) SEN (%) SPEC (%) Precision (%) Recall (%) F1 (%)

2D-ResNet18 0.7986 74.00 81.25 61.11 78.79 81.25 80.00

2D-ResNet34 0.8264 76.00 78.13 72.22 83.33 78.13 80.65

2D-ResNet50 0.7917 72.00 75.00 66.67 80.00 75.00 77.42
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between CNNs of different depths [20]. The results are shown in Table  2, and the 
ROC curves based on view and lesion are shown in Figs. 1 and 2. ResNet34 has the 
best performance on both view-based and lesion-based classification. The AUC of 
ResNet34 (0.8264) was higher than that of ResNet18 (0.7986) and ResNet50 (0.7917), 
and Resnet34 had the highest specificity. Results show that shallow networks can-
not extract better features and have poor classification performance. Deep CNN can 
learn deep features of images, however, too many network layers can easily lead to 
overfitting, resulting in poor experimental results.

C. Comparison of different 3D CNNs

Different slice numbers of input can make a different impact on 3D classification 
results. We tested the effect of different input slices (N = 4, 6, 8, 10, 12) of the proposed 

Fig. 1  View-based ROC curves of 2D CNNs of different layers

Fig. 2  Lesion-based ROC curves of 2D CNNs of different layers
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anisotropic 3D ResNet. The results are shown in Table  3, and the ROC curves based 
on view and lesion are shown in Figs. 3 and 4. The experimental results show that the 
best result can be obtained when the number of slices is 8, and the model with 6 slices 
is better than that of 4 slices, which indicated that the more slices number, the more 

Table 3  Classification performance of different slices

Models N AUC​ ACC (%) SEN (%) SPEC (%) Precision (%) Recall (%) F1 (%)

3D-ResNet-Anisotropic 4 0.8004 76.00 84.38 61.11 79.41 84.38 81.82

6 0.8264 72.00 71.88 72.22 82.14 71.88 76.67

8 0.8455 76.00 75.00 77.78 85.71 75.00 80.00

10 0.8229 74.00 84.38 55.56 77.14 84.38 80.60

12 0.7934 70.00 75.00 61.11 77.42 75.00 76.19

Fig. 3  View-based ROC curves of different tomographic slices

Fig. 4  Lesion-based ROC curves of different tomographic slices
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information will be provided, and the model can obtain better performance. However, 
the number of slices cannot be increased without limit, because the slice further away 
from the central slice, the more blurred appearance of MCs will be. Too many slices may 
provide invalid even confusing information for classification, which will increase the risk 
of over-fitting and the model is hard to generalize to new data. Increasing the number of 
input slices to 10 or 12 may incorporate some more blurred slices and reduce the perfor-
mance of the model.

Based on the above experiment, we used 8 slices as input to compare the proposed 
anisotropic 3D ResNet and the standard 3D ResNet. The results are shown in Table 4, 
and the ROC curves based on view and lesion are shown in Figs. 5 and 6. Results show 
that the anisotropic 3D ResNet had better AUC than standard 3D ResNet. In addition, 
the specificity increased from 61.11 to 77.78%, which means that anisotropic 3D ResNet 
can effectively reduce the false positives of classification of benign and malignant MCs.

D. Comparison of different ensemble strategies

The above experiments show that 2D ResNet34 and anisotropic 3D ResNet are the 
best 2D and 3D models, so we used these two CNNs as the basic model of the ensem-
ble CNN. Different ensemble strategies will have an impact on the classification results, 
so we compared the diagnosis results of two ensemble strategies, including feature level 
ensemble strategy and decision-level ensemble strategy. In the feature level ensem-
ble strategy (Feature-Ensemble), global average pooling was performed on the output 
feature maps of the last convolution of 2D and 3D CNNs, and then concatenated the 

Table 4  Classification performance of 3D CNNs

Models AUC​ ACC (%) SEN (%) SPEC (%) Precision (%) Recall (%) F1 (%)

3D-ResNet-Isotropic 0.8299 78.00 87.50 61.11 80.00 87.50 83.58

3D-ResNet-Anisotropic 0.8455 76.00 75.00 77.78 85.71 75.00 80.00

Fig. 5  View-based ROC curves of different 3D CNNs
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pooled one-dimensional feature vectors. The fused feature vector was finally classified 
by the fully connected layer. In the decision-level ensemble strategy, 2D and 3D CNNs 
made decisions independently, and the final result was obtained by averaging the output 
of two CNNs.

In addition, we compared the effects of unweighted average (Decision-Ensemble-UA) 
and weighted average (WA) on diagnosis results in the decision-level ensemble strategy, 
and explored the contribution of 2D ResNet34 and 3D anisotropic ResNet for the final 
results. The unweighted average means that the two CNNs have the same weight. For 
the WA, we set a weight of 0.3 [Decision-Ensemble-WA (0.3)] or 0.7 [Decision-Ensem-
ble-WA (0.7)] for 2D ResNet34 to explore the influence of anisotropic 3D ResNet or 2D 
ResNet34 with a large weight on the results. Table  5 shows the experimental results, 
and the ROC curves based on view and lesion are shown in Figs. 7 and 8. The results 
show that, the decision-level ensemble method can improve the classification results of 
2D ResNet34 and anisotropic 3D ResNet alone, the classification result of the features-
level ensemble method is lower than 2D ResNet34 and anisotropic 3D ResNet alone, 
which indicate that feature level ensemble may bring feature redundancy and increases 
the difficulty of classification layer. In addition, decision-level ensemble with unweighted 
average is better than weighted average, which indicates that 2D focus slice features are 
equally important as 3D contextual features for MCs benign and malignant classification.

Fig. 6  Lesion-based ROC curves of different 3D CNNs

Table 5  Classification results of different ensemble methods

Models AUC​ ACC (%) SEN (%) SPEC (%) Precision (%) Recall (%) F1 (%)

Feature-Ensemble 0.8247 76.00 87.50 55.56 77.78 87.50 82.35

Decision-Ensemble-UA 0.8837 82.00 84.38 77.78 87.10 84.38 85.71

Decision-Ensemble-WA(0.3) 0.8490 80.00 81.25 77.78 86.67 81.25 83.87

Decision-Ensemble-WA(0.7) 0.8559 74.00 75.00 72.22 82.76 75.00 78.69
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E. Comparison of radiomics and deep learning

We compared the ensemble CNN with our the representative radiomics method [16]. In 
the radiomics method, we extracted 2D features from the focus slice and the maximum 
intensity projection image, and 3D features from volume. The Least Absolute Shrinkage 
and Selection Operator (LASSO) method was used for feature selection and the ran-
dom forest was used for classification. We compared the performances of 2D features, 
3D features and combined features in the classification of benign and malignant MCs. 
The experimental results are shown in Table 6, and the ROC curves based on views and 
lesions are shown in Figs.  9 and 10, respectively, where 2D-domain, 3D-domain and 
combined-domain represent the models using 2D, 3D and combined features in the radi-
omics method. The experimental results show that classification results of MCs using 

Fig. 7  View-based ROC curves of different ensemble methods

Fig. 8  Lesion-based ROC curves of different ensemble methods
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DL method are better than radiomics method. In addition, in the radiomics method or 
DL method, the results of features-level ensemble are lower than those of the 2D and 3D 
features alone.

F. Comparisons with related works

So far, there are only a few CNN-based studies on classification of benign and malignant 
MCs focus on DBT, and the majority approaches are based on DM. So we reproduced 
four related works [18–22] on our dataset for comparison with the ensemble CNN, 
the parameters are recorded according the papers. The four related works include two 
DBT-based methods and two DM-based methods, the experimental results are shown 
in Table 7, and the ROC curves based on views and lesions are shown in Figs. 11 and 12, 
respectively.

Table 6  Classification results of radiomics method and deep learning

Methods Models AUC​ ACC (%) SEN (%) SPEC (%) Precision (%) Recall (%) F1 (%)

Radiomics [16] 2D-domain 0.8151 76.00 87.50 55.56 77.78 87.50 82.35

3D-domain 0.8402 74.00 78.13 66.67 80.65 78.13 79.37

Combined-
domain

0.8107 72.00 81.25 55.56 76.47 81.25 78.79

The proposed 
method

2D-ResNet34 0.8264 76.00 78.13 72.22 83.33 78.13 80.65

3D-ResNet-
Anisotropic

0.8455 76.00 75.00 77.78 85.71 75.00 80.00

Feature-Ensem-
ble

0.8247 76.00 87.50 55.56 77.78 87.50 82.35

Decision-
Ensemble-UA

0.8837 82.00 84.38 77.78 87.10 84.38 85.71

Fig. 9  View-based ROC curves of radiomics method and deep learning method



Page 11 of 20Xiao et al. BioMed Eng OnLine           (2021) 20:71 	

Fig. 10  Lesion-based ROC curves of radiomics method and deep learning method

Table 7  Classification results of related work

Methods Models AUC​ ACC (%) SEN (%) SPEC (%) Precision (%) Recall (%) F1 (%)

A Samala et al.  [19] 0.7951 72.00 71.88 72.22 82.14 71.88 76.67

B Wang et al. [18] 0.8021 74.00 78.12 66.67 80.65 78.12 79.37

C Wichakam et al. [21] 0.7847 72.00 78.12 61.11 78.12 78.12 78.12

D Shu et al. [22] 0.7760 74.00 75.00 72.22 82.76 75.00 78.69

E Decision-Ensemble-
UA

0.8837 82.00 84.38 77.78 87.10 84.38 85.71

Fig. 11  View-based ROC curves of related work



Page 12 of 20Xiao et al. BioMed Eng OnLine           (2021) 20:71 

Method A and C are DBT-based methods. Samala et al. designed a CNN with 4 con-
volutional layers to classify MCs in MIP of DBT. Wichakam et al. used a 3D CNN with 
8 convolutional layers to classify whether the input has lesions. Method B and D are 
DM-based methods, and the focus slice of DBT volume is used as the input. Wang 
et  al. used a context-sensitive deep neural network to reduce false positives, in which 
two CNNs were used to extract the features of MCs in DM with size 95 × 95 and 9 × 9. 
Finally, the output features of two CNNs were integrated to obtain the final classification 
results. Shu et al. used DenseNet169 as the backbone network and added a new pooling 
structure for DM classification. Compared with the above four methods, the proposed 
method achieved the highest results on all metrics, indicating that the proposed method 
is more effective in classifying MCs.

Discussion
In this study, we proposed an ensemble CNN to classify benign and malignant MCs in 
DBT. This model contained a 2D ResNet34 branch to extract focus slice features and 
an anisotropic 3D CNN branch to extract 3D contextual features, the final output of 
the model was the combination of 2D and 3D results. Compared with 2D CNN and 3D 
CNN alone, the ensemble CNN can achieve the best diagnostic results.

We first tested the validity of anisotropic 3D ResNet on the benign and malignant clas-
sification of DBT. Compared with the standard 3D ResNet, the AUC of anisotropic 3D 
ResNet was increased from 0.8299 to 0.84551, and specificity was increased from 61.11 
to 77.78%. It indicated that, compared with the standard 3D convolution, the anisotropic 
3D convolution can avoid the influence of DBT anisotropic resolution, and extract 3D 
contextual features effectively.

In the experiment of ensemble method, we experimented with the feature-level 
ensemble method and decision-level ensemble method, respectively. The AUC of the 
feature level ensemble method was 0.8247, which was worse than 2D ResNet34 (AUC 
0.8264) and 3D ResNet (AUC 0.8455) alone. The experimental results show that feature 

Fig. 12  Lesion-based ROC curves of related work
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level ensemble cannot improve model performance. The fusion of 2D features and 3D 
features may lead to feature redundancy and increased the difficulty of the classification 
layer, thus affect the performance of the classification model.

In the decision-level ensemble method, we used the unweighted average strategy and 
the weighted average strategy to integrate the 2D ResNet34 output and the anisotropic 
3D ResNet output. In the weighted average strategy, we used the weights of 0.3:0.7 and 
0.7:0.3, respectively, for the average. It can be seen that the AUC of unweighted aver-
age, weighted average by 0.3:0.7 and weighted average by 0.7:0.3 were 0.8837, 0.8490 
and 0.8559, which were all higher than the AUC of 2D ResNet34 anisotropic 3D ResNet 
alone. The experimental results indicate that the ensemble method of decision-level 
ensemble can effectively improve the classified performance of benign and malignant 
MCs, and the unweighted average strategy achieved the best performance which indi-
cates that the focus slice features and 3D spatial features have the same importance for 
classifying benign and malignant MCs in DBT.

We further compared our DL model with the radiomics method. The experimental 
results show that the proposed DL model achieved a better classification result than the 
previous radiomics method. Compared with the radiomics method, the AUC of the DL 
model is increased by 0.0435, and the F1 score is increased from 79.37 to 85.71%, indicat-
ing that the DL model can achieve more balanced results. During the radiomics method 
experiment, we found that the combination of 2D features and 3D features before the 
classifier did not improve the model performance, which is same as our experiment of 
feature level ensemble strategy.

Finally, we compared our method with four related works. Method A used a CNN with 
four convolutional layers to classify the MIP of DBT. Shallow CNN cannot extract more 
representative information, so the best classification result cannot be obtained. Method 
C used a standard 3D CNN to classify whether the DBT volume contained lesions, how-
ever, standard convolution cannot effectively extract 3D features of DBT with aniso-
tropic resolution. Method B uses lesions with different sizes as input, but the sizes of 
MCs vary greatly, so it is difficult to choose the appropriate size and the performance 
may not be optimal. Method D added a new pooling structure to DenseNet169 to clas-
sify the MCs in the focus slice. However, 2D CNN does not make full use of 3D spatial 
information of DBT. The ensemble CNN can effectively utilize the 3D spatial informa-
tion and 2D information of DBT, and use anisotropic convolution to avoid the influence 
of DBT anisotropic resolution. Compared with the four methods, the method proposed 
in this paper achieved the best results in AUC and F1 score.

Conclusions
In this paper, a new ensemble CNN is proposed for the classification of MCs in DBT vol-
ume. The network has the following advantages. It is the first attempt to classify MCs in 
DBT with ensemble CNN. This CNN improves the diagnosis results by integrating the 
classification results of 2D ResNet34 and 3D ResNet. 3D ResNet is built by anisotropic 
3D convolution, which can avoid the influence of DBT intra-slice and inter-slice aniso-
tropic resolution on the results. We verify the effectiveness of the proposed method on a 
large clinically collected DBT dataset. In addition, compared with the radiomics method, 
the proposed deep learning can improve the classification results and effectively reduce 
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the false positives. However, this method also has some limitations. The 3D bounding 
box of the MCs is manually delineated by the doctor, which is subjective. Therefore, the 
semi-supervised detection algorithm can be used to detect the boundary box of MCs.

Methods
DBT has the characteristic of anisotropic resolution. Its intra-slice resolution and inter-
slice resolution are quite different. In addition, the MCs in non-focus slice are fuzzy, 
and the focus slice may contain more representative information. Figure 13 shows the 
morphologic appearances of different slices. It can be seen that the MCs is the clear-
est in the focus slice (Slice #24), and MCs will be fuzzy if the slice is farther away from 
the focus slice. In view of the above characteristics, an ensemble CNN was proposed 
to classify benign and malignant MCs in this paper, which integrated 2D ResNet34 and 
anisotropic 3D ResNet to classify benign and malignant MCs. Figure 14 shows the archi-
tecture of the proposed ensemble CNN, which consists of three parts: (1) 2D ResNet34 

Fig. 13  Morphology and distinctness of MCs in different slices. Slice#24 is the focus slice. Slice#22 and 
Slice#20 are the second and fourth slice on the left of the focus slice. Slice#26 and Slice#28 are the second 
and fourth slice on the right of the focus slice

Fig. 14  The overview of the ensemble CNN
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branch, aiming to extract intra-slice features of the focus slice, which has the clearest 
MCs appearance. (2) Anisotropic 3D ResNet branch, which uses anisotropic 3D convo-
lution for spatial features extraction from DBT volumes with anisotropic resolution. (3) 
Decision-level ensemble layer, the classification results of 2D ResNet34 and anisotropic 
3D ResNet were unweighted averaged to get the final classification results.

The proposed method was implemented by PyTorch framework, which is carried out 
an NVIDIA 2080Ti GPU. In the training stage, we set the initial learning rates of 2D 
ResNet34 and anisotropic 3D ResNet as 0.0001 and 0.00001, respectively. When the loss 
of the training set did not decrease, the learning rate decayed by a factor of 0.8. There 
are many efficient optimization algorithms [23–26]. In this work, we used Adam [26] 
with default settings as the optimizer. The fully connected layer was added to dropout 
(p = 0.5) to prevent overfitting [27].

A. Data acquisition and preprocessing

With the approval of the Institutional Review Board, a dataset consisting of 462 DBT 
volumes from 236 patients was collected from the Department of Radiology, Nanjing 
Medical University Affiliated Hospital (Suzhou, China). The gold standard of benign and 
malignant in the dataset was determined by biopsy. There were 495 MCs in the 462 DBT 
volumes, of which 322 MCs were malignant and 173 MCs were benign. All DBT volumes 
were acquired by the Selenia Dimensions 3D Mammography system, and each breast 
was scanned twice two views (CC view and MLO view). All DBT volumes had intra-slice 
resolution of 100 μm and inter-slice resolution of 1 mm [9]. A radiologist with more than 
5 years of DBT diagnosis experience used a 3D bounding box to mark MCs confirmed 
by biopsy. The bounding box was as close to surrounding the MCs as possible.

We first analyzed the distribution of the size of MCs in slice, as shown in Fig. 15. It 
can be seen that the size of MCs in slice was mostly 300 × 300 and below, so we cut out 
a 300 × 300 × 12 volume from the center of the lesion, which can contain most of the 
MCs.

This experimental dataset included a total of 495 MCs, which were randomly 
divided into training, validation and test sets by 8:1:1. Considering the limitation of 
sample size, data augmentation [28] was used to increase the number of training sam-
ples, including translation, flip and rotation. In addition, different augmentation ratios 
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Fig. 15  Statistical diagram of the size of the MCs area
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were adopted for benign MCs and malignant MCs, respectively, to ensure the balance 
of training samples. The detailed information of the dataset is shown in Table 8.

To accelerate the convergence of network training, it is necessary to normalize the 
data. Normalization does not change the image information and changes the pixel 
from 0–1023 to 0–1. In this paper, minimum–maximum normalization was used 
to perform linear transformation on the original data. The conversion formula is as 
follows:

where Pin
(

x, y
)

 is the pixel value at 
(

x, y
)

 before conversion, and Pout
(

x, y
)

 is the pixel 
value at 

(

x, y
)

 after conversion. Pmin is the smallest pixel value in the whole image, and 
Pmax is the largest pixel value in the whole image.

B. Focus slice feature extraction

Generally, the MCs in DBT were distributed in multiple slices, which was clear in the 
focus slice, but fuzzy in the non-focus slice. The focus slice is the slice with the maxi-
mal gray level in DBT slices containing MCs. We used the method of Zhang et al. for 
the selection of focus slice. The calculation formula is as follows [15]:

where M is the number of individual microcalcifications in the MCs in the kth slice. Ni 
is the number of pixels contained in the ith microcalcification, and pkij is the pixel value.

The focus slice may contain valuable representative features, so we used 2D 
ResNet34 to extract the intra-slice features of the focus slice. 2D ResNet34 was used 
for 2D focus slice features extraction, which can effectively solve the problem of gra-
dient disappearance and gradient explosion caused by too deep CNN  [29, 30]. Then 
we changed the number of nodes from 1000 to 2 to classify benign and malignant 
MCs.

(7)Pout
(

x, y
)

=
Pin

(

x, y
)

− Pmin

Pmax − Pmin
,

(8)







G(k) =

�M
i=1

�Ni
j=1 p

k
ij

�M
i=1 Ni

argk maxG(k)
,

Table 8  The characteristics of the dataset

The number in brackets in the training set is the number of augmented data

Characteristics Training set Validation set Test set

Benign patients 69 9 9

Malignant patients 116 17 16

Benign DBT volume 135 17 18

Malignant DBT volume 228 32 32

Benign MCs 138 (5106) 17 18

Malignant MCs 258 (5934) 32 32

Total MCs 396 (11,040) 49 50
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C. 3D anisotropic convolution

DBT data have an anisotropic resolution, while the standard 3D convolution kernel is 
isotropic, so it is difficult to fit intra-slice features and inter-slice features simultaneously 
[31]. Therefore, the anisotropic 3D convolution kernel was used to extract spatial fea-
tures. The standard k × k × k convolution kernel can be divided into k × k × 1 intra-slice 
convolution and 1 × 1 × k inter-slice convolution.

Formula 3 is the standard isotropic 3D convolution:

where Fin and Fout represent input feature map and output feature map. W  , H and D rep-
resent width, height and thickness of feature map, respectively. B is the batch size. K  is 
the convolution kernel with k × k × k size, Cin and Cout are the channel dimension of the 
input feature map and output feature map, respectively.

The formula 4 is anisotropic 3D convolution:

where K1 and K2 are the intra-slice convolution kernel and inter-slice convolution ker-
nel. Ctemp is the out channel dimension when extracting intra-slice features.

D. 3D spatial features extraction

DBT is 3D data, which contains abundant 3D contextual information. Efficiently using 
3D information of DBT can improve the classification performance of the model. In this 
study, we proposed a 3D ResNet with anisotropic convolution to extract 3D features 
from DBT.

The anisotropic 3D ResNet was based on 3D ResNet34 architecture. Firstly, a 7 × 7 × 1 
anisotropic convolution with 64 channels was adopted to extract inter-slice features slice 
by slice. Then 4 residual blocks were adopted to extract 3D contextual features. Thus, 
the information fusion between intra-slice and inter-slice was carried out in the feature 
maps level which avoided the influence of anisotropic resolution of the original DBT 
data. The numbers of output channels of the four residual blocks were 64, 128, 256, 512, 
respectively, and the standard 3D convolution kernels were replaced by anisotropic con-
volution kernels with kernel size 3 × 3 × 1 and 1 × 1 × 3. At the junction of two residual 
blocks, the channel number and size of the feature map are different. The Fig. 16 shows 

(9)Fout(B, Wout, Hout, Dout, Cout) = Fin(B, Win, Hin, Din, Cin) · K
(Cin,Cout)

k×k×k ,

(10)
Fout(B, Wout, Hout, Dout, Cout) = Fin(B, Win, Hin, Din, Cin)·K1

(Cin,Ctemp)
k×k×1 ·K2

(Ctemp,Cout)
1×1×k ,

Fig. 16  The architecture of the first residual block, represents the downsampling, and the size of the feature 
map is scaled to 1/2 of the original size
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the first 3D residual block based on anisotropic convolution which contained three 
residual modules, each residual module contained four anisotropic convolution lay-
ers. The next three residual blocks were similar to the first one with 4, 6 and 3 residual 
modules.

E. Ensemble strategy

3D anisotropic ResNet was used extracted 3D contextual features which can make full 
use of DBT data. However, 3D features may bring extra noise because of the fuzzy MCs 
in the slices which far away from the focus slices. The focus slice contained the clearest 
MCs, and 2D ResNet34 was used to extract focus slice features which can minimize the 
impact of noise. So the fusion of the 2D ResNet34 and anisotropic 3D ResNet results can 
improve classified accuracy and obtain a more stable and comprehensive model [32–36].

Decision-level ensemble strategy was used to integrate 2D Resnet34 and anisotropic 
3D ResNet. In each epoch, 2D Resnet34 and anisotropic 3D ResNet were used to classify 
the MCs, respectively, and the final result was obtained by unweighted average of the 
two prediction probabilities.
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