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Abstract

The insulin-like growth factor-I (IGF-I) signaling induces epithelial to mesenchymal transition (EMT) program and
contributes to metastasis and drug resistance in several subtypes of tumors. In preclinical studies, targeting of the
insulin-like growth factor-I receptor (IGF-IR) showed promising anti-tumor effects. Unfortunately, high expectations
for anti-IGF-IR therapy encountered challenge and disappointment in numerous clinical trials. This review
summarizes the regulation of EMT by IGF-I/IGF-IR signaling pathway and drug resistance mechanisms of targeting
IGF-IR therapy. Most importantly, we address several factors in the regulation of IGF-I/IGF-IR-associated EMT
progression that may be potential predictive biomarkers in targeted therapy.
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Background
The insulin-like growth factor-I receptor (IGF-IR) is a
transmembrane tyrosine kinase receptor which regulates
growth, development and metabolism by binding of the
IGF-I ligands [1–3]. In recent years, mounting evidence
indicates that the IGF-I/IGF-IR signaling is also involved
in epithelial to mesenchymal transition (EMT)-associ-
ated tumor metastasis and drug resistance [4–9]. Over-
expression of IGF-IR is associated with high risk of
metastasis and poor prognosis in many cancer patients
[10–14]. Therefore, IGF-IR, the key signaling compo-
nent, is considered as the potential target of several in-
vestigational agents in clinical development. However,
the IGF-I/IGF-IR signaling pathway seems more com-
plex than initially thought. Failures in Phase II/III clin-
ical trials in unselected patients prompted the scientists
to pause and reevaluate the problem before conducting
further trials [15–18]. In the face of these setbacks,
searching for relevant biomarkers has become glaringly
apparent. This review will first present EMT in tumor

progression and discuss the mechanisms of IGF-I/IGF-
IR signaling in regulating EMT programs in different
epithelial tumor; secondly, we will consider the current
strategies of anti-IGF-IR targeted therapy and analyze
the reasons for treatment failure; Most importantly, we
will extract candidate biomarkers and optional strategies
to identify the right patients based on regulation mecha-
nisms of IGF-I/IGF-IR-induced EMT progression.

The key role for IGF-IR signaling in IGF system
The IGF system consists of three ligands: IGF-I, IGF-II
and insulin; three receptors: IGF-IR, insulin receptor
(IR) and IGF-IIR; and a family of six high-affinity bind-
ing proteins IGFBPs. The IR exists in two splice variant
isoforms, the IRA and IRB. Different receptors dimerize
to form six receptor species that vary in their ligand af-
finity (Fig. 1) [19, 20]. (1) IGF-I can bind to the IGF-IR,
IRA, and IGF-IR/IRA receptor hybrids [21, 22]; (2) IGF-
II can bind with high affinity to the IGF-IIR /mannose-
6-phosphate receptor, a non-signaling receptor, which is
considered to play an important role in the clearance
and degradation of IGF-II [23, 24]; (3) IGF-II binds with
high affinity to the IGF-IR, IRA, hybrid IGF-IR/IR recep-
tors but not the IRB isoform [25, 26]. (4) Insulin can
bind with IGF-IR and IR [1]. IGFBPs are carrier proteins
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that have binding affinities for both IGF-I and IGF-II.
There are, at present, six members in IGFBP superfamily
(IGFBP-1 through 6). IGFBPs help lengthen the half-life
of circulating IGF-I due to their higher affinity to IGF li-
gands than the receptors. IGFBPs are also instrumental
in modulating IGF-IR biological accessibility and activity
[27, 28]. In biological fluids, approximately 98% of IGF-I
is normally bound to one of six binding proteins
IGFBPs. However, IGFBPs have a relative lower affinity
with insulin [29].
The IGF-I/IGF-IR signaling is the major signal-

transducing pathway in IGF family. Its activation after
ligand binding mediates cell survival, proliferation, dif-
ferentiation, and metabolism [30–32]. The effects of
IGF-IR signaling in cancer biology are divergent. Previ-
ous studies have reported that cytoplasmic IGF-IR ex-
pression is correlated with favorable disease free survival
and specific survival in estrogen receptor positive inva-
sive ductal breast carcinoma [33]. IGF-IR expression is
significantly associated with longer survival in non-
small-cell lung cancer patients treated with gefitinib
[34]. Whereas the opposite association is found in some
other malignancies where IGF-1R exacerbated malignant
transformation and tumor cell proliferation [14, 35].
This may be due to the complex and tightly regulated
networks of IGF-I/IGF-IR signaling. As a potential drug
target, the IGF-I/IGF-IR signaling has a number of ap-
pealing features. Many preclinical studies indicate that

IGF-I induces EMT program and contributes to metas-
tasis in breast, prostate, gastric and lung cancer [5,
36–39]. IGF-IR is involved in epidermal growth factor
receptor (EGFR) TK inhibitor (TKI) resistance
through crosstalk between IGF-IR and EMT signaling
pathways in non-small cell lung cancer (NSCLC) with
EGFR mutations [39, 40]. In addition, IGF-IR signal-
ing mediates resistance to TKI drugs targeting both
epidermal growth factor receptor 2 (HER-2) and
EGFR in gastric cancer via EMT-like process [41]. In
ovarian cell models, adaptive resistance to PI3K/
mTOR inhibitors was associated with upregulation of
IGF-IR and other pro-survival proteins [42]. There-
fore, the close relationships between IGF-I/IGF-IR sig-
naling and EMT progression makes it an attractive
therapeutic target for cancer treatment.

EMT-an overview
EMT is a multi-step biologic process characterized by
the cell-cell contacts breakdown, cell-matrix adhesion
remodeling and acquisition of mesenchymal phenotype
[43, 44]. EMT plays a central role in both physiological
and pathological processes. It contributes to the forma-
tion of the body plan and the differentiation processes of
multiple tissues and organs [43, 45]. EMT also plays as a
physiological response to injury. During wound healing,
keratinocytes at the border of the injury undergo EMT
which maintains the loose contacts [43, 46]. As a

Fig. 1 Schematic representation of the insulin and IGF receptor family. The IGF system consists of ligands (IGF-I, IGF-II and insulin), receptors (IGF-
IR, IGF-II/ M6P, IR), and a family of six high-affinity IGFBPs. The IR exists in two splice variant isoforms, the IRA and IRB. Different receptors dimerize
to form six receptor species those vary in their ligand affinity. Ligands binding to receptors can result in activation of different intracellular signal-
ing cascades that regulate cell proliferation, survival, differentiation, and metabolism
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pathological response, EMT is involved in organ degen-
eration, such as fibrosis [47]. Overwhelming evidence
suggests that developmental of EMT program promotes
the initiation of tumor metastasis and acquisition of
therapeutic resistance [48, 49]. It also endows cells with
stem cell properties and prevents apoptosis, which re-
sults in tumor progression [50, 51].
Initiating a transformation from an epithelial cell into a

mesenchymal cell requires alterations in cell morphology,
cellular architecture, adhesion and migration ability. Loss
of the epithelial marker E-cadherin and gain of mesenchy-
mal marker vimentin are considered as the fundamental
event in EMT process [52]. Down-regulation of E-
cadherin expression causes adherens junctions breakdown
between cells, loss of cell polarity, leading to a mesenchy-
mal phenotype with invasive abilities [53]. This dynamic
process can be triggered by the complex interplay of sev-
eral inducers, such as TGF-β, multiple receptor tyrosine
kinases (RTKs), Wnt/β-catenin, Notch and Hedgehog sig-
naling pathways [54–57]. Two important components of
initiation of these complex signaling pathway networks
are ZEB1/2 and Snail1/2. These EMT inducing transcrip-
tion factors (EMT-TFs) can bind to E-boxes of E-cadherin
promoter and repress its transcription [58–60]. Hence,
any biological processes that will induce overexpression of
ZEB or Snail are likely to down-regulate E-cadherin ex-
pression, which contributes to EMT. Also, some TFs
supress E-cadherin transcription indirectly, such as
Twist1/2, E2.2 and FoxC2 [61–63]. TGF-β induces EMT
through the activation of Smad2 signaling or other non-
canonical signaling pathways (PI3K/Akt or MAPK/ERK
pathways) [64]. Activation of NF-κB signaling can induce
EMT program through up-regulating Twist1/2 [65, 66].
Furthermore, activation of Notch, Wnt/β-catenin and
Hedgehog signaling also contribute to the progression of
EMT via regulation of Snail1/2 [67, 68]. These EMT-TFs
not only repress E-cadherin, but also inhibit other tight
junctional proteins transcriptionally, which facilitates
EMT process. Additionally, newly published studies have
highlighted the essential role of microRNA in the medi-
ation of EMT process by regulating the inducers [69].
Commonly used EMT markers, inducers, pathways and
transcription factors are summarized in Table 1 and
Fig. 2. Nowadays, more and more studies are focusing on
reinforcing EMT as a major driver factor on tumor pro-
gression, metastasis and drug resistance. Given that a
complex network of regulators and inducers play integral
roles in EMT, understanding the regulation mechanisms
is helpful for designing more effective targeted therapies.

Molecular mechanisms of IGF-IR signaling in EMT
Recently, mounting evidence indicates that the IGF-IR
signaling is also involved in EMT-mediated tumor me-
tastasis and drug resistance. The mechanism of IGF-IR

signaling in regulation of EMT is summed up in three
aspects: autocrine ligand production and receptor over-
expression, signal transduction by ligand binding, and
cross-talk between signaling pathways.

Autocrine ligand production and receptor overexpression
IGF-I is peptide growth factor synthesized in the liver
and secreted into the bloodstream under the control of
growth hormone. In the circulation, the ligands of IGF-I
are combined with a family of high-affinity binding pro-
teins (six known IGFBPs), which allows growth hormone
to produce more IGF-I continuously [28, 29]. Many
studies have demonstrated that slight elevations in
serum levels of IGF-I are correlated with an increased
risk for developing prostate, breast, colon, lung, ovarian
and endometrial cancer [70–77]. Interestingly, EMT
process may in turn trigger autocrine IGF-I production,
thus activating a positive feedback loop between IGF-IR
activation and Slug expression in vitro [78]. Further-
more, IGF-IR expression is observed in up to 80% of
lung cancer patients and approaching 90% of breast can-
cer patients [79, 80]. Overexpression of IGF-IR promotes
migratory and invasive behaviors of triple negative breast
cancer cell lines by activating focal adhesion kinase sig-
naling pathway [81]. Our newly published data has im-
plicated that elevated IGF-IR is associated with lymph
node metastasis in gastric cancer patients [37]. In the
light of these discoveries, strategies that are able to

Table 1 EMT markers, inducers and transcriptional factors

EMT markers EMT inducers and
pathways

EMT-TFs

Epithelial markers Direct binding to E-cadherin
promoter

E-cadherin RTKs (EGFR, FGFR,
IGFR)

Snail1/2

Occludin TGF-β ZEB1/2

Desmoplakin GSK-3β KLF8

Cytokeratin NK-κB E47

Mucin1 β-catenin Brachyury

TJP1 Hypoxia/AMF Repressing E-cadherin indirectly

Mesenchymal markers Ras-MAPK pathway Twist1/2

Vimentin PI3K/Akt pathway FOXC2

Fibronectin Src pathway E2.2

N-cadherin Notch pathway SIX1

Thrombospondin Wnt pathway PRRX1

α-SMA Shh pathway Goosecoid

Tenascin C mTOR pathway HDAC

MMP family STAT3 pathway EZH2

TJP1 tight junction protein 1, α-SMA α-smooth muscle actin, KLF8 Krüppel-like
Factor 8, FOXC2 forkhead box C2, PRRX1 paired-related homeobox gene 1,
HDAC histone deacetylase
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inhibit the functions of IGF-IR or which are able to lower
plasma levels of IGF-I should be considered with the goal
of inhibiting tumor development and metastasis.

Signal transduction by ligand binding
Ligand activation of IGF-IR results in intrinsic tyrosine
kinase phosphorylation and activates downstream adaptor
protein IRS-1 and Shc, leading to activation of two main
signaling pathways, IRS-1/PI3K/Akt and Ras/Raf/ERK
pathways respectively [82–84]. Activation of ERK pathway
results in up-regulation of ZEB1 expression in response to
IGF-I stimulation which induces EMT progression in
prostate cancer [5, 85]. Our previous study demonstrated
that both Akt and ERK pathways are partially involved in
IGF-I-induced EMT process in gastric cancer. Inhibition
of Akt/ERK pathways or knockdown of Akt/ERK gene
partially reversed IGF-I-induced EMT through up-
regulation of microRNA-200c which directly targets E-
cadherin transcriptional repressors ZEB2 [37]. In addition
to these two signaling pathways, GSK-3β is now

considered as an essential EMT regulator in response to
IGF-I [86]. Activation of Akt and ERK pathways result in
inactivation of GSK-3β in response to paracrine/autocrine
IGF-I through Ser9 phosphorylation [87, 88]. Kim et al.
detected that GSK-3β was involved in direct reduction of
Snail and Slug expression through proteasome-dependent
degradation or NF-κB activation in response to IGF-I
stimulation [89]. Zhou et al. reported that GSK-3β could
bind to and phosphorylate Snail at two consensus motifs
to regulate the biological functions of Snail; activation of
Akt pathway led to the suppression of GSK-3β through
phosphorylation of Ser9 and stabilization of Snail in re-
sponse of IGF-I [90]. Our newly published data demon-
strated that inhibition of Akt reversed IGF-I-induced
EMT and mesenchymal phenotype in gastric cancer cells
through initiating GSK-3β ability in epithelial phenotype
maintenance [38]. These results indicate that the main sig-
nal transduction pathways by IGF-I ligand binding, IRS-1/
Akt/GSK-3β and ERK/MAPK pathways, are potent in-
ducers/activators in IGF-I-induced EMT process. Fig. 3

Fig. 2 Basic molecular processes and signaling pathways contributing to the epithelial-mesenchymal transition (EMT). EMT is a developmental
process by which epithelial cells lose their cell-cell adhesions and acquire mesenchymal cells identity. Loss of epithelial marker such as E-cadherin
and the gain of mesenchymal marker such as Vimentin are considered as hallmarks in the initiation and execution of EMT. In many human
tumors, the expression of multiple RTKs and their ligands induce autocrine growth factor loops. The activated RTKs induce signaling via PI3K/Akt
and MAPK/ERK downstream signaling pathways, which up-regulates transcriptional factors (ZEB1/2 and Snail1/2) and causes EMT progression via
binding to E-boxes of E-cadherin gene. TGF-β induces EMT through the activation of Smad2 signaling or other non-canonical signaling pathways
(PI3K/Akt or MAPK/ERK pathways). Activation of NF-κB signaling can induce EMT program through up-regulating Twist1/2. In addition, activation
of Notch, Wnt/β-catenin and Hedgehog signaling also contribute to the progression of EMT via regulation of Snail1/2
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represents the relationship between the IGF-I system and
the EMT process.

Cross-talk between signaling pathways
Several lines of evidence indicate that a strict association
between the canonical Wnt/β-catenin and IGF-I signal-
ing may contribute to EMT process [91–93]. In human
colon cancer cells, IGF-I stimulates β-catenin relocation
and stability through the inactivation of GSK-3β, which
increases cell motility and contributes to colon cancer
metastasis [94, 95]. In addition, IGF-I cooperates with
Wnt signaling pathway in the metastasis process by
stimulating TCF/LEF-dependent transcription through
the Akt/GSK-3β/β-catenin pathway [96]. Taken together,
these data indicate the existence of cross-talk and posi-
tive feed-back loop between the IGF-I signaling and
Wnt/β-catenin signaling, thus contributing to cell
motility and EMT process. In addition to Wnt signaling
pathway, activation of Notch signaling results in up-
regulation of mesenchymal markers (fibronectin, α-
smooth muscle actin), down-regulation of endothelial
markers (vascular endothelial-cadherin, Tie1, Tie2) and
increasing migration ability in endothelial cells [97–101].
The interaction between the Notch signaling and the

IGF-IR pathway has been firstly demonstrated by Eliasz
et al. in lung cancer cells [102]. Notch stimulates IGF-IR
transcription by regulating its promoter under hypoxic
conditions. Additionally, accumulating evidence demon-
strates that Notch directly up-regulates IGF-IR protein
and mRNA expression [103]. The evidence of cross-talk
between Notch and IGF-IR signaling represents a gen-
eral mechanism that contributes to tumor progression
and metastasis [104]. Another signaling pathway Shh co-
operates with IGF-IR has also been reported in several
cancer cells. For example, Shh signaling activation in-
duces the up-regulation of IRS-1 and phosphorylated
IGF-IR, which synergizes to promote medulloblastoma
formation [105]. Furthermore, Shh signaling is also dem-
onstrated to mediate EMT process through up-regulating
Snail and down-regulating E-cadherin in NSCLC cells
[106]. However, the synergistic cooperation between Shh
and IGF-I signaling is not exclusive and there may be mul-
tiple sites and intermediary molecules involved in this
process. A scheme depicting the cross-talk between sig-
naling pathways in IGF-IR-mediated EMT process is
shown in Fig. 3. We still need other strong evidence and
validation of cross-talk mechanism involved in EMT
maintenance and metastasis progression.

Fig. 3 Schematic representation of IGF signaling regulation in EMT. Ligand activation of IGF-IR results in intrinsic tyrosine kinase phosphorylation and
activates two main signaling pathways, ①IRS-1/PI3K/Akt and②Ras/Raf/ERK pathways. Both of these two main pathways regulate transcription factors of
ZEB, Snail and Twist families those are all involved in the EMT program. In addition, Slug increases IGF-I transcription which potentiates the progression of
EMT. On the other hand, crosstalk between other signaling pathways and IGF signaling are also involved in EMT program.③IGF-I stimulates β-catenin
relocation and stability through the inactivation of GSK-3β which initiates Wnt signaling. Furthermore, IGF-I cooperates with Wnt signaling pathway in the
metastasis process by stimulating TCF/LEF-dependent transcription through the Akt/GSK-3β/β-catenin pathway.④GSK-3β binds to and phosphorylates
Snail at two consensus motifs to regulate the biological functions of Snail.⑤Notch-1 directly up-regulates IGF-IR protein and mRNA expression and
amplifies the mitogenic effects of IGF-IR/PI3K signaling that potentiates EMT program.⑥Shh signaling activation mediates EMT process through
up-regulation of IRS-1 and Snail
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Current treatment strategies-disappointment and
challenges
Almost 30 candidate drugs have been tested in more than
70 clinical trials conducted in a wide variety of cancer pa-
tients through pharmaceutical, academia and biotechnol-
ogy companies during the past 10 years. Novel anti-IGF-
IR drugs include monoclonal antibodies, tyrosine kinase
inhibitors, and anti-ligands antibodies [107–110]. How-
ever, initial high expectations quickly encountered chal-
lenges. Therapy with monoclonal antibodies (mAb)
targeting the IGF-IR have been unsuccessful [111–113].
Recent PhaseIIand III clinical trials have reported the
mAb targeting the IGF-IR even worsened overall survival
in breast and pancreatic cancer patients [114, 115]. Two
randomized phase III studies in advanced non-small cell
lung cancer were closed ahead of time due to not meeting
the primary endpoint of improving overall survival [116].
In addition, some serious adverse events such as pneumo-
nia, hyperglycemia, asthenia, and dehydration are ob-
served more commonly in patients receiving targeted
IGF-IR therapy [117, 118]. For this reason, the treatment
has not gained traction for clinical use.
To explain clinical failures despite encouraging prelim-

inary data, one can consider the mechanisms of drug re-
sistance. These include abnormal autocrine or paracrine
expression of ligand IGF-I, not shut down IGF-IR signal-
ing completely or activation of alternative signaling path-
way [119, 120]. IGF-IR mAbs can induce compensatory
regulatory endocrine that may lead to supraphysiological
levels of IGF-I and cause increased levels of insulin in
blood. Moreover, insulin receptor (IR) forms heterodi-
mers with IGF-IR. Both IGF-I and insulin may also acti-
vate insulin or hybrid receptors and transmit
intracellular signaling information even in the treatment
of IGF-IR mAbs [121, 122]. High IR to IGF-IR ratios are
associated with higher resistance to IGF-IR blockade
[120]. Besides that, receptor tyrosine kinase reciprocity
and alternative signaling pathway activation may also
contribute to the IGF-IR targeting resistance. An unique
interaction between HER2 and IGF-IR contributes to
trastuzumab resistance in breast cancer cells [123]. In-
creased expression and activation of various members of
HER family receptors are observed after treatment with
IGF-IR/InsR inhibitor in ovarian cancer cells, suggesting
that up-regulation of HER pathway is sufficient to medi-
ate resistance to IGF-IR-targeted therapy [124, 125].
Barnes et al. reported that IGF-I stimulation would het-
erodimerize IGF-IR and EGFR and phosphorylate EGFR
signaling pathway [126]. Intracellular feedback loops
may also cause to the increased of compensatory signal-
ing through EGFR when IGF-IR signaling pathway is tar-
geted by mAbs (Fig. 4) [127]. Above all, it appears that
the IGF-IR signaling pathway is more complex than
what was initially thought to be. Overoptimistic testing

in unselected patients has already yielded to such failure
in IGF-IR inhibitor therapy. Therefore, careful consider-
ation and measurement on mechanisms of IGF-I-
induced tumor metastasis, finding predictive biomarkers
and selecting right patients are necessary to efficiently
tailor anti-IGF-IR therapy.

Potential strategies for anti-IGF-IR therapy in cancer
Select right patients with predictive markers according to
EMT status
Most early clinical trials often consider serum IGF-I
levels, IGF-IR or IR expression levels as the markers to
predict response to IGF-IR blockade treatment [17, 114].
However, some clinical studies conclude that IGF-IR
expression is necessary but not sufficient to predict the
response [128–131]. In a clinical trial of IGF-IR inhibitor
in osteosarcoma therapy, all of the IGF-IR mRNA ex-
pression, copy number, cell surface protein expression
and gene mutation status were not associated with re-
sponsiveness to IGF-IR inhibition therapy [132]. Add-
itionally, researchers could not find any correlations
between levels of IGF-I and treatment effect to IGF-IR
blockade in a negative phase 3 clinical trial for meta-
static adenocarcinoma of pancreas [133]. Therefore,
more effective biomarkers outside serum IGF-I level and
tissue IGF-IR expression need to be utilized in funda-
mental research and clinical setting. Some researchers
investigated whether EMT process could influence the
response to IGF-IR blockade in cancers. Indeed, EMT
could predict sensitivity to a dual IGF-IR/IR inhibitor
OSI-906 in the hepatocellular carcinoma cell lines [8].
The combination of erlotinib (EGFR-TKI) and OSI-906
predicted synergistic inhibition of cell proliferation for
hepatocellular carcinoma cells with epithelial phenotype.
A subsequent molecular analysis of a negative random-
ized phase II/III clinical trial identified that mesenchy-
mal phenotype was associated with dalotuzumab (a
recombinant humanized mAb targeted against IGF-IR)
therapy response. Hence, EMT status may be used to se-
lect those patients who are most likely to benefit from
this treatment [134]. Recently, we discovered a potential
biomarker for identifying lower risk of gastric cancer pa-
tients in IGF-I-induced EMT: Cbl-b [37]. Cbl-b is the
second member of the E3 ubiquitin ligase Cbl family
[135, 136]. Previous studies implicate that Cbl-b regu-
lates cancer cell proliferation, drug sensitivity, and mi-
gration [137–139]. A negative correlation between Cbl-b
and IGF-IR-associated tumor metastasis was recently
verified [37]. Hence, patients with lower Cbl-b expres-
sion may get benefit from anti-IGF-IR mAb therapy;
IGF-I/IGF-IR signaling may take advantage in tumor
metastasis in these patients. In addition, Sorokin et.al re-
ports that MEMO1 (mediator of ErbB2-driven cell mo-
tility 1) binds to insulin receptor substrate 1, activates
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the downstream PI3K/Akt signaling pathway, leads to
up-regulation of Snail1 and thereby inducing the EMT
program [140]. MEMO1 may act not only as a thera-
peutic target for cancer treatment but also as a potential
biomarker for anti-IGF-IR therapy. Another team re-
ports that reduction of CCN6 (WISP3) expression re-
sults in increased levels of IGF-I and activity of IGF-IR
signaling pathway in mammary epithelial cells, which in
turn is responsible for ZEB1-mediated EMT and inva-
sion [141, 142]. Mutations in phosphoinositide-3-kinase,
catalytic, alpha polypeptide (PIK3CA) may be associated
with reduced sensitivity to IGF-IR/IR inhibitors [143].
Mucin 1 (MUC1), a transmembrane glycoprotein, as a
critical downstream effector that mediates IGF-1-in-
duced EMT in a PI3K/Akt signaling pathway-dependent
manner in breast cancer [144]. Furthermore, survivin, a
member of the inhibitor of apoptosis protein family, is also
reported to be overexpressed in many tumor tissues. Acti-
vation of survivin by IGF-I signaling regulates IGF-I-
induced EMT biomarkers and promotes migration ability
in gastric cancer cells [145]. In addition, microRNAs have
emerged as regulators in tumor metastasis by acting on
multiple signaling pathways. Zhao et al. reported that
microRNA-7 reversed EMT progression through targeting
IGF-IR in gastric cancer [146]. All of these factors repre-
sent critical factors involved in IGF-IR-mediated EMT
process, which may become potential biomarkers for

identifying appropriate patients (Fig. 5). The potential bio-
markers for anti-IGF-IR therapy that are involved in the
regulation of EMT or have been indicated in clinical trials
are listed in Table 2. Recently, our group has attempted to
explore multiple classes of biomarkers including gene ex-
pression and mutations, which may carry greater predict-
ive values on IGF-IR-associated tumor metastasis and
survival. Future research is necessary to refine these bio-
markers in preclinical studies and clinical trials on IGF-
IR/IR inhibitors therapy.

Choose effective approaches to target pathway beyond the
surface receptor
Since the IGF system comprises of multiple ligands and
binding proteins, it has become evident that activation of
other components of the IGF system may induce resist-
ance to IGF-IR blocking therapies. The mechanism of re-
sistance to specific IGF-IR inhibition therapy may be due
to enhanced IR signaling, and co-targeting IGF-IR and IR
signaling may acquire more response. Recently, the activ-
ity of an oral tyrosine kinase inhibitor (TKI) targeted IGF-
IR/IR, KW-2450, was estimated in preclinical and phase I
studies (NCT00921336). Four of 10 evaluable patients
with advanced solid tumors showed stable disease. Single-
agent was associated with modest antitumor activity and
combination therapy needs further investigation in pa-
tients [147]. Huang, et al. reported that IRS-2 copy

Fig. 4 Model of IGF system inhibition strategies and resistance mechanisms. Strategies to target the IGF-I/IGF-IR axis included increasing circulating
levels of IGF-I and blocking kinase activation of the IGF-IR. The mechanisms of drug resistance are mainly in abnormal autocrine or paracrine expression
of ligand IGF-I, not shut down receptor signaling completely (hybrid receptor or IR signaling) or activation of alternative signaling pathway (EGFR or
HER2 signaling pathways). IR, insulin receptor; TKI, tyrosine kinase inhibitor; EGFR, epidermal growth factor receptor; HER2, epidermal growth factor
2 receptor
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number gain, Kras and Braf mutation status were predict-
ive biomarkers for response to the IGF-IR/IR inhibitor,
BMS-754807 in colorectal cancer cell lines [148]. How-
ever, dual small-molecule TKI of the IGF-IR/IR used to
exhibite undesirable outcomes in larger phase III trials

[149]. Thus, more additional studies are necessary to de-
termine whether these strategies can be translated into
more clinical benefits.
Secondly, Insulin receptor substrate 1 (IRS1) is an

adaptor protein that has the potential to transmit signals

Fig. 5 The critical factors involved in IGF-IR-mediated EMT process. IGF-IR is a transmembrane tyrosine kinase receptor. Ligand binding
leads to IRS-1 phosphorylation and activate downstream PI3K/Akt and ERK/MAPK signaling pathways. An Akt-GSK-3β-ZEB2 axis and an
Akt/ERK-miR-200c-ZEB2 axis exist in IGF-I-induced EMT program. Ubiquitin ligase Cbl-b targets IGF-IR for degradation and further inhibits
Akt/ERK-miR-200c-ZEB2 axis in IGF-I-induced EMT. CCN6 protein contributes to the maintenance of normal breast homeostasis through
decreasing IGF-I levels in the extracellular medium and repression of IGF-IR signaling pathway activation. MEMO1 triggers EMT program
via the activation of the IGF-IR/IRS-1 signaling pathway. Another factor MUC1 is a critical downstream effector that mediates IGF-I-induced
EMT in breast cancer cells. MicroRNA-7 reversed EMT progression through targeting IGF-IR in gastric cancer. IGF-IR/FAK crosstalk increases
expression of ZEB-1 and Snail with subsequent facilitation of EMT, leading to increased cell migration and invasion in TNBC. Cbl-b, casitas
B cell lymphoma-b; CCN6, WNT1-inducible-signaling pathway protein 3; MEMO1, mediator of ErbB2-driven cell motility 1; MUC1, mucin-1;
microRNA-7, miR-7; FAK, focal adhesion kinase; TNBC, triple negative breast cancer

Table 2 Biomarkers or potential candidates to IGF-IR inhibitory drugs

Biomarkers Preclinical/clinical Tumor type Anti-IGF-IR strategy Reference

EMT marker Preclinical Hepatocellular carcinoma TKI Linsitinib [8]

EMT marker Clinical Metastatic colorectal Mab dalotuzumab [127]

IR-A, IR-B, total IR Clinical Breast cancer Mab cixutumumab [108]

IRS1 Preclinical Breast and colorectal cancer Mab h10H5 [145]

IRS1 Preclinical Breast cancer TKI NVP-AEW541 [146]

IGF-I Clinical Metastatic colorectal Mab dalotuzumab [16]

PIK3CA Preclinical Different cancer cells TKI Linsitinib [136]

Potential biomarkers Preclinical/clinical Tumor type Reference

Cbl-b Preclinical Gastric cancer [32]

MEMO1 Preclinical Breast cancer [132]

CCN6 (WISP3) Preclinical Breast cancer [133, 134]

Mucin 1 Preclinical Breast cancer [137]

MicroRNA-7 Preclinical Gastric cancer [139]

Mabmonoclonal antibody, TKI tyrosine kinase inhibitor, IR insulin receptor, IRS1 insulin receptor substrate 1, IGF-I insulin-like growth factor-I, PIK3CA phosphoinositide-3-kinase,
catalytic, alpha polypeptide, Cbl-b E3 ubiquitin ligase Casitas B cell lymphoma-b, MEMO1mediator of ErbB2-driven cell motility 1, MUC1mucin1
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from IGF-IR proteins [150]. Activation of IGF-IR results
in intrinsic tyrosine kinase phosphorylation and activates
downstream adaptor protein IRS-1 and Shc, leading to
activation of IRS-1/PI3K/Akt [84]. In addition to activa-
tion by IGF-IR, IRS1 has been reported to be stimulated
by the growth hormone receptor and the ErbB family re-
ceptors independent of IGF-IR [151]. Preclinical data
also shows that IRS1 promotes the induction of EMT
process and cell proliferation in response to Wnt stimu-
lation [152]. Components of IGF-IR signaling pathway
such as IRS1 and IRS2 have been demonstrated to have
predictive value in IGF-IR-targeting therapies in preclin-
ical models of breast and colorectal cancer [153, 154].
Based on this data, it is reasonable to conclude that
IRS1 may play a potential role in resistance to anti-IGF-
IR therapy. However, more translational studies are ne-
cessary to determine whether patients with IRS1 overex-
pression who fail to respond to anti-IGF-IR therapy can
get benefit from drugs targeting IRS1.
Thirdly, IGF-IR has extensive cross-talk with other re-

ceptor tyrosine kinases and their downstream factors,
blocking of the IGF-IR signaling incompletely may be
compensated by combination with other targeted ther-
apy. Preclinical data has indicated that HER receptor sig-
naling confers resistance to BMS-554417, an IGF-IR/IR
inhibitor in both breast and ovarian cancer cells. Target-
ing HER-1 and HER-2 may overcome drug resistance to
IGF-IR inhibitors [124]. Other researchers have investi-
gated that treatment with combinatory IGF-IR and
EGFR inhibitor therapy is synergistic in sarcoma and

neuroblastoma cell lines [125]. Expression of IGF-IR
predicts poor responses to EGFR TKI in NSCLC pa-
tients harboring activating EGFR mutations [14]. In
addition to EGFR signaling pathway, some newly pub-
lished data showed that co-targeting IGF-IR could
sensitize triple-negative breast cancer to PI3K inhibition
[155]. mTOR inhibitors are known to enhance IGF-IR
signaling pathway leading to AKT downstream pathway
activation [156]. The combination of IGF-IR inhibitor
with mTOR inhibitors is currently being evaluated in
clinical settings [157].
Finally yet importantly, since chemotherapy and radi-

ation can induce IGF-IR activation and DNA repair mech-
anisms [158–160], combining IGF-IR targeted therapy to
chemotherapy may be another potential effective strategy.
It has been reported that IGF-IR TKI are capable of sensi-
tizing wild-type and mutant BRAF melanoma cells to tem-
ozolomide [161]. Moreover, IGF-IR inhibition potentiates
cytotoxic effects of chemotherapeutic agents in early
stages of chemoresistant ovarian cancer cells [162]. Since
these positive data are acquired from preclinical basic re-
search, the feasibility and strategy of combining multiple
targeted therapies and conventional cytotoxic medicine
need to be further explored.

Suppressing cancer stem cell-like cells with over-activation
of IGF-IR signaling
Cancer stem cells (CSCs) are the other major contribu-
tor to tumor metastasis and drug resistance [49]. Re-
cently, it has been observed that CSCs manifest EMT

Fig. 6 IGF-IR signaling in CSCs-like cells biology. Schematic summary of the IGF-IR signaling in the regulation of CSCs-like cells biology. After long
term of EMT-associated factors effects, some of the EMT cells acquire CSCs-like properties with over-activation of IGF-IR signaling. IGF-IR/PI3K/Akt/
mTOR signaling pathway activation increases the CSCs population, which promotes EMT process. The activation of IGF/STAT3/Nanog/Slug axis
induces the progression of EMT and self-renewal of CSCs. CSCs, cancer stem cells; STAT3, signal transducer and activator of transcription 3; mTOR,
mammalian target of rapamycin
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phenotype [163]; some of the EMT cells can acquire
CSC-like properties which contributes to the metastasis
and drug resistance [164]. For instance, overexpressing
transcription factors of EMT, Snail and Twist, or under
TGF-β exposure will induce stem cell features in non-
tumorigenic human mammary embryonic cell [163,
165]. Disseminated breast cancer cells from pleural effu-
sions are enriched with CSC-like population [166]. On
the other hand, high expression of EMT markers are
positively correlated with stem cell properties in colorec-
tal and ovarian cancers [167, 168]. Therefore, suppress-
ing CSC-like cells may be useful for inhibiting tumor
metastasis and reversing multidrug resistance. Of note,
IGF system has been demonstrated to play an important
role in cancer progenitor/stem cells. Knockdown of IGF-
IR or inhibition of its downstream pathway, PI3K/Akt/
mTOR, can reduce the breast cancer stem cells popula-
tions and suppress EMT process in breast cancer cells
[169]. Similarly, chemoresistant colon cancer cells ex-
hibit CSC phenotype and hyperactive IGF-IR signaling.
Treating this subtype of CSCs may enhance sensitivity
to IGF-IR-targeted therapy [170]. Nanog is considered as
a stemness maintainer and EMT facilitator. Yao. et al
has reported that IGF/STAT3/Nanog/Slug axis induces
the progression of EMT and self-renewal of CSCs, and
may serve as potential therapeutic targets for colon can-
cer therapy [171]. Moreover, NANOG-positive CSCs iso-
lated from hepatocellular carcinoma cells display higher
levels of IGF-IR expression and exhibit resistance to
therapeutic agents and high capacity for metastasis
(Fig. 6) [172]. In summary, mounting evidence highlights
the emerging role of IGF-IR signaling in cancer stem cell
biology; IGF-IR can be considered as a marker of stem-
ness. For the future development of anti-IGF-IR targeted
therapy, it may be possible to produce specific inhibition
agents targeted to CSC-like cells with over-activation of
IGF-IR signaling.

Conclusions
A growing body of evidence shows that the role of IGF-I/
IGF-IR signaling is complex and multifactorial in the de-
velopment and progression of tumor metastasis. Although
data based on cellular and animal models have explored
some mechanisms on IGF-I-induced EMT and tumor me-
tastasis, complexity of cancer biology and heterogeneous
of tumor bring a slew of setbacks for the IGF-IR-targeted
therapies. The approach of treatment with the same drug
to all patients and hoping for the best response seems un-
realistic. In order to choose the optimal regime for each
patient, we require a better understanding of which tumor
is actually driven by IGF-I/IGF-IR signaling. This is
equivalent to select advantage patients who can get benefit
from anti-IGF-IR therapy according to predictive

biomarkers. Therefore, it is necessary to explore more po-
tential biomarkers via research on the mechanisms of
IGF-I/IGF-IR regulating tumor metastasis and drug resist-
ance. Hopefully, clinical trials involving anti-IGF-IR strat-
egies will be designed with this principle in mind and
more selected patients will get benefit from it.
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