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Sex differences in the incidence and severity of respiratory virus infection are widely  
documented in humans and murine models and correlate with sex biases in numbers 
and/or functional responses of innate immune cells in homeostasis and lung infection. 
Similarly, changes in sex hormone levels upon puberty, pregnancy, and menopause/
aging are associated with qualitative and quantitative differences in innate immunity. 
Immune cells express receptors for estrogens (ERα and ERβ), androgens (AR), and pro-
gesterone (PR), and experimental manipulation of sex hormone levels or receptors has 
revealed that sex hormone receptor activity often underlies sex differences in immune 
cell numbers and/or functional responses in the respiratory tract. While elegant studies 
have defined mechanistic roles for sex hormones and receptors in innate immune cells, 
much remains to be learned about the cellular and molecular mechanisms of action 
of ER, PR, and AR in myeloid cells and innate lymphocytes to promote the initiation 
and resolution of antiviral immunity in the lung. Here, we review the literature on sex 
differences and sex hormone regulation in innate immune cells in the lung in homeostasis 
and upon respiratory virus infection.
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iNTRODUCTiON

Respiratory virus infections lead to significant health problems worldwide (1). Humans show 
marked sex differences in the severity, prevalence, and outcome of inflammatory lung diseases 
including viral infection (2, 3). Innate immune responses have crucial roles in early defense against 
viruses but also shape antigen-specific adaptive immune responses and promote tissue repair.  
A number of recent reviews highlight sex differences in innate immune pathways during infectious 
disease (4–6). Here, we review literature reports on the sex differences in numbers and functional 
responses of innate immune cells in the lung and their regulation by sex hormones in homeostasis 
and during viral lung infection. Specifically, we highlight ways in which sex differences in innate 
cells may influence both the proinflammatory/effector phase and the resolution/tissue repair phase 
important in the host response to respiratory virus infection (Figure 1).

SeX HORMONeS AND ReCePTOR SiGNALiNG

Sex Hormone Levels
Endogenous estrogens include estrone (E1), 17-β-estradiol (E2), and estriol (E3), with E2 being the 
major form present in adult females and males while E3 is present at high levels in pregnancy (7).  

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.01653&domain=pdf&date_stamp=2018-07-20
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.01653
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:susan-kovats@omrf.org
https://doi.org/10.3389/fimmu.2018.01653
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01653/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01653/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01653/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01653/full
https://loop.frontiersin.org/people/586747
https://loop.frontiersin.org/people/33953


FiGURe 1 | Sex differences in innate immune responses during the effector and repair phases of respiratory virus infection. Here, we summarize reports of sex 
differences or sex hormone receptor regulation of innate immune cells. The pink shaded area indicates cells and pathways reported to be elevated in females  
and/or upon estrogen/ER activity. The blue shaded area indicates cells and pathways reported to be increased in males and/or upon androgen/AR activity.  
A balanced type 1 immune response involving different innate immune cells is required early post-infection in the lung for viral clearance. At later stages of infection, 
regulatory immune responses mediated by alveolar macrophages and innate lymphoid cells are important for the repair of damaged tissues and renewal of barrier 
integrity. Sex differences in numbers, functional responses, plasticity, and survival of innate immune cells regulate the proinflammatory/effector and regulatory/repair 
phases of infection.
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Testosterone is synthesized in both females and males and is 
converted by 5α-reductase to the physiologically active metabo-
lite dihydrotestosterone (DHT) or by aromatase to estradiol (8). 
Progesterone (P4) is present in both sexes and, in females, varies 
during the menstrual cycle and is produced by the placenta at 
high levels during pregnancy (9). The levels of circulating sex 
hormones vary in both sexes throughout the lifespan, with the 
highest levels of estrogens and progesterone in females and 
testosterone in males during the reproductive years (10, 11). 
In pregnancy, estrogens and progesterone reach significantly 
higher levels (8, 12). Sex hormone levels in humans in phases of 
the menstrual cycle and pregnancy are nicely summarized in a 
recent review (13). The dramatic changes in sex hormone levels 
at puberty are correlated with changes in immune function and 
susceptibility to immune-mediated disease. Sex hormones also 

are present in  utero and immediately post-birth, and this may 
influence immune cell differentiation and neonatal immunity. 
The developing testes in male fetuses produce testosterone, 
and both sexes are exposed to high levels of maternal estrogens 
in utero (14, 15). In the first weeks after birth, both human and 
rodent males have a “mini-puberty,” in which testosterone levels 
approach those of adults (15–17).

Sex steroids are synthesized in the gonads and adrenal cortex, 
and in peripheral tissues such as liver, fat, and kidney (8, 18). 
Little information is available about local synthesis in the lung 
(8). Activated macrophages may increase local estrogen levels 
since cytokine receptor signaling induces their synthesis of 
aromatase, the enzyme that converts testosterone to estradiol  
(19). Few studies of immune cells in tissues have correlated tissue 
levels of sex hormones with immune function.
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TAbLe 1 | Expression of sex steroid receptors in human and murine innate immune cells.

Cell type eRα eRβ Other eRs PRs AR eRα eRβ PRs AR

Human Murine

Type II innate lymphoid 
cells

Yes (27)/No (28) Yes (27)/No (28) −/+ Yes (28–30)

Natural killer cells (NK) Yes (31, 32) Yes (31, 32) ERα46 (31) Yes (33) − Yes (34) Yes (34) − −/+

Gamma delta T cells 
(γδ T)

Yes (35) −/+ or + −/+ − + or −

Natural killer T cells − −/+ − − Yes (36) −/+ − − or −/+

Neutrophils Yes (37) Yes (37) GPER (38) No (39) Yes (40) −/+ − − Yes (41)

Eosinophils −/+ −/+ GPER (42) No (39) No (40) −/+ − − −

Plasmacytoid dendritic 
cells (pDC)

Yes (32) Yes (32) − − Yes (43) − −/+ −

Monocytes Yes (23, 32, 44, 45) Yes (23, 32, 44, 45) ERα46 (23) − − + −/+ − −

Dendritic cell (tissue-
resident, monocyte-
derived, BM-derived)

Yes (32, 45) Yes (32, 45) − − Yes (46, 47) Yes (46, 47)/No (48) −/+ −

Macrophage (alveolar,  
BM-derived, peritoneal)

Yes (23, 49, 50) Yes (23, 49, 51) ERα46 (23) Yes (49) Yes (40, 52) Yes (48, 53) Yes (50)/No (48, 53) Yes (54) Yes (55)

Hematopoietic stem 
cell

Yes (26) Yes (26) − Yes (26) Yes (56) No (56) No (56) No (56)

The presence of sex steroid receptors in each cell type (located in any tissue and regardless of activation state) is indicated by “Yes” or “No” and the literature reference. Some  
cell types differ in receptor expression in different tissues, and this is indicated by “Yes/No.” If a literature report was not found, we consulted the Immunological Genome Project, 
and the presence or absence of receptor RNA is indicated in blue if available.
−, <50 counts; −/+, 50–100 counts; +, 100–300 counts; + or − represents positive or negative value depending upon the tissue location.
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Sex Hormone Receptors
Sex hormones mediate their effects through estrogen recep tors 
(ERα and ERβ), androgen receptor (AR), and progesterone 
receptors (PR-A and PR-B) (20–22). Splice variants of ER 
leading to truncated but functional proteins such as ERα46 
have been identified in myeloid cells (23). Sex steroid receptors 
are ligand-dependent transcription factors that recruit tran-
scriptional coregulators such as SRC1 and histone-modifying 
enzymes such as p300/CBP into multi-protein complexes that 
bind DNA [reviewed in Ref. (20, 24)]. ERs, PRs, and AR bind 
to their respective response elements at specific DNA sites 
leading to epigene tic modifications of chromatin and changes 
in transcription of target genes. Nuclear sex hormone receptors 
also may be tethered indirectly to DNA via their ability to bind 
transcription factors such as SP1. Ligand-free receptors also  
can recruit corepressors such as NCOR and histone deacety-
lases to repress transcription. Rapid “nongenomic” sex steroid 
sig naling occurs via inner plasma membrane-localized ER or  
AR, and possibly via the G protein-coupled receptor GPR30 (also 
termed GPER) (20, 25).

Innate immune cells express ERs (Esr1, Esr2), AR (Ar), and 
PRs (Pgr) to varying degrees. Esr1 and Ar RNAs also are expressed 
at high levels in hematopoietic progenitors in bone marrow 
(BM), consistent with documented effects of sex hormones on 
immune cell differentiation and numbers in homeostasis (26). 
Based on our literature review and data from the Immunological 
Genome Project (www.immgen.org), Table  1 summarizes the 
relative expression of sex steroid receptor RNA or protein in 
hematopoietic progenitors and innate cells of the lymphoid and 

myeloid lineages. Since limited information is available about 
sex steroid receptor expression in lung-resident immune cells, 
Table 1 includes information for the cell type regardless of tis-
sue location or activation state. Patterns of receptor expression 
may underlie the effects of the sex hormones on numbers and 
functional responses of innate immune cells. Some mature 
innate cells do not apparently express significant levels of the sex 
hormone receptors, but they may still function differently in the 
sexes due to epigenetic imprinting of developmental precursors 
or because their responses are influenced indirectly via other  
cell types responding to sex hormones.

Sex differences in lung development, structure, and function 
have been identified (57). The lungs of human females are smaller 
than males of the same height; however, airway size and capacity 
do not always correlate with lung size, and the extent and type 
of sex differences in lung function vary throughout the lifespan 
(58). Smooth muscle, fibroblasts, and epithelial cells express sex 
steroid receptors (8), and their functional responses in different 
sex hormone environments may alter the immune response or 
modulate infection severity.

Methods to Study effects of Sex 
Hormones and Receptors  
on immunity In Vivo
Investigators have taken multiple approaches to understand the 
impact of sex differences and sex hormone receptor signa ling on 
immunity. Diverse approaches in different experimental models 
have often led to conflicting results. Age should be carefully 
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considered when studying sex differences in immune cell num-
bers or functional responses in humans and rodents since sex 
hormone levels vary over the lifespan (2). Littermate or colony 
matching will reduce variables such as diet and microbiome 
and help to identify sex differences. Studies of sex differences in 
human immunity would be improved by direct measurements 
of hormone levels in each individual (particularly in women) 
because age alone does not predict hormone levels modulated by 
oral contraceptives or hormone replacement therapy. A common 
approach is to gonadectomize young mice and replace estrogens 
or androgens by implantation of time release pellets. While this 
strategy has led to many answers, the absence of sex hormones in 
young gonadectomized mice may alter immune cell deve lopment 
and numbers prior to infection. In addition, replacement of 
hormones to a constant level does not mimic the cyclic variation 
that occurs particularly in females. Similarly, it is difficult to reca-
pitulate accurate in vivo exposures of sex hormones in cell culture 
models. Another approach is to impose male levels of DHT in a 
female mouse (or female levels of estradiol in a male mouse) to 
help elucidate sex hormone interactions and their effects inde-
pendent of chromosomal sex and developmental programming.

Mice lacking sex hormone receptors also have informed 
our understanding of sex differences in immunity. However, 
global deletion of sex hormone receptors can lead to abnormal 
levels of estrogens and androgens; for example, global Esr1 
deficiency leads to high levels of circulating testosterone (59–61). 
Furthermore, global loss of receptor signaling may alter the 
function of non-immune cell types in ways that impact immune 
responses. To circumvent this issue, investigators are beginning 
to study mice bearing conditional deletion of Esr1 or Ar along 
with lineage-restricted Cre drivers to understand the effects 
of sex hormone receptor deficiency on numbers and function 
of specific cell types. This approach will help to identify direct 
effects of sex hormone receptor signaling in immune cells. Use of 
emerging technologies such as single cell RNA-sequencing, assay 
of transposase-accessible chromatin-sequencing, multiplex mass 
cytometry, or chip cytometry (62–64) to monitor the transcrip-
tome, epigenome, or proteome at the single cell level will help 
us to understand sex differences in immune function and how 
sex hormone receptors regulate immune cells in homeostasis and 
during viral infection. These approaches will be especially valu-
able to dissect the diversity of responses of rare immune cell types 
in peripheral tissues such as the lung. More precise methods and 
attention to age and hormonal cycles and levels will help to clarify 
the roles of sex hormones and receptors in immune responses.

SeX DiFFeReNCeS iN iNNATe iMMUNe 
ReSPONSeS iN ReSPiRATORY viRUS 
iNFeCTiON

Despite the lung’s structural and chemical barriers to pathogen 
entry, many viruses subvert these barriers and efficiently infect 
and replicate within lung epithelial cells [reviewed in Ref. (65)]. 
Damage to host lungs may be directly induced by the virus or be 
secondary to a strong immune response. Upon respiratory virus 
infection, immune cells typically participate in three phases: (i) 

innate immune cells sense presence of the virus and initiate early 
antiviral responses and prime the adaptive response; (ii) effec-
tor or adaptive immune cells clear virus by killing infected cells 
and producing antiviral antibodies, followed by conversion of a 
subset to memory lymphocytes; and (iii) innate immune cells act 
in concert with epithelial regene ration pathways to repair injured 
tissue and produce mediators that return the immune system 
to homeostasis (65). Herein, we focus on responses of innate 
immune cells in the initiation and repair phases of respiratory 
virus infection.

Epidemiological studies of humans and experimental models 
with rodents show that it is difficult to arrive at a universal 
paradigm regarding effects of sex or sex hormones on immune 
responses to respiratory viruses. vom Steeg and Klein hypothesize 
that sex differences in infection outcome are a function of the 
strength of the immune response and resulting host tissue damage 
(66). In this model, a male bias in risk occurs when weak immune 
responses underlie significant host damage, while a female bias 
in risk occurs when strong immune responses promote host 
damage. Experimental manipulation of sex hormones and their 
receptors in rodents has shown that sex differences in systemic 
estrogen and androgen levels often underlie differential immune 
function and infection outcome. Depending on the role of the  
sex hormone to promote or inhibit inflammation or immunity, 
sex differences may arise due to either the predominance of,  
or the absence of, estrogen or androgen in one sex.

In the initiation phase, lung-resident dendritic cells (DCs) 
and macrophages (alveolar and interstitial) respond to viral 
molecules (nucleic acids and glycoproteins) via cell surface 
or intracellular receptors that are linked to signaling pathways 
resulting in production of interferons (IFN), cytokines, and 
chemokines (65, 67). Coupled with these viral “pathogen-
associated molecular patterns,” damage to host cells results in 
the release of host molecules such as ATP, heat shock proteins, 
or HMGB1, termed “danger-associated molecular patterns,” 
which also trigger innate immune receptors and inflammasomes. 
Innate lymphocytes respond to cytokines produced by activated 
myeloid cells or alarmins released by damaged tissue and in turn 
produce type 1 (IFNs, IL-12, IL-1β, TNFα) or type 2 or regulatory 
(IL-5, IL-10) cytokines that direct subsequent innate or adaptive 
responses. Type I and III IFNs elicit expression of molecules that 
are directly antiviral. DCs acquire and present viral antigens, 
migrate to draining lymph nodes and prime adaptive responses 
through interactions with naïve T. Activated T cells then return 
to the lung where they interact again with resident or recruited 
myeloid cells, produce pro- or anti-inflammatory cytokines, and 
lyse infected cells.

Respiratory viruses typically elicit strong type 1 immune 
responses involving myeloid cell production of type I and III IFN 
and proinflammatory mediators such as IL-12, TNFα, and CCL2 
and lymphocyte production of IFNγ (67). As described in detail 
in later sections, there is some evidence for sex differences in (or 
sex hormone regulation of) the function of myeloid cells and 
innate lymphocytes during respiratory virus infection. However, 
more often, reports of sex differences or sex hormone regulation 
involve studies of immune cells at other tissue sites, in autoim-
mune or other pathogen models or performed in vitro. In brief, 
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type I IFN synthesis is promoted by estrogen and ERα signaling, 
and multiple reports show that female plasmacytoid DCs (pDCs) 
produce more type I IFN than male pDCs (32, 43, 68, 69). Sex 
hormone regulation of proinflammatory cytokines (IL-12, IL-6, 
IL-1β) seems more complex, but a number of studies show that 
lower physiological levels of estrogens enhance their production 
while higher physiological levels dampen their production and 
instead promote regulatory cytokines such as IL-10 [reviewed in 
Ref. (24)]. In contrast, reports show that testosterone decreases 
cytokines such as IFNγ and TNFα and increases IL-10 (21).

Regulatory and type 2 immune responses are important in 
later stages of respiratory viral infection. It is now recognized 
that while type 1 responses are important for viral clearance, type 
2 responses also are elicited and promote repair of injured tissue 
and resolution of the immune response upon influenza virus and 
respiratory syncytial virus (RSV) infection (70–72). In murine 
models of allergic asthma, estrogen and ERα signaling promote 
type 2 responses of alveolar macrophages (AM) (73), while 
androgens and AR signaling attenuate type 2 responses promoted 
by innate lymphoid cells (ILC2s) and myeloid cells (74). These ER 
and AR regulated pathways also may be important in respiratory 
virus infection. Indeed, the chronic elevation of type 2 responses 
in asthmatic individuals can lead to a milder course of influenza 
virus infection and reduced lung injury (75), while ILC2 activity 
in influenza virus infection can exacerbate asthma (76).

influenza virus A (iAv) infection
Sex differences in the incidence and severity of IAV infection 
in the human population have been well documented (13, 77). 
However, given the strong impact of age on morbidity and mor-
tality, it is often difficult to separate effects of sex and age since sex 
hormone levels change dramatically with age (78). Furthermore, 
social and cultural differences in gender norms also may influ-
ence ascertainment or self-reporting of infection symptoms or 
access to medical care. While the incidence of infection is often 
higher in males, females often show greater morbidity. Increased 
infection severity in females may result from stronger innate and 
adaptive responses in females that lead to more extensive immu-
nopathology. Epidemiological studies from the 1957 H2N2, 2005 
H1N1, and 2009 H1N1 pandemic IAV infections showed that the 
mortality and hospitalization of patients following viral infection 
was higher for females than males during their reproductive 
years (77, 79–81). This suggests that adult levels of sex hormones 
modulate immunity to IAV infection; however, these studies did 
not measure immune responses at the molecular or cellular level. 
Females in their reproductive years also have increased asthma 
incidence (58), which may alter immune responses and increase 
IAV-induced pathology. In contrast, infection of young males 
(<age 20) and elderly adults (>age 80) led to greater hospitaliza-
tion or morta lity (80). While this might suggest that lower levels of 
androgens in young boys and elderly men correlate with increased 
infection severity, information about comorbidities and measure-
ment of androgen levels coupled with more precise information 
regarding susceptibility of males pre- and post-puberty would be 
needed to make this correlation.

We also lack information regarding differential susceptibi lity 
to IAV infection in distinct phases of the menstrual cycle and 

in women taking oral contraceptives. These hormonal variables 
may modulate susceptibility or severity of IAV infection, as 
epidemiological data from asthmatic women and girls show 
premenstrual aggravation of asthma symptoms and alleviation of 
this cyclical effect while taking the oral combined contraceptive 
pill (58). Pregnancy was highly associated with increased mortal-
ity and morbidity following IAV infection, and one factor may 
be immune suppression by elevated estrogens and progesterone 
(82–84).

Studies of mice infected with mouse adapted and pandemic 
H1N1, and avian H3N1 and H7N9, viruses have provided valuable 
insights into sex differences in susceptibility and immunity to IAV. 
Morbidity, mortality, and the associated inflammatory response 
is greater in female than male mice at moderate IAV loads, but 
mortality of both sexes is similar at higher loads (85–87). At 
sublethal doses, females showed higher levels of TNFα, IFNγ, and 
CCL2 (85, 88) and neutralizing anti-influenza antibodies, which 
correlated with greater protection upon heterosubtypic virus 
challenge (86). At viral doses lethal in females, but not males, 
estrogen protected from mortality, as shown by comparing ova-
riectomized mice supplemented with estradiol or placebo (85). 
Estrogen replacement correlated with reduced TNFα and CCL2 
production, yet increased numbers of neutrophils and CD8+ viral 
antigen-specific T cells producing IFNγ (89). Overall, gonadally 
intact and gonadectomized females produced greater inflamma-
tory responses and showed increased morbidity following infec-
tion, suggesting that low levels of estrogens promote excessive 
inflammatory responses. In contrast, replacement of higher levels 
of estradiol to gonadectomized mice ameliorated inflammation 
and promoted adaptive immunity. This is consistent with anti-
inflammatory effects of replaced estrogen in autoimmune disease 
models (90) and the ability of ERα to negatively regulate NF-κB 
signaling [reviewed in Ref. (20)].

Ovariectomy of females followed by progesterone replace-
ment to luteal phase levels also reduced morbidity upon IAV 
infection (91). Progesterone led to increased tissue repair due to 
upregulation of the epidermal growth factor amphiregulin (Areg) 
in the lung (91). These studies suggest that progesterone-based 
contraceptives may promote recovery from respiratory virus 
infection (9).

Gonadectomy of young males increased morbidity and patho-
logy upon IAV infection, and replacement of testosterone or  
DHT, which cannot be metabolized to estradiol, reduced mor-
bidity, mortality, and inflammation (85, 92). In contrast, tes-
tos terone treatment of old male mice, which have decreased 
testosterone levels as in humans, increased survival but did not 
alter patho logy (92). These data are consistent with the ability of 
testosterone to suppress inflammation (21, 93).

In murine models of sublethal IAV infection, morbidity 
typically is most related to immune-mediated pathology rather 
than failure to clear virus (67). Thus, data from the above studies 
suggest that the increased morbidity and mortality of females is 
secondary to a strong proinflammatory response that leads to 
extensive tissue damage, while the lesser morbidity in males is 
the result of a more balanced immune response that clears virus 
with less tissue damage. Sex hormones that suppress inflamma-
tion (testosterone, progesterone, or high levels of estrogens) may 
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attenuate antiviral immune responses to an optimal level, while 
lower levels of estrogens and androgens may permit excessive 
inflammation in some cases. The evolutionary benefit of this 
disparate effect of female and male sex hormones on immunity 
remains unclear.

Other Respiratory viruses
Infection by two other respiratory viruses leads to increased mor-
bidity in males. RSV is a common respiratory tract infection that 
most often progresses to the lower respiratory tract with severe 
consequences in infants and the elderly. The overall incidence 
of RSV is higher in young boys than girls (94, 95); however, the 
possible immunological basis of this sex difference and the role 
of sex hormones remains unknown. In outbreaks of pathogenic 
coronaviruses including the severe acute respiratory syndrome 
(SARS-CoV) and the Middle East respiratory syndrome (MERS-
CoV), males showed increased infection incidence and severity 
(96, 97). Male mice showed enhanced susceptibility to SARS-
CoV including elevated viral titers and increased accumulation 
of inflammatory monocytes and neutrophils in the lungs (98). ER 
signaling in females may be protective in this infection since ova-
riectomy or treatment with an ER antagonist increased mortality, 
while male gonadectomy did not alter disease outcome.

SeX DiFFeReNCeS iN iNNATe iMMUNe 
CeLLS DURiNG ReSPiRATORY viRUS 
iNFeCTiON

During respiratory viral infection, responses of lymphoid and 
myeloid innate cells play a crucial role in early antiviral protec-
tion and promote the generation of adaptive immune responses 
including effector and memory T and B cells. Here, we highlight 
studies demonstrating sex differences and effects of sex hormones 
in the number, function, and development of innate cells in 
the respiratory tract (Figure  1). We also review reports of sex 
differences and sex hormone regulation in innate cells in other 
tissues, which may inform our understanding of sex-dependent 
regulatory mechanisms in the respiratory tract. This topic is the 
subject of excellent recent reviews (74, 93, 99, 100).

iNNATe LYMPHOCYTeS

Type ii iLC2s
Innate lymphoid cells are tissue-resident cells that develop from 
lymphoid progenitors but lack antigen specific receptors. Like 
T cells, ILCs are divided into the ILC1, ILC2, ILC3, and natural 
killer cell (NK) subsets based on expression of fate-determining 
transcription factors and cytokine production (101). In homeo-
stasis, ILC2s are the predominant ILC subset in the murine lung 
(102), and both ILC2s and ILC3s are predominant in human 
lung (103). NKs (see below), ILC1s, and ILC2s generate innate 
responses during IAV infection while the role of ILC3s has not 
been investigated. Notably, ILC2s in murine lung, BM, and small 
intestine express high levels of Ar but little Esr1 or Esr2 (27–30).

Respiratory viral infections cause death of lung epithelium 
mediated by viral toxicity and immune cell activation, and 

appropriate remodeling of lung tissue to maintain barrier integ-
rity is crucial (70). ILC2s are important for tissue repair following 
IAV infection as they expand and secrete Areg, IL-13, and IL-5 
(76, 104, 105). Areg promotes regeneration of the bronchial 
epithelium, and IL-13 promotes barrier integrity by inducing 
epithelial cell proliferation and survival (91, 106). IL-5 recruits 
eosinophils that promote antiviral immunity and lung tissue 
regeneration in the resolution phase (105, 107, 108). Via these 
pathways, ILC2s facilitate tissue repair in IAV and RSV infection 
(104, 109).

We and others reported sex differences in murine lung ILC2 
numbers, with female mice harboring more lung ILC2s compared 
to males in homeostasis (28, 30, 110). A functional subset of 
lung ILC2s that lack the inhibitory E-cadherin-binding receptor 
KLRG1 is uniquely present in females (28, 110). Experiments 
involving hormone replacement in gonadectomized mice and 
mice bearing global or conditional deficiency in Esr1 or Ar 
showed that the sex difference in ILC2s is regulated by androgens 
and AR but not estrogens or progesterone (28, 30, 110). Males 
have increased numbers of ILC precursors in BM, suggesting 
that androgens attenuate the progression from ILC precursor to 
mature ILC2 (110). In humans, sex differences in lung ILC2s have 
not yet been investigated; however, increased numbers of ILC2s 
are present in the blood of asthmatic females compared to males 
(30). Interestingly, sex hormones may regulate ILC2s differently 
in each tissue. Estrogen and ERα signaling sustain uterine ILC2s, 
which express high levels of Esr1 compared to lung ILC2s (27). 
Fewer ILC2s accumulate in the central nervous system of female 
mice in the EAE model of multiple sclerosis (111). A lower 
proportion of ILC2s are present in cord blood of human female 
neonates compared to males (112).

Innate lymphoid cells in gonadectomized males produce 
more IL-5 and IL-13 after stimulation (28). Similarly, DHT 
treatment in vivo decreases IL-5 and IL-13 production by ILC2s 
(30), although a direct role for AR was not tested in these stud-
ies. Together with the finding that progesterone increases Areg 
expression (91), these data suggest that IAV-infected females may 
show superior tissue repair due to increased numbers of ILC2s 
capable of producing IL-13, IL-5, and Areg.

Alternately, the higher number of ILC2s in females may 
induce more pathology due to their functional plasticity. ILC2s 
convert to ILC1-like cells producing IFNγ in response to IL-12 
and IL-18 produced during IAV infection and lung inflammation 
triggered by smoking or chronic obstructive pulmonary disease 
(113–115). Although sex differences in ILC2 plasticity during 
IAV infection have not been reported, higher numbers of ILC2s 
that are capable of converting to ILC1s at the peak of infection 
may contribute to more severe immunopathology in females.

Natural Killer (NK) Cells
Natural killers are cytotoxic innate lymphocytes that control 
viral burden via their early production of IFNγ (116). NKs 
enhance DC migration and T cell recruitment upon infection 
with a sublethal IAV dose, but depletion of NKs was protective 
after infection with a lethal dose (116). Human and murine 
NKs express ERs and PR but not AR (Table 1). Human stud-
ies revealed higher numbers and cytotoxic activity of blood 
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NK  cells in males compared to females (117–119). This sex 
difference was reversed in old age (120). Studies show that 
NK numbers in blood correlate with stages of the menstrual 
cycle, suggesting regulation by sex hormones (121–123). 
In pregnancy, the recruitment of NKs from the blood to the 
uterine mucosa coincides with the dramatic rise in estriol and 
progesterone (124, 125). However, the effect of estrogen or 
progesterone on NK cell activity is unclear since some studies 
showed that in vitro (human) or in vivo exposure to estrogen or 
progesterone decreases NK cell activity while others found no 
effect (33, 126–129). Sex differences in NK numbers or function 
during IAV infection have not been reported.

Gamma Delta (γδ) T Cells
Innate γδ T  cells bear TCRs with limited junctional diversity 
that recognize intact protein antigens and small phosphate or 
amine containing molecules (130). γδ T  cells are divided into 
different tissue-specific subsets based on predominant pairings 
of particular Vγ or Vδ genes (131). γδ T cells show important 
functional responses during infection by RSV and IAV. In murine 
RSV infection, γδ T cells are recruited to the lungs and produce 
IFNγ, IL-17A, IL-10, and IL-4 resulting in the activation of 
other innate cells (132). Vγ4+ T cells also secrete IL-17A during 
IAV H1N1 infection to aggravate acute lung immunopathology 
(133). Levels of circulating Vγ9/Vδ2 T cells in adult women were 
significantly higher than in men (134); however, another study 
showed the opposite trend (135). Sex differences in γδ T cells in 
mice have not been reported.

Natural Killer T Cells (NKT)
Natural killer T cells facilitate cross-talk between the innate and 
adaptive immune system during viral infection. NKT  cells are 
a subset of T  lymphocytes expressing a restricted αβ TCR that 
recognizes CD1d-bound lipids. NKT cells play a protective role 
in IAV infection through their secretion of IL-22 and IFNγ to 
activate NK cells and CD8+ T cells (67). The absence of NKTs in 
a murine model of RSV infection led to a delay in viral clearance, 
suggesting a protective role in infection (136). In mice, estrogen 
acting via ERα regulates a sexual dimorphism in NKT function. 
Administration of estradiol to ovariectomized mice increased 
NKT IFNγ production upon in vivo stimulation by IL-12 + IL-18 
and a CD1d ligand, and NKTs in ERα−/− mice produced less 
IFNγ (36). Reports of sex differences in human NKTs are incon-
sistent, and data from the Immunological Genome Project show 
only low levels of sex hormone receptor RNA in human NKTs 
(Table 1). Increased blood NKT cell numbers in women relative 
to men was reported in some studies (137–139). Sex differences in 
NKT cells in respiratory virus infection have not been reported, 
but in view of the above studies, analyses of possible sex disparate 
responses in NKT function in murine models of IAV or RSV may 
yield important insights.

innate Lymphocyte Summary
Innate lymphocytes express sex hormone receptor RNAs at 
varying levels depending on the subset and tissue location 
(Table  1). While NK and NKT  cells primarily express ERs, 
lung ILC2s predominantly express AR, suggesting regulation 

of the classes of innate lymphocytes by distinct sex hormone-
mediated mechanisms. However, we lack information about sex 
differences in numbers and function of these diverse subsets 
in the murine lung during respiratory virus infection. Recent 
studies have shown a profound sex difference in numbers and 
functional responses of murine lung-resident ILC2s, and AR 
signaling decreases numbers of ILC2s in males. Future work 
will determine if this numerical disparity in ILC2s leads to 
sex differences in the resolution of respiratory virus infection. 
Reports of sex differences in numbers or function of innate 
lymphocytes in human blood are often conflicting, and more 
studies that carefully correlate gender, age, and sex hormone 
status with lymphocyte numbers and function in blood or tis-
sues are needed to clarify the field.

MYeLOiD CeLLS

Neutrophils
Neutrophils are the predominant infiltrating innate cell type 
during respiratory viral infection in both humans and mice. 
Neutrophils mediate antiviral defense via their production of 
proinflammatory cytokines and reactive oxygen species (140). 
Their role in respiratory viral infection remains unclear, as they 
cause pathology and susceptibility to secondary infections in 
mice. Neutrophil numbers and neutrophil extracellular trap 
(NET) formation directly correlate with the severity of RSV 
infection (141, 142).

Neutrophils express ER and AR (Table  1), and sex differ-
ences in the number and function of neutrophils in humans 
have been reported. Neutrophil numbers in blood are increased 
during pregnancy and the luteal phase of the menstrual cycle, 
suggesting that higher levels of progesterone or estrogens pro-
mote neutrophil numbers (143–145). Neutrophils from healthy 
women of reproductive age show improved survival in  vitro 
compared to those of healthy men. Estradiol and progesterone 
contribute to the delay in neutrophil apoptosis by decreasing 
expression of the pro-apoptotic protein caspase 3 (146). Other 
studies showed that sex hormones modulate neutrophil function 
in vitro, including chemotaxis and nitric oxide and superoxide 
production (147–149).

Sex hormones also regulate neutrophil numbers in homeo-
stasis and infection in murine models. AR-deficient mice show 
reduced numbers of neutrophils and neutrophil precursors in 
BM (41). Consistent with regulation of neutrophil numbers by 
AR signaling, the enhanced susceptibility of male mice to SARS-
CoV infection was associated with increased accumulation of 
neutrophils in the lung (98). In contrast, estradiol treatment of 
ovariectomized females elevated neutrophil chemoattractants 
and recruitment of neutrophils into the lungs, thereby increasing 
protection in IAV infection (89).

eosinophils
Eosinophils enhance antiviral immunity during RSV infection by 
sensing viral RNA via TLR7 and producing nitric oxide (150). 
In IAV infection, eosinophil degranulation and activation of 
viral antigen specific CD8+ T  cells increases protection against 
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infection (151). Estrogen increases eosinophil migration adhe-
sion, survival, and degranulation both in  vitro (42, 152) and 
in vivo (153). Furthermore, the number of eosinophils in female 
rats peaks with higher levels of estrogen during estrus, and 
ovariectomy significantly reduces uterine eosinophils (154, 155).  
These studies suggest that female sex hormones regulate eosino-
phil numbers, but sex differences in the numbers or function 
of eosinophil during respiratory viral infection have not been 
reported. Since eosinophils were reported to express very little 
Esr1 and no Ar or Pgr RNA (Table 1), sex differences in eosino-
phil numbers may be secondary to the sex differences in numbers 
of IL-5-producing ILC2s.

Alveolar Macrophages
Alveolar macrophages are lung-resident phagocytic cells that 
induce protective antiviral immune responses via production 
of soluble mediators (156). In viral infection, AMs produce 
high levels of type I IFN important for viral clearance and 
chemokines that recruit inflammatory monocyte into the lung 
(156). Sex differences or the effect of sex hormones in AM func-
tion during respiratory virus infection have not been described, 
although murine AMs express both ERα and AR (73). Studies 
of peritoneal macrophages, which also express ERβ, offer some 
insight into how AMs may be regulated by sex hormones 
during virus-induced inflammation. Increased numbers of 
macrophages were present in the pleural and peritoneal cavi-
ties of female mice, and they showed higher levels of TLRs and 
phagocytic capacity, which was associated with stronger acute 
inflammatory responses (157). Consistent with this, inflam-
matory TLR-mediated responses of human monocyte-derived 
macrophages and murine peritoneal macrophages were 
enhanced by estrogen and reduced by testosterone exposure 
(158–161).

The roles of sex hormones in AM function during allergic 
asthma may provide insight into sex differences in AM func-
tional responses in viral infection. AMs are polarized to an 
M1 phenotype in a type 1 environment involving IFN or to an 
M2 phenotype in a type 2 environment involving IL-4/IL-13.  
In allergy models, female mice show an increased type 2 polar-
ized AM response, and estrogen signaling via ERα in AMs was 
an important driver of the allergic response in vivo (73, 99, 162).  
This is consistent with other reports that female sex and/or 
ERα signaling promotes M2 macrophage function in cutane-
ous wound healing (163), Coxsackievirus-induced myocarditis 
(164), and atherosclerosis (53). In contrast, AR activity in mac-
rophages suppresses wound healing by enhancing local TNFα 
expression (165). These data suggest that estrogens and ERα 
may promote, while AR may attenuate, the type 2 responses 
that promote tissue repair in the resolution phase of a viral 
infection.

Monocytes and Monocyte-Derived Cells
Monocytes respond to viral infection by secreting cytokines 
and chemokines. They also are precursors to “inflammatory”  
macrophages or DCs in tissues. Following virus infection, 
CCR2+ monocytes are recruited via the chemokine CCL2 
from blood to the lung, where they differentiate into DC- or  

macrophage-like cells often producing proinflammatory cyto-
kines such as TNFα and IL-12 (166). Physiological levels of 
estradiol decrease expression of CCR2 and CXCR3 on murine 
monocytes in vivo, suggesting that ER signaling might reduce 
monocyte recruitment to tissues (167). Indeed, systemic estra-
diol treatment of ovariectomized mice reduced CCL2 induction 
and numbers of infiltrating monocytes during IAV infection,  
although no differences in numbers of inflammatory mono-
cyte-derived DCs (Mo-DCs) were noted (89). Consistent with 
this, SARS-CoV infection of more susceptible male mice led 
to increased accumulation of monocyte-derived cells (Ly6C+ 
CD11b+) producing proinflammatory cytokines relative to 
female mice, and depletion of the monocyte-derived cells par-
tially protected mice from a lethal infection (98). In this model,  
ovarian hormones and ER signaling in female mice were protec-
tive while orchidectomy of male mice had no effect, suggesting 
estrogens rather than androgens regulate pathogenic monocyte 
responses.

Reports of sex differences in human monocyte numbers and 
cytokine production are inconsistent and may reflect the diver-
sity of the human population. Postmenopausal women showed 
increased numbers of monocytes compared to premenopausal 
women (168). Other work showed that monocyte counts were 
higher in the luteal phase associated with higher progesterone 
levels than in the follicular phase (143). Pregnancy also was asso-
ciated with higher monocyte numbers, yet reduced capacity for 
IL-12 and TNFα production (169). Peripheral monocytes from 
healthy females produced more IL-6 upon LPS stimulation as 
compared to males (170). However, studies to determine if estro-
gens regulate pro-inflammatory cytokine production by female 
monocytes and monocyte-derived macrophages showed either 
negative (167, 171) or positive regulation (172). Macrophages 
and monocytes exposed to testosterone decreased their produc-
tion of proinflammatory cytokines and increased synthesis of 
IL-10 (173–175).

Dendritic Cells
Dendritic cells are professional antigen-presenting cells 
classified by phenotype and functional capacity into distinct 
subsets including (pDCs), conventional DCs (cDCs), and 
Mo-DCs. While the lung harbors at least three subsets of 
tissue-resident cDCs (176), pDCs and Mo-DCs enter the lung 
in significant numbers upon infection. Murine lung-resident 
DCs express Esr1 but little Ar (Table  1). The direct effect of 
sex hormone receptor signaling in these DC subsets in the 
lung during respiratory virus infection has not been reported. 
However, studies of sex differences and sex hormone effects on 
DCs in other tissues may provide some clues about lung DC  
subsets (100, 177).

Upon infection, lung-resident cDCs migrate to the draining 
mediastinal lymph nodes and prime naïve T cells. While sex dif-
ferences in the numbers or function of these DCs during virus 
infection have not been reported, no differences in lung cDC 
numbers were found in ovariectomized mice treated with placebo 
or estradiol and infected with IAV (89). Functional studies with 
murine BM-derived DCs showed that estradiol and ERα signa-
ling promote the TLR dependent production of proinflammatory 
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cytokines of cDCs in the Flt3L-driven model and inflammatory 
DCs in the GM-CSF model (178–181). Estradiol also increased 
the production of IL-8 and CCL2 from human Mo-DCs (182). 
Other studies have shown that estradiol promotes GM-CSF-
driven DC differentiation in  vitro [reviewed in Ref. (177)]. 
Estradiol acts via ERα in murine myeloid progenitors to promote 
DC differentiation by upregulating the transcription factor IRF4 
(183). In contrast, progesterone decreased TNFα and IL-1β but 
not IL-10 production by rat BM-derived DCs (184) and reversed 
estradiol-mediated changes in differentiation and function of 
BM-derived murine DCs (185). Progesterone modulated TLR-
induced activation and cytokine production by murine BM- 
derived DCs (186).

Plasmacytoid DCs rapidly respond to viral particles via 
endosomal and cytosolic sensors of viral nucleic acids and 
produce type I IFN and IFN-induced proteins that are directly 
antiviral. Female pDCs produce significantly more IFNα in 
response to viral nucleic acids or synthetic TLR7 ligands than 
male pDCs (68, 69), and this correlates with higher levels of 
ERα-regulated IRF5 in female cells (187). Estrogen signaling 
and XX chromosome dosage promoted sex differences in 
TLR7-mediated IFNα production by human pDC (32), and 
estradiol treatment of postmenopausal women enhanced their 
production of IFNα (43). Models of conditional Esr1 deficiency 
in DCs showed that ERα signaling drives sex differences in pDC 
functions (43, 188). Consistent with greater production of type 
I IFN by pDCs or other innate cells, female rats infected with 
respiratory Hantavirus showed greater expression of genes 
encoding viral nucleic acid sensors and type I IFN compared 
to males (189).

Testosterone and progesterone may suppress pDC responses, 
although pDCs do not apparently express significant levels of 
Ar or Pgr RNA in homeostasis (Table 1). Progesterone inhibits 
IFNα production by pDCs (190). Upon stimulation with a 
TLR7/8 agonist, human infant male infant pDC responses were 
significantly lower than those of females (191), which may be 
due to increased testosterone (or lower estrogen) levels in infants 
post-birth. Male PBMCs produced similar amounts of IFNα, yet 
greater amounts of IL-10 than female PBMCs upon IAV stimula-
tion, and the IL-10 may dampen type 1 inflammation in males 
(192, 193). Taken together, these studies show that female pDCs 
produce higher levels of type I IFNs, consistent with stronger 
antiviral immune responses, yet more immunopathology in 
females.

Myeloid Cell Summary
Sex differences in the numbers or functional responses of myeloid 
cells in murine models of IAV and coronavirus infection have 
been reported. Manipulation of sex hormone signaling through 
gonadectomy −/+ sex hormone replacement, or ER or AR defi-
ciency, has provided evidence for sex hormone-mediated regula-
tion of neutrophils, pDCs, monocytes, and monocyte-derived 
cells in the lung during infection. Sex differences in lung-resident 
cDCs during infection have not been reported, but these DCs do 
express Esr1 suggesting estrogens may regulate their important 
role in initiation of innate and adaptive responses to viruses. 
In asthma models in which females exhibit more disease, sex 

hormones regulate AM type 2 responses, suggesting that sex dif-
ferences in AM function during the resolution phase of respiratory 
virus infection also may occur. Overall, more research is needed 
to fully understand mechanisms of sex hormone regulation of 
myeloid cells during respiratory virus infection and how these 
may contribute to sex differences in antiviral defense.

CONCLUDiNG ReMARKS

Sex differences in immunity to respiratory viruses are evident  
in humans and experimental rodent models. Sex hormones 
may act directly in innate immune cells or their precursors to 
promote or attenuate their function, but it is also probable that 
innate cells are indirectly modulated by actions of other immune 
or non-immune cells responding to sex hormones. Differential 
regulation of innate cells by sex hormones during the proinflam-
matory/effector phase and resolution/repair phase is likely to 
shape the mechanisms of viral clearance and the host capacity to 
resolve inflammation and repair damaged tissue. For example, 
estrogens and ER signaling may promote IFN production by 
pDCs and NKT  cells early post-infection, but also type 2 or 
regulatory responses of AMs important for optimal resolution 
of the infection. Sex or sex hormones may not have universal 
effects during respiratory virus infection. Indeed, although 
endogenous estrogens in gonad-intact murine females promoted 
inflam mation during IAV, they were protective in coronavirus 
infection.

While elegant studies of sex differences and the role of sex 
hormones have informed the field of innate antiviral immunity, 
we still lack information on how sex hormone receptors act in 
individual cell types to regulate functional responses. Many 
reports of sex differences or sex hormone effects in immunity 
are conflicting, most likely because of experimental approaches 
that do not fully take into account sex hormone levels varying 
due to age or cycle, difficulty in reproducing natural sex hormone 
levels via manipulation in vitro or in vivo, or hormone imbalances 
in globally Ar or Esr1 deficient mice. Our understanding of sex 
biases in the antiviral responses of innate lymphoid and myeloid 
cells of the respiratory tract will be greatly facilitated by more 
precise approaches and measurements enabled by emerging tech-
nologies. When possible, careful studies of innate immune cells 
in the respiratory tract of infected humans would also contribute 
greatly to our understanding of sex-specific molecular and cel-
lular pathways that underlie population data on incidence and 
severity of viral infections.

Whether sex differences in immunity confer an advantage 
at the population level remains unclear. Ideally, the capacity 
for strong immune responses to infection or tumors would 
be balanced by a lesser propensity for autoimmunity. Studies 
suggest this continuum differs between the sexes, with females 
often capable of superior immunity to pathogens but more 
susceptible to autoimmunity (2), although not all reported 
data fit into this simple model. Sex differences in immune 
function may arise as a byproduct of the distinct levels of 
androgens and estrogens that specify biological sex and gonad 
development. Consistent with their ability to bind DNA and 
regulate chromatin conformation, sex hormone receptors may 
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act early in the pre- or postnatal period or during puberty to 
imprint sex-specific epigenetic patterns in the genome (5, 20). 
Epigenetically imprinted regions of open or closed chromatin in 
hematopoietic progenitors may differ between the sexes, and a 
sex divergent epigenome may be reinforced in mature immune 
cells in response to the sex hormone environment. The chal-
lenge of the field is to understand how sex hormones and their 
receptors regulate the epigenome and transcriptome in innate 
immune cells to mediate sex-divergent pathways that govern 
antiviral immune responses.
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