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Abstract

The evolution of bacterial populations has recently become considerably better understood due to large-scale sequencing
of population samples. It has become clear that DNA sequences from a multitude of genes, as well as a broad sample
coverage of a target population, are needed to obtain a relatively unbiased view of its genetic structure and the patterns of
ancestry connected to the strains. However, the traditional statistical methods for evolutionary inference, such as
phylogenetic analysis, are associated with several difficulties under such an extensive sampling scenario, in particular when
a considerable amount of recombination is anticipated to have taken place. To meet the needs of large-scale analyses of
population structure for bacteria, we introduce here several statistical tools for the detection and representation of
recombination between populations. Also, we introduce a model-based description of the shape of a population in
sequence space, in terms of its molecular variability and affinity towards other populations. Extensive real data from the
genus Neisseria are utilized to demonstrate the potential of an approach where these population genetic tools are
combined with an phylogenetic analysis. The statistical tools introduced here are freely available in BAPS 5.2 software,
which can be downloaded from http://web.abo.fi/fak/mnf/mate/jc/software/baps.html.
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Introduction

It has become increasingly evident that recombination plays a

major role in shaping the genetic structure of bacterial

populations. Whether or not certain populations (as defined by

allele frequencies) are more likely than others to undergo

recombination, either as donors or recipients of DNA, is not well

understood, though there are several biological reasons why this

might be the case. Such preferential recombination, which we may

intuitively describe as currents in the gene pool [1], should lead to a

greater degree of admixture between the populations in question,

and this should be detectable using DNA sequence data.

Conceptually related investigation of highways of gene sharing

among bacterial species at a general level was done by [2], who

found evidence for uneven distribution of transfer intensity among

groups of prokaryotes.

Discovery of such gene flow currents is scientifically interesting

in its own right, as a means for characterizing populations and

reflecting upon accumulated taxonomic understanding of their

heterogeneity. However, there are other potential uses for detailed

knowledge concerning the genetic structure of a bacterial

population, e.g. when it can be connected to patterns of virulence

and antibiotic resistance.

Statistical analysis of molecular variation and reproductive

isolation in natural populations is in many cases far more

challenging for bacteria than for eukaryotic organisms, due to

difficulties in acquiring broad-coverage samples and the putatively

complex admixture events [3]. Traditional population genetic

tools for inferring genetic barriers within a population, such as FST

measures [4], are not usually applicable to bacterial molecular

data given the lack of relevant populations to condition the

calculations on, albeit some exceptions exist (see, e.g. [5]).

Standard phylogenetic analyses, on the other hand, may provide

a distorted view of the ancestral relationships among bacteria

when recombination events are sufficiently common in a

population. Moreover, they do not yield a detailed and easily

interpretable picture of the patterns of admixture and eventual

genetic barriers, as such constructs are not present in the standard

phylogenetic models that can be routinely applied to large data

sets. However, an algorithmic approach to phylogenetic analysis

which can build networks for hundreds of taxa and can be useful

for data sets harbouring recombination was introduced by [6]. A

model-based phylogenetic method (ClonalFrame) that deals

explicitly with recombinations was introduced by [7], however,

it does not easily scale up to the level of population complexity we

are here interested in, due to the extreme computational intensity

of the model fitting for large databases.

With the above-mentioned difficulties, it is hardly surprising

that a Bayesian statistical approach based on explicit admixture

models has recently gained popularity in studies of bacterial

populations [8,9]. Such models are anchored in the general idea of

a probabilistic partition, where an unknown origin of an arbitrary

quantity (for example, the membership of an individual) is inferred

through the conditional probability of the origin over the range of
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putative alternatives (commonly referred to as clusters), given the

observed features of the quantity. Application of such partition

models has been made possible by a class of generic Markov chain

Monte Carlo (MCMC) algorithms [10], that can be used for fitting

the models to molecular data.

Despite the success of the standard MCMC approach in a

variety of studies of bacterial populations (see e.g. [11]), it is clear,

both theoretically and practically, that the performance of the

standard MCMC computation decreases rapidly as the complexity

of the estimated population structure and the size of the

investigated data set increases [10,12]. To address this, an array

of methods has been introduced and implemented in the software

BAPS [13–16]. Here we introduce a graphical characterization of

recombination patterns from MLST data using a weighted

network with statistically identified populations as cluster nodes

and estimated average levels of DNA transition as relative gene

flow weights. Also, we introduce a model-based representation of

the molecular variability of populations and their affinities towards

each other. We refer to this as the genetic shape of an identified

population. However, it is important to notice that a population

identified by BAPS may have a different interpretation in different

evolutionary contexts. The BAPS models target for identifying

molecular evidence that links a particular group of strains together

in terms of sufficiently similar nucleotide frequencies. Thus, such a

population may for instance arise in the analysis due to common

ancestry within a clonal complex. In contrast, a population can

also be identified from the traces left by recombination events

which have imposed considerable gene flow between separate

lineages of strains. Also, under certain circumstances a more

heterogeneous population may arise analogously to long branch

attraction in phylogenetics, in particular, when very limited

numbers of strains from the corresponding lineages are present

among the analyzed samples. All these three cases are illustrated in

our analyses. As BAPS is capable of capturing a variety of distinct

biological signals hidden in molecular data, interpretation of the

identified populations must be done with care, using preferably

both complementary phylogenetic methods and auxiliary knowl-

edge about the strains under investigation.

To illustrate the levels of complexity at which our methods can

operate, we consider a population sample of 5086 strains that have

been identified as Neisseria meningiditis and Neisseria lactamica species.

We also present analyses of simulated data to demonstrate the

potential of our Bayesian approach to handle large databases and

complex genetic population structures. Our analyses illustrate that

biological insights to complex data are best gained by combining

several complementary methods of analysis.

Materials and Methods

A stochastic model of gene flow in bacterial populations
Assume that the target population consists of k genetically

distinct populations, among which the extent of gene flow is to be

modeled. Usually, k and the genetic population structure

associated with it are a priori unknown. In our statistical approach

presented later we consider in detail the inference of these from

molecular data. Here we aim to estimate the strength of gene flow

via a stochastic characterization of the rates of admixture between

the k identified populations.

Let c~1,:::,k, index the k populations and let pcc
0 represent for

the population c the probability of an strain acquiring DNA from

bacteria present in the population c
0
~1,:::,k,c

0
=c. DNA

acquisition could be understood as an aggregated result of the

currently known mechanisms (conjugation, transduction and

transformation). Conditional on the probability pcc
0 , it is possible

to consider a sample of nc unrelated strains from population c
to represent nc Bernoulli trials, where the binary outcome

Y
(c
0
)

i ,i~1,:::,nc, refers to the success/failure of DNA acquisition

from this particular source. These are obviously considerably

simplifying assumptions, but they allow us to characterize patterns

of admixture. Were the outcomes y
(c
0
)

i ,i~1,:::,nc, known, the

relative admixture could simply be characterized by

(1=n)
Xnc

i~1
y

(c
0
)

i . However, we note that Y
(c
0
)

i in reality represents

intrinsically unobservable latent events during some interval of the

evolutionary time scale under consideration.

Assuming that a particular strain within population c has

acquired DNA from the population c
0

(i.e. Y
(c
0
)

i ~1), we may

attempt to quantify the intensity with which such events have

occurred over the analysed sequence. A multitude of statistical

break-point models designed to capture such recombination traces

have been introduced in the literature, e.g. [17–19]. For such

models the focus has typically been on a small number of short

viral genomes, to identify the locations where putative recombi-

nation events have taken place. In the most basic form,

recombination may be represented by a homogeneous spatial

Poisson process Z
(c
0
)

i (t), where the events correspond to the

number of recombinations within the genome of an strain i[c,

such that the DNA is acquired from the population c
0
. It

follows for such a process that the stochastic variable

Z
(c
0
)

i ~Z
(c
0
)

i (tmax){Z
(c
0
)

i (0), with tmax equal to the total length of

the considered sequence, has the Poisson distribution

p(Z
(c
0
)

i jlcc
0 )~

e{l
cc
0 (lcc

0 )Z
(c
0
)

i

Z
(c
0
)

i !
,Zi~0,1,:::, ð1Þ

where lcc
0w0 represents the average rate of events in which DNA

is imported from population c
0

to c. Again, if the outcomes z
(c
0
)

i

were observed, the average rate could be statistically quantified,

e.g. as (1=n)
Xnc

i~1
z

(c
0
)

i , by using the maximum likelihood

estimate.

Author Summary

The study of bacterial population biology is complicated
by the fact that, although bacteria are largely asexual, they
can also exchange genetic materials through homologous
recombination. Unlike eukaryotes, recombination in bac-
teria is not an obligatory process. Furthermore, the
recombination mechanisms are subject to many biological
and ecological factors that can vary even within different
populations of the same species. Although increasing
evidence for homologous recombination has been found
in many bacterial species, determining the frequency of
recombination and understanding the influence that it
exerts upon the evolution of bacterial populations remains
a challenging work. In this article, we provide a dynamic
picture of recombination within and between closely
related bacteria species. Through an integration of several
Bayesian statistical models, our method highlights the
importance of a quantitative estimation of recombination.
Our analyses of a challenging multi-locus sequence typing
(MLST) database demonstrate that combined analyses
using both traditional phylogenetic methods, explorative
MLST tools and Bayesian population genetic models can
together yield interesting biological insights that cannot
easily be reached by any of the approaches alone.

Identifying Gene Flow in Bacterial Populations
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To arrive at a statistical characterization of the rates of

admixture among the populations under the above framework,

let P denote a k|k matrix of probabilities, such that the element

P equals pcc
0 . Further, let the k|k matrix L, with the elements

Lcc
0~lcc

0 , represent collectively the Poisson intensities. Let G be a

directed graph with the k populations as the node set

V~f1,:::,kg, and E(V|V as the arc set. Each arrow fc0 ,cg
in G can now be associated with a weight wcc

0 depicting the rate of

admixture from c
0

to c. For instance, a gene flow weight matrix W
can be defined in terms of the elementwise matrix product P0L,

with the convention that the diagonal elements wcc are normalized

by the other elements on cth row of W. When an element wcc
0

equals zero, it is natural to set fc0 ,cg=[E, i.e. the corresponding

arrow is absent in G.

It follows from the definition of W~P0L that these parameters

remain unidentifiable when the events Y
(c
0
)

i ,Z
(c
0
)

i are unobserved, as

a suitable rescaling of the model configuration can yield identical

likelihoods. The statistical challenge related to this context is further

accentuated by the fact that the underlying genetic structure, i.e. the

number of underlying populations k as well as their molecular

characteristics, is unknown a priori. Modern Bayesian statistical

framework utilizing state-of-the-art MCMC computation can in

principle be thought to provide a suitable setting for fitting such

models to MLST sequence data. However, the computational

complexity associated with the models suggests that formal posterior

inferences would remain beyond the bounds of computational

tractability even for only moderately sized population samples. This

is crucial, as to study such problems we require large samples with a

broad coverage of the genetic variation in the underlying

population. Therefore, we consider here an approximate inference

strategy to estimate W, which is computationally manageable for

large samples, while still providing a reasonable statistical

characterization of parameters that can be interpreted in terms of

Pand L in the above model formulation.

A Bayesian mixture model for the genetic structure of a
population

Assume we have a sampled set of N~f1, . . . ,ng aligned DNA

sequences xig,i~1,:::,n, from g~1,:::,ng genomic regions in n
bacterial strains. A concatenated sequence for an strain i is

denoted by xi and x(N) refers jointly to all the DNA sequence data

from the n strains. For any subset s of strains from N, the notation

x(s) will be used for the DNA data observed for these strains.

Let S be a partition of the n strains representing an underlying

genetic structure (i.e. a representation of a genetic mixture model),

with the clusters c~1,:::,k corresponding to genetically distinct

populations. Hereafter we will use the terms ‘cluster’ and

‘population’ interchangeably. Mathematically, S~(s1,:::,sk)
(1ƒkƒn) is a collection of subsets of N, such that[k

c~1
sc~N,sc\sc

0~1, for all c,c
0
~1,:::,k,c=c

0
. Symbol S

defines the space of all such partitions for a given n. For any

partition S, cardinalities of the populations are denoted by

nc,c~1,:::,k.

In a series of earlier works in [12,13] various stochastic partition

models have been introduced for Bayesian inference about genetic

population structure based on different types of molecular

information. The mathematical motivation of the stochastic

partition approach was recently derived by [20]. Under these

models, the biological hypothesis corresponding to any particular

partition S, states that the strains allocated in the same cluster

represent a sample from a genetically distinct population, and

thus, the partition provides a qualitative representation of the

underlying genetic population structure.

Let p(S) denote the a priori uncertainty about the underlying

genetic structure in terms of a probability distribution over the

space S. Then, we may specify the probability measure

p(x(N))~
X
S[S

p(x(N)jS)p(S), ð2Þ

where p(x(N)jS) is the marginal likelihood of the sequence data

given the structure. The posterior distribution of S given the

sequence data is determined by Bayes’ rule according to

p(Sjx(N))~
p(x(N)jS)p(S)P

S[S
p(x(N)jS)p(S)

: ð3Þ

Here we use a Bayesian estimate of the genetic structure

provided by the posterior mode

ŜS~arg max
S[S

p(Sjx(N)), ð4Þ

or possibly separately for a range of such estimates identified by

stochastic optimization, if the molecular data are not decisively

supporting a single structure. Methods to numerically obtain such

estimates have been introduced by [12,20].

The marginal likelihood for the observed sequence data given

any structure S has under the stochastic partition framework the

following product form

p(x(N)jS)~ P
k

c~1
p(x(sc)), ð5Þ

which encapsulates a symmetry among the underlying populations

S, as any specific labeling of them without further auxiliary

information would not be possible.

However, to explicitly specify the terms p(x(sc)) a number of

assumptions are required. Here we exploit the genetic linkage

model developed by [15] to provide an explicit characterization of

the terms in (5) for MLST type sequence data. The linkage model

captures dependencies in the sequence data in terms of a

Markovian model for each gene, such that each population has

its own nucleotide frequency parameters, the joint prior

distribution of which factorizes according to the Markovian

model. Utilizing the standard results for so called hyper-Markov

probability laws for multinomial-Dirichlet distributions, it is

possible to calculate the marginal likelihood analytically given

any value of S. This result is of importance, because it enables the

development of an efficient learning algorithm which avoids

Monte Carlo errors associated with the nucleotide frequency

parameters in the populations specified by the genetic structure

model. However, it should be noted that because the genetic

mixture model operates at the level of sequence data, it is

vulnerable to misalignments of the sequences similar to other

comparable statistical methods.

Statistical characterization of admixture
Given a plausible representation of the underlying genetic

population structure based on (4), our aim is to obtain a model-

based characterization of the rates of admixture between the

populations, such that an estimate may be derived for the gene

flow weight matrix W. This sequential estimation strategy is

motivated by the observation, that joint estimation of k and the

extent of admixture leads to problems with statistical identifiability

Identifying Gene Flow in Bacterial Populations
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and over-fitting discussed by [14]. In particular, they described a

property of the admixture models which enables an increase in the

number of populations without necessarily increasing the effective

number of parameters (allele frequencies) in the model. This is in

contrast with genetic mixture models, where such an increase

always occurs as a function of the number of populations, thus

resolving the problem with weak identifiability and/or high

dependence of the inferences on the particular prior distribution

used in the analysis.

The most recent version of the BAPS software (5.2) contains an

implementation of the admixture estimation algorithm introduced by

[16] under the linkage model of [15]. Here we use this procedure to

estimate the extent of admixture among the populations.

Let S be an estimate of the genetic structure underlying the

sample according to (4), and let vi~(vi1,:::,vik),
Xk

c~1
vic~1,

be a vector of admixture coefficients representing the proportion

of the genome of strain i having ancestry in the corresponding

populations, respectively. Let pc(xig) be the joint probability of the

data from the gth region for strain i under population c. Then, the

admixture model likelihood for the data in xi is determined by

p(xi)~
Xk

c~1

P
ng

g~1
vicpc(xig): ð6Þ

The marginal posterior mode estimates of vi are obtained by

numerical maximization combined with a simulation, to account

for the uncertainty about pc(xig) given the partition estimate ŜS. As

illustrated by [14], the posterior distribution of vi does not entirely

plausibly represent the statistical uncertainty about v, as the strain

coefficients vic may in some cases have a mode in the interval

from ,.1 to ,.2, while still reflecting only random fluctuations in

xi in the populations, in contrast to real ancestry in a particular

population, say c. The issue was solved in [14] by calculating

simulation-based p-values for v̂vi under the null hypothesis of no

admixed ancestry. In the sequel, let pi denote such a p-value for

an strain i[N.

We now combine the statistical tools from [14], and [15] to

obtain an estimate ŴW of W. Firstly, populations are estimated

using the posterior mode partition ŜS. Then, for each identified

population c,c~1,:::,k, the extent of admixture events is estimated

for c using a significance level a, such that

ŵwcc
0~

1

nc

X
i[c

Ia(piwa)v̂vic
0 , ð7Þ

where Ia(:) is an indicator function equal to one when the

argument is true, and zero otherwise. The estimate (7) is for the

population c an average relative amount of (significant) DNA

acquired from population c
0
, thus representing a combination of

an average recombination intensity and the propensity of

recombination events taking place between these populations. It

should be noticed that the admixture model ignores possible

contiguity of genes or genome regions. However, the genes present

in MLST analyses tend to represent quite distant genome regions,

which motivates the assumption of independence. If the genes are

taken from a more contiguous region, it is possible to treat them as

a single linked region in the model by concatenating the sequences

prior to the genetic mixture analysis. Notice also that the above

gene flow estimates can be complemented by investigating

separately the rate and size of the exchange events. The rate of

exchange events is represented by the proportion of strains in a

population showing significant admixture from a particular source.

In turn, the size of the exchange events is revealed by

characterizing the values of the corresponding estimated admix-

ture coefficients.

The latest version of BAPS (5.2) contains an implementation of the

estimation procedure leading to (7), such that high-resolution images

of the directed graph G with the associated weight matrix ŴW can be

produced directly with the software. As illustrated in the RESULTS

section, this facilitates the analysis of large data sets for which the

numerical estimates of admixture can be very tedious to examine.

Genetic shapes of the populations
The above presented statistical models and tools provide means

for assessing the number of genetically isolated populations and

the extent of recombination among them. However, this leaves

open questions related to the underlying genetic population

structure. In particular, the model summary estimates do not

provide any information on the area occupied by the population in

sequence space, which we term its genetic shape. By a genetic

shape we refer both to the molecular heterogeneity present in a

population, as well as the genetic affinities of its members towards

other identified populations. We will illustrate that an investigation

of the genetic shapes in this sense can yield useful characterizations

of the population, pinpoint interesting subgroups of strains, and

eventually provide clues to relate the genetic structure to some

auxiliary information.

Let ŜS be the estimated genetic population structure and ŜS(c,c
0
,i)

the structure where the strain i[c has been moved to the

population c
0
. The relative genetic affinity of the strain i towards

population c
0

can be quantified in terms of the change in the log-

predictive likelihoods

dc,c
0
,i~log p(x(N)jŜS){log p(x(N)jŜS(c,c

0
,i)), ð8Þ

which is always non-negative given that we have identified the true

posterior optimum (4). However, even when ŜS does not equal the

global posterior optimum, our estimation algorithm is designed in

such a way that negative values of (8) cannot be obtained, as any

parameter configurations in the neighborhood of ŜS leading to an

improvement of the posterior probability will be detected.

The difference (8) can be interpreted as the amount of

information we lose in the prediction of the molecular character-

istics in xi when the strain is assigned into another population,

given that the remaining population structure is kept fixed. Thus,

at the boundary, when (8) is equal to zero, no information will be

lost. From the genetics perspective, the distribution of the values

dc,c
0
,i,i~1,:::,nc, reflects the genetic shape of the population c

towards the population c
0
. It is clear that this shape does not

necessarily have an easily interpretable geometric configuration in

low enough dimensions (1–3), such that it can be visualized.

However, the shape of the distribution of dc,c
0
,i,i~1,:::,nc, can still

be used to reveal patterns of interest, which is illustrated in the

RESULTS section.

To numerically characterize the genetic shape of a population

using the values of (8) for c
0
~1,:::,k; c

0
=c, we use a kernel density

estimate of the underlying distribution of the affinity measures.

This is implemented in BAPS 5.2, which outputs graphical

displays of the density curves. These are based on the standard

Gaussian kernel with the Gaussian optimal bandwidth hopt (see,

e.g. [21]) according to

f̂f (d)~
1

nc

X
i[c

1ffiffiffiffiffiffi
2p
p exp {

1

2

d{dc,c
0
,i

hopt

� �2
 !

,d[Rz, ð9Þ

Identifying Gene Flow in Bacterial Populations

PLoS Computational Biology | www.ploscompbiol.org 4 August 2009 | Volume 5 | Issue 8 | e1000455



where hopt~(4=3)1=5ŝsn{1=5
c , and further ŝs is the maximum

likelihood estimate of the standard deviation of dc,c
0
,i values. Such

density curves will provide useful information concerning both the

within and between population molecular variation as well as affinity.

Simulated data
The simulated MLST data sets were generated by assuming a

tentative gene flow graph G with the weight matrix ŴW is changing

randomly. The gene flow graph estimated by BAPS 5.2, denoted

Figure 1. Graphical representation of the evolutionary model for a sample of two bacterial populations. Strain sequences are
represented as vertical bars with horizontal lines indicating the mutations that have occurred since the global ancestor. Stage-1 mutations are
defined as those that occurred on local ancestors which provide candidate sites for gene flow between the populations. Mutations that occurred
after the local ancestors are referred to as stage-2 mutations.
doi:10.1371/journal.pcbi.1000455.g001

Figure 2. Tentative gene flow graph in six populations. The graph topology can be succinctly termed as G(V ,E), where the node set
V~f1,2,3,4,5,6g and the arrow set E~ff2,1g,f2,3g,f3,1g,f3,2g,f5,4g,f5,6gg. The actual rates of admixture associated with the arrows were
randomly generated from a uniform distribution. Note the two ways of gene flow between population 2 and 3.
doi:10.1371/journal.pcbi.1000455.g002

Identifying Gene Flow in Bacterial Populations
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as G
0
, was then compared with G for evaluating the prediction

accuracy. The characteristic of genetic shapes for the identified

populations was also investigated for a wide range of scenarios

given by ŴW.

The assumptions for the data generation are based on a

simplified, yet reasonable evolutionary model of bacterial

populations. We assumed that each population has a common

local ancestor, and further back in time these local ancestors

originated from a common ancestor of the whole population,

termed as a global ancestor. This assumption enables a tree

representation of the evolutionary relationships among the

populations (Figure 1). It is important to note that we do not

explicitly model the time at which these ancestral events occurred

and therefore the edges in Figure 1 are in arbitrary length.

When ignoring recombination, the strains in a population will

differ from each other only through the accumulation of point

mutations. The mutations may have accumulated in two

consecutive stages. In what follows, we referred to a mutation

that occurred prior to the local ancestors as a stage-1 mutation, and a

mutation that occurred afterwards as a stage-2 mutation. We

assumed the infinite-site model of mutation, which implies that at

most one mutation per site can occur in the DNA sequences [22].

This would imply that stage-1 mutations provide heterogeneity

that leads to population diversification, while stage-2 mutations

generate variations within a population. We further assumed that

these two types of mutations occur independently of each other

and result in a number of segregating sites. Let L denote the total

sequence length, then the expected number of segregating sites

L
0
~(m1zm2)L, where m1 and m2 are the mutation rates for the

two stages.

To simplify the problem, we considered recombinations that

always lead to changes of DNA, so that they can be detected as

admixture events. This corresponds to assuming that the DNA

introduced by admixture needs to be distinctive compared to the

homologous sites that have been observed within the population.

Given the tree representation of the population evolution, such

Figure 3. Testing partition accuracy for different choices of gene flow weights for a small population size nc~~10 (upper panel) and a
large population size nc~~50 (lower panel). The number of segregating sites for both settings is L

0
~500 and the ratio of mutations at two stages

is m~4. Data were generated by assigning lcc and pcc
0 randomly at the interval [0,1] with the gene flow topology fixed as in Figure 2. A brighter area

corresponds to a range of lcc and pcc
0 , within which the true partition has been identified by BAPS with a higher accuracy as measured by Rand Index

(RI).
doi:10.1371/journal.pcbi.1000455.g003

Identifying Gene Flow in Bacterial Populations
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recombinations are restricted to occur at stage-1 mutation sites

only.

Following these assumptions described above, the expected

numbers of stage-1 and stage-2 mutation sites can be obtained by

L
0

1~
m

mz1
L
0

and

L
0

2~
1

mz1
L
0
,

where L
0
is the expected number of segregating sites; m~

m1

m2

is the

ratio of the two mutation rates. We considered the time length in

stage-1 is longer than that in stage-2, so we did set mw1. For data

simulation we used m~4 and L
0
~500, and set an equal

population size nc for all the populations. A simulated population

data set thus contains L
0

sites and nck strains, where k is the

number of populations.

We specified a putative gene flow graph G that consists of k~6
populations and the arrow set is specified in Figure 2. The rates of

admixture between populations are characterized in the matrix W,

which is by definition a product of P and L. Therefore by

simulating P and L we can generate a parameter set in W that

conforms to the graph structure in Figure 2. We chose a consistent

sampling scheme for P such that the diagonal elements pcc~1 for

c~1, . . . ,6, and the non-diagonal elements pcc
0 are uniformly

distributed. L is also sampled from the Uniform distribution

U(0,1), but with the row constraints
X6

c
0
~1

lcc
0~1, since lcc’

refers to the fraction of DNA sequence acquired from a particular

source population.

Sampling a data set according to the putative population

structure consists of three steps. First, a global ancestor of 500

segregating nucleotides was randomly simulated and for each of

the six population a local ancestor was generated by randomly

altering each nucleotide of the global ancestor with the probability

0.8. The sample strains for each population were generated by

randomly mutating the local ancestor with the probability 0.2. The

strains that have been recombined were randomly selected

according to the parameter P, and for each of the recombined

strain the actual amount of recombinations was determined by L.

Using the procedure described above, a population data set can

be simulated for each of the selections of P and L. The population

structure analysis was done with our Bayesian framework

implemented in BAPS 5.2. We reported the accuracy of BAPS

partition as choosing different values of P and L. Once the true

partition has been identified correctly, we assessed further the

accuracy of the predicted gene flow structure, i.e. the similarity of

graph topology between G and G
0
. Note that the non-diagonal

elements pcc
0 in P determine the propensity of acquiring DNA

through recombination from c
0

to c, therefore a larger pcc
0 implies

that the recombination would affect a higher proportion of strains

in c. The increasing admixture propensity would make the

recombination unidentifiable, since our Bayesian framework tends

to favor the alternative hypothesis that the allelic frequency at the

recombination site is more likely an effect of the stage-2 mutations,

rather than a consequence of admixture. We therefore expected a

negative correlation between pcc
0 and the gene flow structure

Figure 4. Testing gene flow structure accuracy for l cc[[½½0:91�� and pcc
0 [[½½01��. Graph similarity was measured in the Hamming distance coded in

a gray-scale image. Cells with the paper white color represent the scenarios where the partition and the gene flow structure in Figure 2 are both
correctly identified by BAPS.
doi:10.1371/journal.pcbi.1000455.g004
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accuracy. We also expected that in order to obtain a reliable

partition estimate, the non-diagonal elements lcc
0 in L should be

near zero, since a small rate of recombination along the DNA

sequences might not perturb the population structure in a large

scale. A large lcc
0 , however, implies frequent recombination that

might blur the population boundaries, so that the original

population structure could be no longer identified.

Real data
To illustrate the presented methods with a real data set, we

applied BAPS 5.2 to MLST bacterial data. MLST(multi-locus

sequence typing) is an approach to the unambiguous character-

ization of bacterial strains. The internal sequence of seven

housekeeping genes, which include the abc Z, adk, aro E, fum C,

gdh, pdh C and pgm genes are obtained and unambiguously

characterize the strain. The strain sequences are generally

reported to the publicly accessible MLST strain databases (see,

e.g. http://www.mlst.net), which are currently hosting a fast

growing number of bacterial genera and also a few eukaryotic

organisms.

We chose the Neisseria species for validation as homologous

recombination is known to be frequent in both N. meningitidis and N.

lactamica species [23,24]. Furthermore, occasional horizontal gene

flow over the species boundary has also been observed [25].

However, it is unclear to what extent the gene flow occurs and its

consequence for population structure. To investigate this we applied

BAPS 5.2 to a MLST sample which contains 4823 strains of N.

meningitidis and 263 strains of N. lactamica. The data was accessed for

analysis from the Neisseria MLST database at 17/3/2006 [26].

For such MLST type sequence data, we utilized the genetic

linkage model [15] to account for dependency within the

neighboring nucleotide bases. To assess the ability of our methods

Figure 5. Genetic shapes of five populations relative to population 2. The data set was generated with nc~100, L
0
~500, m~4 and Figure 2

as the underlying population structure. Each curve is a density estimation of (8) using (9) for one target population.
doi:10.1371/journal.pcbi.1000455.g005

Figure 6. Bootstrap mixture analyses of the Neisseria data. The
figure shows the adjusted rand index between the partition based on
the original data and the alternative based on a bootstrap data set by
resampling in ks clusters. Five repetitions were made for each of the
ks~5,10,15,20,25 clusters.
doi:10.1371/journal.pcbi.1000455.g006

Identifying Gene Flow in Bacterial Populations

PLoS Computational Biology | www.ploscompbiol.org 8 August 2009 | Volume 5 | Issue 8 | e1000455



Figure 7. Gene flow network identified in the N. meningitidis and N. lactamica populations. To investigate the ancestral admixture of a
certain population, one can look at all the arrows pointing at this population. A typical population contains the major sources of its own, denoted as a
self-looping arrows, and small proportions of gene flow from other populations. For instance, population 29 has 73% of its own genetic makeup and
27% of the DNA introduced via gene flow from other populations. Two major sources of gene flow for population 29 are population 19 and
population 11, with 3.3% and 6.9% in the contribution separately. The remaining 17.1% of genes comes from various sources while none of them
contributes a proportion larger than 3% and therefore are not displayed due to the pruning.
doi:10.1371/journal.pcbi.1000455.g007
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to find correctly or nearly correctly the populations hiding in the

data, we considered a simulation scenario for generating a

bootstrap sample which contains the strains randomly selected

from a sub-collection of the identified Neisseria populations, using

the procedure as follows:

1. Decide the number of clusters ks in the bootstrap data. We

consider five scenarios where in each scenario ks is one of

5,10,15,20 and 25.

2. Select randomly ks clusters without replacement from the

identified population structure based on the complete data.

3. For each chosen cluster, sample with replacement a random

number of strains. The number of sampled strains follows the

uniform distribution in the range of (30, 80).

4. Clustering the data generated in step 3 using BAPS 5.2.

By repeating the scenario multiple times (we use 5 repeats) for

each ks, we can check how well the resulting partition agrees with

the chosen ks and how close the partition is to the general setting.

This approach allows us to investigate the statistical power to

correctly detect populations when the number of available strains

is quite limited per population.

Conditional on the identified population structure, comparative

rates of admixture between the populations can be further

estimated and summarized in a gene flow graph. We plotted the

genetic shapes of several populations in N. meningitidis which show

significant gene flow towards the N. lactamica species, and also

compared their similarity in terms of admixture tendency.

To investigate whether the signals of admixture varied

considerably over the seven genes, we performed a bootstrap

analysis where a single gene at a time was excluded when inferring

Table 1. Bootstrap admixture analyses of the Neisseria data.

Complete abcZ_excluded adk_excluded aroE_excluded fumC_excluded gdh_excluded pdhC_excluded pgm_excluded

Cluster 1 0.0030(0.0102) 0.0060(0.0137) 0.0030(0.0102) 0.0030(0.0101) 0.0026(0.0094) 0.0068(0.0195) 0.0108*(0.0097) 0.0034(0.0196{)

Cluster 2 0.0061(0.0062) 0.0079(0.0047) 0.0056(0.0065) 0.0063(0.0063) 0.0057(0.0061) 0.0125*(0.0172){ 0.0103(0.0056) 0.0105(0.0112)

Cluster 3 0.0119(0.0015) 0.0110(0.0012) 0.0119(0.0016) 0.0126(0.0017) 0.0124(0.0016) 0.0155*(0.0018) 0.0129(0.0016) 0.0122(0.0022{)

Cluster 4 0.0048(0.0082) 0.0102(0.0101) 0.0051(0.0085) 0.0043(0.0089) 0.0047(0.0085) 0.0078(0.0204{) 0.0126(0.0070) 0.0146*(0.0073)

Cluster 5 0.0016(0.0131) 0.0040(0.0217) 0.0016(0.0117) 0.0014(0.0129) 0.0017(0.0119) 0.0042*(0.0243{) 0.0041(0.0099) 0.0039(0.0124)

Cluster 6 0.0210(0.0017) 0.0460*(0.0020) 0.0199(0.0017) 0.0202(0.0015) 0.0188(0.0016) 0.0359(0.0027) 0.0222(0.0017) 0.0197(0.0035{)

Cluster 7 0.0042(0.0097) 0.0053(0.0094) 0.0041(0.0095) 0.0041(0.0095) 0.0042(0.0090) 0.0122*(0.0171{) 0.0060(0.0086) 0.0073(0.0138)

Cluster 8 0.0010(0.0004) 0.0008(0.0005) 0.0008(0.0003) 0.0009(0.0005) 0.0153*(0.0012{) 0.0012(0.0007) 0.0009(0.0005) 0.0009(0.0003)

Cluster 9 0.0039(0.0092) 0.0032(0.0208{) 0.0040(0.0089) 0.0036(0.0090) 0.0038(0.0086) 0.0072*(0.0136) 0.0056(0.0073) 0.0049(0.0060)

Cluster 10 0.0097(0.0045) 0.0126(0.0099{) 0.0102(0.0042) 0.0094(0.0047) 0.0107(0.0041) 0.0182*(0.0074) 0.0139(0.0040) 0.0163(0.0063)

Cluster 11 0.0075(0.0019) 0.0066(0.0015) 0.0078(0.0018) 0.0082(0.0018) 0.0074(0.0020) 0.0143*(0.0031) 0.0071(0.0014) 0.0097(0.0057{)

Cluster 12 0.0104(0.0013) 0.0146(0.0025{) 0.0098(0.0012) 0.0103(0.0014) 0.0104(0.0013) 0.0156*(0.0019) 0.0109(0.0008) 0.0081(0.0012)

Cluster 13 0.0016(0.0108) 0.0015(0.0068) 0.0012(0.0105) 0.0014(0.0102) 0.0015(0.0107) 0.0045*(0.0180) 0.0020(0.0221{) 0.0013(0.0097)

Cluster 14 0.0002(0.0246) 0.0002(0.0219) 0.0002(0.0248) 0.0001(0.0252) 0.0002(0.0255) 0.0002(0.0301{) 0.0010*(0.0247) 0.0002(0.0234)

Cluster 15 0.0102(0.0034) 0.0125(0.0021{) 0.0101(0.0036) 0.0112(0.0045) 0.0093(0.0043) 0.0131*(0.0053) 0.0082(0.0053) 0.0092(0.0031)

Cluster 16 0.0108(0.0040) 0.0115(0.0070) 0.0107(0.0042) 0.0109(0.0044) 0.0099(0.0047) 0.0174(0.0069) 0.0116(0.0038) 0.0100(0.0035)

Cluster 17 0.0018(0.0019) 0.0075*(0.0077{) 0.0018(0.0019) 0.0019(0.0015) 0.0015(0.0016) 0.0030(0.0013) 0.0017(0.0017) 0.0019(0.0011)

Cluster 18 0.0069(0.0029) 0.0063(0.0053{) 0.0077(0.0028) 0.0071(0.0029) 0.0066(0.0033) 0.0114*(0.0051) 0.0095(0.0027) 0.0083(0.0022)

Cluster 19 0.0090(0.0022) 0.0098(0.0024) 0.0090(0.0021) 0.0093(0.0024) 0.0099(0.0025) 0.0115(0.0033{) 0.0063*(0.0021) 0.0087(0.0022)

Cluster 20 0.0014(0.0036) 0.0021(0.0023) 0.0013(0.0034) 0.0016(0.0035) 0.0016(0.0035) 0.0024(0.0180{) 0.0016(0.0029) 0.0026*(0.0031)

Cluster 21 0.0067(0.0031) 0.0068(0.0028) 0.0065(0.0032) 0.0069(0.0029) 0.0083(0.0029) 0.0111*(0.0057{) 0.0059(0.0031) 0.0070(0.0054)

Cluster 22 0.0025(0.0068) 0.0025(0.0049) 0.0022(0.0068) 0.0023(0.0066) 0.0023(0.0065) 0.0182*(0.0069) 0.0003(0.0313{) 0.0025(0.0061)

Cluster 23 0.0064(0.0044) 0.0105(0.0221{) 0.0062(0.0048) 0.0064(0.0044) 0.0061(0.0041) 0.0170*(0.0081) 0.0090(0.0043) 0.0059(0.0031)

Cluster 24 0.0075(0.0052) 0.0142(0.0072) 0.0079(0.0049) 0.0078(0.0049) 0.0058(0.0056) 0.0152*(0.0069) 0.0080(0.0061) 0.0081(0.0137{)

Cluster 25 0.0043(0.0095) 0.0016*(0.0252{) 0.0043(0.0091) 0.0046(0.0101) 0.0045(0.0089) 0.0065(0.0172) 0.0065(0.0093) 0.0048(0.0073)

Cluster 26 0.0008(0.0095) 0.0011(0.0078) 0.0007(0.0102) 0.0007(0.0097) 0.0005(0.0089) 0.0020(0.0200{) 0.0028*(0.0170) 0.0014(0.0094)

Cluster 27 0.0083(0.0039) 0.0103(0.0055) 0.0080(0.0041) 0.0083(0.0039) 0.0087(0.0041) 0.0146*(0.0101{) 0.0119(0.0037) 0.0083(0.0039)

Cluster 28 0.0050(0.0015) 0.0052(0.0020) 0.0049(0.0014) 0.0051(0.0015) 0.0055(0.0016) 0.0076*(0.0021{) 0.0052(0.0012) 0.0050(0.0018)

Cluster 29 0.0007(0.0054) 0.0011(0.0066) 0.0012(0.0050) 0.0011(0.0060) 0.0013*(0.0048) 0.0011(0.0068) 0.0012(0.0059) 0.0005(0.0079{)

Cluster 30 0.0054(0.0047) 0.0062(0.0032) 0.0050(0.0048) 0.0055(0.0048) 0.0052(0.0047) 0.0069(0.0179{) 0.0063(0.0037) 0.0079*(0.0087)

Cluster 31 0.0071(0.0058) 0.0075(0.0046) 0.0071(0.0057) 0.0069(0.0057) 0.0067(0.0058) 0.0103*(0.0064) 0.0072(0.0137{) 0.0070(0.0054)

Cluster 32 0.0016(0.0022) 0.0013(0.0025) 0.0019(0.0020) 0.0017(0.0022) 0.0013(0.0153{) 0.0027*(0.0025) 0.0010(0.0019) 0.0018(0.0032)

For each cluster the average outgoing (incoming) gene flow is shown for each set of genes used in the analyses. The baseline estimates using all of the genes are listed
in the Complete column. The average outgoing gene flow for a cluster i is the mean value of wij,j=i , where W is the estimated gene flow matrix using the significance
threshold a~0:05. The average incoming gene flow is obtained as the mean of wji,j=i . For each cluster the gene set associated with the largest change in gene flow

estimates is highlighted for both outgoing and incoming arrows, marked with * and {, respectively.
doi:10.1371/journal.pcbi.1000455.t001
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the rates of admixture. The analysis was performed conditional on

the clusters identified using the original complete data set. The

relative importance of each gene could then be tentatively

summarized by calculating for each cluster the average changes

in incoming and outgoing gene flow while treating the estimates

from the complete data as a baseline.

Phylogenetic analysis of the Neisseria data was performed using

MEGA v.4.0.2 [27]. Neighbor-Joining (NJ) tree was constructed

with the maximum composite likelihood model assuming rate

uniformity and pattern homogeneity. eBURST analysis of the

Neisseria data was performed using the default options in the online

version 3 available at http://eburst.mlst.net [28].

Results

Simulated data
We reported the partition accuracy with respect to different

choices of P and L under a constant population size nc~10 in one

scenario and nc~50 in another. The partition accuracy measured

by the Rand Index (RI) (see e.g. [29]) is summarized as a grey-

Figure 8. Genetic shapes of N. lactamica populations 8, 29 and 32 as relative to N. meningitidis populations 11 and 19.
doi:10.1371/journal.pcbi.1000455.g008
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scale map (Figure 3). In the presence of a small amount of

admixture, i.e. lcc?1, the tentative population structure can be

identified with high accuracy. As the recombination rate increases

over a critical threshold, e.g. as lccv0:7 for the current setting, the

partition accuracy drops quickly. Therefore, a higher recombina-

tion rate, indicated by a lower lcc, would imply a lower partition

stability. Such an observation matches our expectation that

excessive amount of admixture tends to obscure the putative

population structure.

We may look further into the gene flow graph prediction only if

the genetic structure (i.e. the true partition) is correctly identified.

We used Hamming distance as a measure of gene flow structure

accuracy and the result is shown in Figure 4. The gene flow graph

structure can be satisfactorily discovered when lccw0:95 and

pcc
0 [½0:20:6�. However, a negative correlation between P and L

was also noticeable. This result suggests that if admixture affects a

population through a small proportion of strains, then the chances

of its correct estimation by BAPS 5.2 are high. In contrast,

admixture that occurred at most of the strains is more likely to be

ascribed to variation arising within the population by mutation.

These observations are in harmony with the investigation of the

effect recombination intensity on the emergence of distinct

populations for a bacterial species in [3]. Extensive levels of

recombination will act as a cohesive force keeping populations

together as a large gene pool, which consequently prevents the

statistical detection of the recombination in terms of such a

population genetic model as investigated here. This is entirely

reasonable, because any substantial genetic population boundaries

will not exist under such circumstances, and consequently,

recombinations over population boundaries are not meaningfully

defined, let alone detectable by a statistical model. Moreover, if

certain parts of the data are too weak for reliable admixture

inferences due to very small population cardinalities in the genetic

mixture estimate, it is possible to leave the admixture coefficients

Table 2. The number of strains that are jointly assigned into a BAPS population and a EBURST group.

EBURST groups

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

BAPS populations 1 4 1 17 1 3 1 0 0 0 1 0 0 0 0 2 0 1 1 2 0 0 0 3 2 0 0 0

2 14 7 0 0 2 3 4 91 0 1 3 0 1 0 5 0 0 0 0 0 0 0 0 0 2 0 0

3 0 0 141 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 48 9 3 2 0 0 1 3 2 0 0 0 0 0 0 0 2 0 27 0 0 0 0 0 2 0 0

5 72 12 4 0 0 0 0 5 0 6 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 274 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 4 0 0 11 0 6 0 4 0 0 0 1 25 0 0 0 0 3 0 0 0 16 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20

9 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0

10 5 0 0 132 2 0 7 0 11 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0

11 0 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 69 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

13 39 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 18 0

14 37 7 3 3 16 11 0 0 0 1 2 0 1 0 0 0 1 3 0 1 2 1 0 1 1 0 0

15 0 0 0 0 174 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 3 2 89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 2 0 0 0 0 0 0 0 0 2 47 0 1 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 3 0 0 2 0 0 1 0 0 0 0 0 0 0 30 0 0 0 22 0 0 0 0 0 0 0

21 0 0 0 1 0 0 0 0 0 0 59 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0

22 2 0 3 0 3 0 0 2 2 0 1 0 0 0 0 0 0 0 2 0 1 2 0 0 0 0 0

23 176 0 0 0 0 1 0 1 0 3 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 3 0

24 0 0 0 77 1 5 1 0 11 0 0 0 0 0 0 0 0 26 0 0 0 0 2 2 0 0 0

25 68 0 1 9 7 1 1 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 1 3 2 0 0 0 0 0 3 0 0 2 0 0 0 0 0 0 0 0 21 11 0 0 0 0 0

27 1 0 62 1 2 0 0 0 0 0 0 58 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 46 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 13 96 2 0 1 0 0 1 0 1 0 0 1 0 0 0 29 0 0 1 0 0 0 0 18 0 0

31 1 0 1 1 0 0 0 0 66 0 0 0 0 0 0 0 0 1 0 0 0 10 17 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Only the EBURST groups that contain more than 20 strains are listed.
doi:10.1371/journal.pcbi.1000455.t002
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undetermined for them using the option available in BAPS, as

discussed in [14]. The extensive simulation study performed by

[30], showed that the BAPS inferences about the genetic structure

were generally sensible from a phylogenetic perspective, even in

the presence recombination events, provided that the data are at

least reasonably informative. With very weakly informative

molecular data, it cannot be expected that any detailed statistical

population genetic model would provide highly accurate estimates

of the population characteristics.

We used a simulated data set for illustration of genetic shapes

represented as the density estimation in (8). The data set was

generated with nc~100 and L
0
~500. Figure 5 shows the

estimated genetic shapes using population 2 as the reference, as

compared to the other five populations. It can be seen from

Figure 5 that the influence of admixture between the populations

is reflected also on the genetic shapes. For example, the density

curves for population 1 (red) and for population 3 (blue) are more

shifted towards zero than the other populations, and hence imply a

closer relationship to population 2. This is not surprising since

population 2 is a common donor of DNA to populations 1 and 3

(Figure 2). On the other hand, the density curve for population 3

appears to have two modes, which is a feature exhibited in neither

population 1 nor any other populations. Note that population 3 is

the only population which donates DNA to population 2. We

might use the bi-modality of a density curve as a potential

indicator of gene flow to the reference population.

The Neisseria data
In total 32 BAPS populations are identified, where three

populations (numbered as 8, 29 and 32) belong to the N. lactamica

species and the remaining 29 populations are labeled as N.

meningitidis species. For accessing the robustness of the identified

population structure, the partition determined using the whole

data set was compared with the partition using bootstrap data

generated according to the simulation scenarios. Figure 6 shows

the adjusted Rand Index as a result of the comparison. Our

partition method is able to identify the population structure with

good accuracy, even though the performance may decrease as the

complexity level of the data increases and when the number of

available strains per population is quite low. It should be noted

that the number of strains in the bootstrap samples was typically

much smaller than the number of strains assigned to a particular

population in the analysis of the original data. This illustrates that

the population identification becomes highly stable when the

sample sizes are sufficiently large.

The results of admixture analysis for the Neisseria data set are

summarized in Figure 7. The graph was obtained by fixing the

admixture significance threshold a at 0.05 and then pruning the

Figure 9. The first NJ tree. It shows a subset of the BAPS populations indicated with distinct colors.
doi:10.1371/journal.pcbi.1000455.g009
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arrows with gene flow strength below 0.03. It can be seen from the

grey box highlighted in Figure 7 that two admixture arrows that

imply inter-species gene flow remain significant, where two of the

N. meningitidis populations (11 and 19) are constantly influencing

the genetic makeup of one population of N. lactamica (population

29). The admixture arrows are uniformly directed from N.

meningitidis towards N. lactamica, implying that N. meningitidis might

donate genetic materials into N. lactamica, while the gene flow in a

reversed direction is not supported by the analysis.

The admixture estimates for the 32 clusters obtained under the

bootstrap analysis over the genes are summarized in Table 1. To

see how much the exclusion of a particular gene changes the

estimates, we may look at the overall consistency of the inferred

average outgoing and incoming gene flow using the complete data

case as reference. It is observed that the exclusion of gene gdh

seems to affect the admixture consistency most, as in this case the

changes of outgoing (incoming) gene flow reach the maximum

value in 20 (13) of the 32 clusters. In contrast none of the clusters is

experiencing the largest gene flow changes when either the gene

adk or aroE is excluded, suggesting that recombination signals on

these two genes are more marginal.

We plotted in Figure 8 the estimated densities of dc,c
0 for the

three N. lactamica populations (8, 29, 32), relative to N. meningitidis

populations 11 and 19 separately. The densities for population 29

have a tendency towards zero, suggesting a close genetic affinity

with populations 11 and 19. In contrast, the densities of

populations 8 and 32 are much further away from zero, implying

a distinctive difference in their genetic makeup compared to N.

meningitidis populations 11 and 19. This result is consistent with the

admixture pattern presented in Figure 7.

The eBURST analysis of the Neisseria database resulted in 253

groups and 1165 singleton strains. The biggest group consists of

795 strains and there are additionally four groups containing more

than 200 strains. Table 2 shows the degree of concordance

between the eBURST groups and BAPS populations. Due to the

very large number of eBURST groups, only groups containing at

least 20 strains were included in this comparison. Table 2 shows

that the largest eBURST groups harbour many strains from

multiple BAPS populations, whereas the vast majority of strains in

smaller groups are typically found only in a single BAPS

population (in some cases in two populations). As these cases

represent single-locus variants of one another from eBURST

analysis being clustered into different populations by BAPS, it

means that there must exist a very large amount of anomalous

variation at the nucleotide level within the other locus to allow the

model to identify such subgroups. It should also be kept in mind

that the BAPS model used for the identification of these

populations is not a phylogenetic method in contrast to eBURST,

which is an important distinction particularly in the presence of

highly recombinogenic data. Out of the three BAPS populations of

Figure 10. The second NJ tree.
doi:10.1371/journal.pcbi.1000455.g010
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N. lactamica strains (populations 8, 29 and 32), only one forms a

group in the eBURST analysis (group 14, Table 2). Strains in the

other populations are primarily assigned to singleton groups. This

difference is further explored below using a phylogenetic analysis

at the nucleotide level.

To facilitate comparison of the phylogenetic analysis with the

partition yielded by BAPS, we labelled strains with colors

indicating population memberships. However, given the large

number of strains included in the analysis and the large number of

populations inferred by BAPS, it would be very challenging to

visually extract information from a single NJ tree harbouring all

the populations simultaneously. Therefore, four separate NJ trees

are displayed in Figures 9–12, each of which shows a subset of the

BAPS populations indicated with distinct colors. The strains

remaining outside this particular subset are indicated by white

circles. Since it is difficult to specify more than approximately 20

colors which remain clearly distinguishable from each other,

independent coloring schemes were used for each tree to show the

phylogenetic composition of the populations. Thus, it is not

possible to compare the color codes directly with those in the gene

flow network in Figure 7. The color coding scheme for the

populations is shown in Figure 13 to enable comparison of the

phylogenetic analysis and the gene flow network.

The assignment of the populations to the NJ trees reveals that

while a considerable number of them form relatively tight groups

of lineages, there are also many populations in which the strains

are spread over several separate lineages in the tree. This

illustrates the dilution of phylogenetic signals in the presence of

considerable levels of recombination between populations of

strains. The population (population 14) which according to the

inferred gene flow network is the most prominent recipient of

genetic material from a multitude of sources, is seen (Figure 10) to

include some dense and relatively large groups of strains that are

found in separate parts of the tree. In addition, this population

harbors a number of tiny groups of strains scattered over the

three.

In the BAPS analysis, strains identified as N. lactamica fell into

three populations: 8, 29 and 32. Figure 7 indicates that we found

no evidence for significant admixture involving populations 8 and

32. Population 29 however was found to be associated with

variation characteristic of populations 11 and 19, which were

composed of meningococcal strains. The positions of the STs

composing these five BAPS populations and one other (8, 29, 32,

19, 11 and 20) are shown in Figure 7. The isolated status of

population 8 is apparent as a well resolved group, whereas the

recombinant status of 29 is clear from the way these STs are

scattered around the tree with long branch lengths originating

apparently separately from the main N. lactamica population. The

role of meningococcal strains in populations 11 and 19 in this is

evident, in that the recombinant N. lactamica strains (population 29,

Figure 11. The third NJ tree.
doi:10.1371/journal.pcbi.1000455.g011
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shown in red) apparently originate close to these populations in the

main meningococcal radiation.

Population 32 is intermediate on the tree between the majority

of N. lactamica strains and the main meningococcal radiation.

Hence these STs may be considered as examples of the so-called

fuzzy fringes which have been proposed for recombinogenic

species [25]. As noted however, they were not associated with

significant admixture in the estimated gene flow network (Figure 7).

Close examination of population 32 shows that 4 of the 22 STs in

the population exhibited significant admixture with population 20

(shown in blue), receiving on average 12.3% from this population

(which is composed of strains identified as meningococcus). It is

interesting to note that populations 32 and 20 adjoin each other in

the tree.

Discussion

In the present work we have introduced statistical tools

implemented in the BAPS software that enable analyses of

bacterial population structures on a previously unprecented scale,

as the computational complexity of the earlier standard Bayesian

methods prevents their application to large databases associated

with complex patterns of admixture. This is particularly important

when at least a moderate number of recombination events have

Figure 12. The fourth NJ tree.
doi:10.1371/journal.pcbi.1000455.g012

Figure 13. Color coding scheme used in the BAPS populations and the NJ trees. For example, the first row shows the BAPS populations
highlighted in the first NJ tree in Figure 9.
doi:10.1371/journal.pcbi.1000455.g013
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plausibly taken place in a population, as a statistically valid

characterization of the population structure then requires fairly

extensive sampling of strains. It was also noted that a standard

MCMC-based approach is not expected to yield a viable strategy

for such analyses in practice, due to both the time constraints as

well as the statistical accuracy of the resulting estimates. The BAPS

analysis (inference about the populations and the levels of

admixture) of the Neisseria database was completed within roughly

95 CPU hours on a standard PC with a 2.8 GHz Pentium 4

processor. As a comparison, our initial experiments with the

STRUCTURE software [8] suggest conservatively that a

comparable analysis had taken at least several thousands of CPU

hours on the same machine. Moreover, the convergence problems

associated with the Gibbs sampler algorithm, when applied to

mixture models (e.g. [10]), suggest that statistically reliable

estimates of the population structure are likely not accessible for

data sets of such a high degree of complexity.

The presented methods can be effectively utilized in a variety of

contexts, where the genetic population structure is relevant, e.g.

for the investigation of epidemiological questions and experimen-

tally derived features of bacterial strains. For instance, outlying

groups with specific characteristics with respect to virulence or

antibiotic resistance may be detected from large population

samples.

The concept of a genetic shape, which was introduced here to

represent the molecular variability of an identified population and

its affinity towards other populations as a whole, is an intriguing

characteristic associated with considerable potential for further

theoretical research. Namely, the average change of log predictive

likelihoods between populations can also be interpreted as the

change in ‘free energy’ associated with a gene flow event. The

larger this quantity, the more likely the ‘reaction’ of gene flow

could occur spontaneously. However, it is not trivial to determine

the minimal energy level that triggers such events. From the

analysis of simulated data (results not shown) we are expecting that

such an energy threshold depends on the identified population

sizes. In particular, the analogy with physics-based characteriza-

tions of molecular interaction systems could yield mathematical

ways to predict horizontal transfer events.

Although this integrated approach advocated here provides a

feasible means of handling data from thousands of strains and a

multitude of genes, several issues remain. Firstly, if a very large

number of genes are considered, it is likely that not all of them will

be present or functional in overall in a heterogeneous population at

a genus level. Under such circumstances it would be necessary to

develop further the Bayesian model for a population structure and

admixture to take into account that not all molecular information is

shared by the sampled strains. Secondly, the scalability of the

stochastic learning algorithms should be improved to ensure that

models could still be fitted to data without access to supercomputing

facilities. Given the present rate of improvement in sequencing

facilities, it is likely that the need for such large-scale analyses will be

a reality within a relatively short time-span. In order to meet these

needs in the future, we are currently investigating several theoretical

approaches to develop further the statistical population genetic tools

available in BAPS.

The findings from the combined phylogenetic and population

genetic analyses suggest possible events of convergence between N.

lactamica and N. meningitidis that have arisen on multiple occasions

and have occurred for clearly separate lineages of the two species.

As the former is a non-pathogen and N. meningitidis represents a

pathogen of considerable importance in human health, exchanges

of genetic material between them might have consequences for our

understanding of their evolution. Moreover, the diversity and the

extent of recombination indicated among the N. meningitidis

populations highlight that it is necessary to consider these

pathogens as a heterogeneous population, and that multiple

pathways of evolution may arise among them as a response to

treatment strategies, including antibiotics and vaccines, as also

recently discussed in [31]. For details concerning the currently

available Meningococcal vaccines, see, e.g. [32] and [33].

Contrary to some of the previous studies of recombination and

population structure in Meningococci, e.g. [34–36]), where only

very limited sample sizes were considered, we have here focused

on the detailed exploration of a more extensive database using

multiple model-based statistical tools. In summary, our combined

results illustrate crisply the possibility of using large-scale MLST

sequence data to draw attention to currents in the gene pool, i.e.

specific populations that seem more likely to undergo recombina-

tion, including recombination with different species. More detailed

exploration of such groups of strains could then shed new light on

the mechanisms that shape the joint evolution of pathogens and

non-pathogens sharing ecological niches.
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