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Abstract

Modern genomic data sets often involve multiple data-layers (e.g., DNA-sequence, gene

expression), each of which itself can be high-dimensional. The biological processes underly-

ing these data-layers can lead to intricate multivariate association patterns. We propose and

evaluate two methods to determine the proportion of variance of an output data set that can

be explained by an input data set when both data panels are high dimensional. Our

approach uses random-effects models to estimate the proportion of variance of vectors in

the linear span of the output set that can be explained by regression on the input set. We

consider a method based on an orthogonal basis (Eigen-ANOVA) and one that uses random

vectors (Monte Carlo ANOVA, MC-ANOVA) in the linear span of the output set. Using simu-

lations, we show that the MC-ANOVA method gave nearly unbiased estimates. Estimates

produced by Eigen-ANOVA were also nearly unbiased, except when the shared variance

was very high (e.g., >0.9). We demonstrate the potential insight that can be obtained from

the use of MC-ANOVA and Eigen-ANOVA by applying these two methods to the study of

multi-locus linkage disequilibrium in chicken (Gallus gallus) genomes and to the assessment

of inter-dependencies between gene expression, methylation, and copy-number-variants in

data from breast cancer tumors from humans (Homo sapiens). Our analyses reveal that in

chicken breeding populations ~50,000 evenly-spaced SNPs are enough to fully capture the

span of whole-genome-sequencing genomes. In the study of multi-omic breast cancer data,

we found that the span of copy-number-variants can be fully explained using either methyla-

tion or gene expression data and that roughly 74% of the variance in gene expression can

be predicted from methylation data.
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Introduction

Modern genomic data often combine information from multiple data-layers, each of which

itself can be high-dimensional. Examples of this include data sets comprising of information

from several omics, or those combining genomic information with high-throughput pheno-

typing (e.g., crop-imaging, milk infrared spectra data). The biological processes underlying

each of the data-layers can induce complex dependencies between features within each layer

(e.g., linkage disequilibrium among single nucleotide polymorphisms, SNPs) as well as

between layers (e.g., the association between DNA and gene expression, GE). The main goal of

this study is to develop and to evaluate methods to quantify multivariate-associations in set-

tings in which both the input and output sets are high dimensional.

The methods proposed in this study can be used to answer ubiquitous questions such as:

How much of the inter-individual differences in whole-genome sequence genotypes can be

predicted using a low-density SNP array? What proportion of variance in GE can be explained

by differences in DNA methylation (ME)? How much of the variance in image-derived pheno-

types can be predicted from DNA genotypes?

Canonical Correlation Analysis (CCA, [1]), Multivariate-Analysis of Variance (MANOVA,

[2]) and Reduced Rank-Regressions, (e.g., Partial Least Squares, PLS, [3]) are three methodolo-

gies often used to assess associations in multi-dimensional problems. However, these

approaches have limitations that make some of them inadequate for estimating the proportion

of variance explained when both the output and input layers are high-dimensional.

Canonical Correlation Analysis extends the concept of the correlation between two random

variables to a multivariate context. However, correlation is symmetric by nature. Therefore,

CCA cannot address questions regarding the proportion of variance explained when the pro-

portion of variance of one set (e.g., X) that is explained by another set (W) is not equal to the

reciprocal (i.e., the proportion of variance of W that can be explained by X). Many multi-lay-

ered data sets are not expected to have a symmetric variance-decomposition (we will illustrate

this using simulated and experimental data).

Multivariate Analyses of Variance (MANOVA, [4]) is often used for ANOVA when both

the response and the explanatory data sets are multi-dimensional. However, MANOVA is

based on least-squares projections; therefore, the methodology is not well-suited for cases

when data is high dimensional, including rank-deficient cases. Most of the problems that we

focus on involve high-dimensional data where the number of features exceeds sample size;

thus, making least-squares methods such as MANOVA inadequate.

Reduced-rank regressions [5] and penalized multivariate analysis methods [6] are often

used to analyze high-dimensional data. However, the results that one can obtain using regular-

ized methods rely on regularization decisions (e.g., the number of dimensions used in PLS or

CCA, or the sparsity parameters in sparse CCA) which cannot be made using fitness (e.g., the

likelihood function) or lack-of-fit measures (e.g., residual sum of squares) evaluated in the

training data. Thus, these parameters are often tuned to maximize prediction accuracy in test-

ing sets. However, solutions derived by maximizing cross-validation prediction accuracy are

not necessarily optimal for inferences because prediction accuracy is highly dependent on the

relationship between sample size (n) and model complexity (e.g., number of parameters, p).

Thus, in cases where p>>n, optimal prediction accuracy may be achieved with a highly parsi-

monious model (e.g., a principal component regression based on a few axes) that can produce

severely biased estimates of effects. Therefore, to overcome the limitations of existing methods,

in this study, we developed and evaluated approaches for estimating the proportion of variance

explained when both the input and output sets are high-dimensional.
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Results

We developed two methods that use random-effects models to estimate the proportion of vari-

ance of independent vectors in the linear span of an output layer that can be explained by

regression on an input layer. We considered two approaches for generating a sequence of inde-

pendent vectors in the linear span of the output layer: A Monte Carlo method (MC-ANOVA)

which uses random vectors, and one based on eigenvectors (Eigen-ANOVA).

Setting the stage

Consider a data set consisting of two numeric matrices, Xn×p and Wn×q, holding data for n
individuals (rows) and p (X) and q (W) features in columns, respectively. For instance, X may

be a matrix with genotype codes at p SNPs and W may be a matrix providing GE levels

assessed at q genes. The columns of X = {x1,x2,. . .,xp} and of W = {w1,w2,. . .,wq} can be viewed

as axes spanning two linear spaces (LX and LW, respectively). The linear spans (extensions to

nonlinear settings will be addressed in the discussion) of X and W consist of all the vectors that

can be obtained by forming linear combinations of the columns of each of these sets, that is

LX ¼ fxs : xs ¼ Xαs ¼
Pp

j¼1
xjasjg and LW ¼ fws : ws ¼Wδs ¼

Pq
j¼1

wjdsjg, for all real-val-

ued vectors αs = {αs1,. . .,αsp} and δs = {δs1,. . .,δsq}. In the following, we will use W as the input

set and X as the output set; however, the methods proposed are not symmetric and additional

knowledge can be gained by switching the roles of X and W.

For each vector xs2LX, one can estimate the proportion of variance that can be explained by

linear regression on LW using a model of the form

xs ¼Wβþ ε: ð1Þ

For cases where q is large, the proportion of variance of xs that can be explained by regres-

sion on LX ðR2
xs
Þ can be estimated by regarding both β and ε as Gaussian independent random

variables, b
iid

�
Nð0; s2

b
Þ and, ε

iid

�
Nð0; s2

εÞ. Upon appropriate scaling of the columns of X (see

Materials and Methods for details) R2
xs
¼

s2
b

s2
b
þs2

ε
can be interpreted as the proportion of variance

of xs that could be explained by regression on the features included in W. The variance param-

eters involved (s2
b

and s2
ε) can be estimated using Bayesian or Likelihood methods (e.g.,

restricted maximum likelihood, REML, [7]), as such methods were designed to handle com-

mon challenges of overfitting and collinearity in high dimensional data.

In the preceding paragraph we describe how one can estimate the proportion of variance of

a vector in LX (xs) that can be explained by regression on W. Next, we generalize the idea to all

vectors in LX. However, LX contains an infinite number of vectors; therefore, some approxima-

tion is needed. Perhaps the most natural approach for estimating the proportion of variance of

vectors in LX that can be explained by regression on LW is to regress each of the columns of X
on W. Such an analysis would produce a sequence of R2 estimates fR2

x1
;R2

x2
; . . . ;R2

xp
g, and the

average R2, R2
X�W ¼ p

� 1
Pp

s¼1
R2
xs

, could be used to estimate the overall proportion of variance

of X that could be explained by regression on W. However, one limitation of this approach is

that the columns of X are not necessarily independent. Many features may cluster (e.g., genes

may be co-expressed, or SNPs may be in high linkage-disequilibrium) leading to groups of

highly unbalanced sizes. When some features are highly-correlated, the simple average of indi-

vidual R2-values may be driven by a few clusters of the columns of X. Furthermore, when X is

ultra-high dimensional (e.g., hundreds of thousands or million features) estimating R2
xs

PLOS ONE ANOVA-HD: Analysis of variance for multi-layer high-dimensional data.
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(s = 1,. . .,p) one-feature-at-a-time will be computationally challenging. Therefore, to address

these problems, we propose two methods that use independent vectors from the span of the

output set; each of these methods are explained next.

Monte Carlo analysis of variance (MC-ANOVA)

Since LX is infinite, one cannot estimate R2
xs

for all vectors in LX. However, one can ‘explore’

the linear span of the output set by generating random vectors in LX of the form xs = Xαs,
where αs is sampled from some distribution. This can be repeated for a large number of vectors

in LX to produce a sequence of estimates fR2
xs
g, and the resulting sequence can be used to esti-

mate the average proportion of variance explained as well as other features of the distribution

of the sequence. The method is summarized in Box 1. Importantly, if αs and αs0 are indepen-

dent, so are xs and xs0. Indeed, noting that X is not random and assuming that αs and αs0 are

sampled independently, we have that pðXαs;Xαs0Þ ¼ pðXαsjXαs0ÞpðXαs0Þ ¼ pðXαsÞpðXαs0jXÞ;
therefore, xs and xs0 are independent.

In Box 1 we did not specify how the αs are generated; for this aspect of the algorihtm there

are countless possibilities: weights can be sampled from distributions with continuous support

(e.g., p-variate Gaussian) or from mixture models with a point of mass at zero. The weights

may be independent or correlated, and the distributions may be symmetric or skewed. We will

show later on (using data from chicken genomes) that the process used to generate the weights

may affect some features of the distribution of the R2 values, albeit not necessarily the mean or

the median R2. The possibility of using different processes for generating random vectors in

LX gives the MC-ANOVA a great deal of flexibility. For example, this method could be used to

assess how the distribution of the proportion of variance explained may change for different

trait architectures–we will further explore that flexibility in greater detail in one of the case

studies presented below.

Regression using orthogonal basis (Eigen-ANOVA)

An orthogonal basis for the row-space of X can be obtained from the singular-value decompo-

sition of X ¼ UXDXV
0

X, where UX and VX are the left- and right-singular vectors of X

Box 1. Monte Carlo analysis of variance (MC-ANOVA)

1. Draw a random vector αs from a proper multivariate distribution.

2. Form the linear combination xs = Xαs.

3. Estimate the proportion of variance of xs ðR2
xs
Þ using a random-effects model

(expression [1]) with variance parameters estimated using either Bayesian or likeli-

hood-type methods.

4. Repeat 1–3 B times (e.g., B = 10,000).

5. Use the sequence of estimated R-squared fR2
x1
; . . . ;R2

xB
g to approximate the distri-

bution of the R2
xs

. An estimate of R2
X�W can be obtained using the median or the

average, R2
X�W ¼ B

� 1
PB

s¼1
R2
xs

, R-sq. in the sequence.
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respectively, and DX is a diagonal matrix with the singular values of X in the diagonal. Both UX
and VX are orthonormal, thus U 0XUX ¼ I and V 0XVX ¼ I. Each vector in LX can be represented

as a linear combination of the left-singular vectors of X. Therefore, our second method esti-

mates the proportion of variance of each of the left-singular vectors of X that can be explained

by regression on W, and produces a global R2 estimate using a weighted sum of the R2 esti-

mated for each singular vector (Box 2, note that d2
i and UX in Box 2 are also the non-zero

eigenvalues and the eigenvectors of XX0, respectively).

Statistical properties assessed via simulations

We evaluated the statistical performance of the two methods described above using simulated

data panels with a known proportion of variance shared between input and output data set.

We also compared the performance of the two proposed methods with that of the Partial Least

Squares (PLS, [3])–a method commonly used to analyze high dimensional data. We consid-

ered two simulation settings. In both cases, the input set was obtained from a wheat (Triticum)

genotype data set generated by the International Maize and Wheat Improvement Center

(CIMMYT) which contains genotypes at 1,279 DNA-markers assessed in 599 wheat inbred

lines (see Materials and Methods for further details on this data set).

We note here that while a genotype matrix contains strictly discrete values (0/1 or -1/1 for

inbreed lines and 0/1/2 or -1/0/2 for outbred diploid individuals) the linear span of it includes

vectors in Rn. The vectors in the linear span of the genotypes can be thought as ‘breeding val-

ues’ formed as linear combinations of genotypes.

In our first simulation setting, W599×1,279 was the genotype matrix and X599×1,279 was

obtained by adding iid (independent and identically distributed) Gaussian noise to the geno-

type matrix. We tuned the variance of the noise to generate scenarios of the proportion of vari-

ance of X explained by W ranging from 0 (X was pure noise) to 1 (X =W). For each simulated

data set we then estimated the proportion of variance of X explained by regression of W using

random-effects models, with variance parameters estimated using REML [7] (see Materials

and Methods for details).

The Monte Carlo method estimated the proportion of variance of X explained by W with-

out any noticeable bias (Table 1). However, the regression of the left-singular vectors of X on

W in Eigen-ANOVA produced estimates that were downwardly biased in case the true

Box 2. Eigen-ANOVA

1. Generate an orthogonal basis for LX; for instance, compute the singular-value

decomposition of X ¼ UXDXV
0

X where U 0XUX ¼ I and V 0XVX ¼ I form an ortho-

normal basis for the row- and column space of X respectively, and DX = Diag{di} is

a diagonal matrix with the singular values of X in its diagonal (i = 1,. . .,r, where r
is the rank of X).

2. Regress each of the left-singular vectors on LW using a linear model such as that in

expression [1] with ui = xs, and estimate the proportion of variance of each vector

that can be explained by regression on LW, R2
ui

.

3. Estimate the global proportion of variance of vectors in LX that can be explained

by regression on LW using R2 ¼

Pr

i¼1
d2
i R

2
uiPr

i¼1
d2
i

.
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proportion of variance of X explained by W was large (e.g., >0.5). Further inspection of the

results for individual MC replicates suggested that the bias of the Eigen-ANOVA method was

likely due to a relatively large number of ‘corner’ solutions (zero estimated proportion of vari-

ance) which were common for high-order eigenvectors (i.e., those with small eigenvalue)–we

illustrate this in an analysis of multi-omic cancer data further below. The use of PLS led to a

downwardly bias estimates in cases where the proportion of variance of X explained by W was

low (0.1, 0.3, 0.5) and an upwardly biased estimates when proportion of variance explained

was high (0.8, 0.9).

We then considered a second simulation setting to contemplate cases involving asymmetric

proportion of variance explained. To achieve this, we formed X using a subset of the wheat marker

genotypes (5%, 10%, 30%, 50%, 80%, 90%, 95%) and formed W by binding the columns of X with

additional columns filled with iidGaussian noise (Z), that is W599×1,279 = [X599×p, Z599×(1,279−p)]

(p<1,279). The columns of X and W were centered and scaled to unit variance; therefore the

share of the variance of W explained by X (R2
W�X) is known and equal to,

p
1;279

. Similarly, the pro-

portion of variance of X explained by W (R2
X�W) is 1 because X is included in W.

In our second simulation study, the MC-ANOVA method rendered nearly unbiased esti-

mates of the proportion of variance of one set explained by the other (Table 2). However, the

Eigen-ANOVA method and the PLS produced noticeable biases, with Eigen-ANOVA method

again generating downwardly biased estimates in cases where the true proportion of variance

explained was high, and the PLS generating downwardly (upwardly) biased estimates when-

ever the true proportion of variance was low (high).

Applications to experimental data

We used the MC-ANOVA and Eigen-ANOVA to quantify the proportion of variance

explained in two experimental data sets. The first one contains a set of ultra-high-density

Table 1. Average (SD) estimate of the proportion of variance explained by simulation scenario (first column) and estimation method (simulation 1).

True proportion of variance explained Estimates

Monte Carlo- ANOVA Eigen-ANOVA PLS

0.0 0.0082 (0.0028) 0.0081 (0.0006) 0.0017 (0.0001)

0.1 0.1002 (0.0083) 0.0983 (0.0019) 0.0478 (0.0034)

0.3 0.2991 (0.0108) 0.3020 (0.0028) 0.2412 (0.0075)

0.5 0.4992 (0.0102) 0.5054 (0.0028) 0.4865 (0.0076)

0.8 0.8006 (0.0055) 0.7857 (0.0017) 0.8451 (0.0036)

0.9 0.9012 (0.0033) 0.8685 (0.0011) 0.9403 (0.0016)

1.0 1.0000 (< .0001) 0.9377 (< .0001) 0.9988 (< .0001)

https://doi.org/10.1371/journal.pone.0243251.t001

Table 2. Average (SD) REML estimates of the proportion of variance explained by simulation scenario (first column) and estimation method (simulation 2).

Scenario X regressed on W W regressed on X
Columns of X
Columns of W

MC-ANOVA Eigen-ANOVA PLS MC-ANOVA Eigen-ANOVA PLS

0.05 0.9960 (0.0039) 0.9085 (0.0051) 0.8885 (0.0069) 0.0505 (0.0050) 0.0548 (0.0012) 0.0244 (0.0029)

0.10 0.9972 (0.0030) 0.8891 (0. 0041) 0.9193 (0.0036) 0.1000 (0. 0072) 0.1061 (0. 0018) 0.0652 (0.0038)

0.30 0.9964 (0.0025) 0.8835 (0.0024) 0.9781 (< .0001) 0.2999 (0.0106) 0.3060 (0.0028) 0.2656 (0.0068)

0.50 0.9943 (0.0028) 0.8989 (0.0019) 0.9954 (< .0001) 0.4996 (0.0102) 0.4977 (0.0030) 0.4902 (0.0072)

0.80 0.9965 (0.0013) 0.9223 (0.0010) 0.997 (< .0001) 0.8000 (0.0061) 0.7714 (0.0025) 0.8259 (0.0047)

0.90 0.9992 (0.0005) 0.9302 (0.0008) 0.9979 (< .0001) 0.9008 (0.0039) 0.8593 (0.0019) 0.9277 (0.0035)

0.95 0.9998 (0.0002) 0.9345 (0.0008) 0.9984 (< .0001) 0.9511 (0.0026) 0.9016 (0.0013) 0.9746 (0.0025)

https://doi.org/10.1371/journal.pone.0243251.t002
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(UHD) SNPs from chicken (Gallus gallus) genomes derived from a combination of whole-

genome sequencing (WGS) and imputation. We used this data set to assess the proportion of

variance of UHD genotypes that can be captured and predicted using low-density SNP sets.

The second data set involved three omic-layers (gene expression [GE], methylation [ME], and

copy-number-variants [CNVs]) of human (Homo sapiens) female breast cancer patients. We

used this data set to assess the proportion of variance at one omic that can be explained by

another omic.

Quantifying multi-locus linkage disequilibrium between SNP panels. The continued

reduction of genotyping and sequencing costs has led to a sustained increase in the number of

loci that can be genotyped. In plant and animal breeding four typical genotyping options

include customized low-density arrays with hundreds to a few thousand SNPs [8], commercial

arrays of common SNPs with tens of thousands of SNPs [9], high-density SNP arrays with

hundreds of thousands of SNPs [10, 11], and whole-genome sequence-derived SNP genotypes.

The number of SNPs that can be derived from WGS varies between populations and sequenc-

ing depth but is usually of the order of tens of millions (UHD SNP genotypes). In recent years,

several projects have produced large volumes of fully sequenced genomes for various agricul-

tural species and model organisms. However, generating, storing, and fitting models with

UHD-genotypes can be logistically, economically, and computationally challenging. More-

over, empirical evidence seems to suggest that using UHD SNP-genotypes does not lead to

substantial gains in prediction accuracy relative to models trained using tens of thousands of

SNPs [12–15]. This often leads to researchers wondering:How many SNPs are needed to cap-
ture (almost all) the information contained in UHD SNP genotypes? We used the MC- and

Eigen-ANOVA methods to address precisely this question.

Data consisted of 1.79 million SNP-genotypes for 892 (female and male) chickens from six

generations of a purebred commercial brown layer line of Lohmann Tierzucht GmbH. These

genotypes originated from a combination of whole-genome sequencing of 25 layers and impu-

tation to UHD of the genomes of 867 that were genotyped a high density (~600,000 SNPs)

Affymetrix Axiom Chicken Genotyping Array [16]. Further details about this data set can be

found in the Materials and Methods section.

In a first analysis, the output space was the linear space (LX) spanned by the UHD SNP

genotypes. The input set, (LW), consisted of low-density genotypes obtained by selecting p
(p = 500, 1K, 2K, 3K, 5K, 10K, and 50K) evenly-spaced (in variant counts) SNPs. We estimated

the proportion of variance captured by low-density panels using the MC- and Eigen-ANOVA

methods. For the MC method we sampled weights from iid standard normal distribution,

ajs
iid

�
Nð0; 1Þ, and then formed a random vector in LX using xs = Xαs, where X is the matrix of

UHD SNP-genotypes. These random vectors were then regressed on the lower-density SNP

sets, and the proportion of variance explained was estimated using REML. This was repeated

1,000 times to estimate the distribution of the proportion of variance of vectors in LX explained

by each of the low-density SNP-sets. For the Eigen-ANOVA method, we regressed each of the

left-singular vectors of the UHD SNP genotypes on the low-density panels.

According to the MC-ANOVA method, the panel containing 500 evenly-spaced SNPs cap-

tured about two-thirds of the variance spanned by the UHD SNP genotypes (Fig 1). The pro-

portion of variance of the UHD SNPs explained by low-density panels increased with the

number of SNPs in the low-density panels reaching 100% with p> = 10K SNPs. The variance

in the proportion of variance captured by low-density panels also decreased with the number

of SNPs in the array (Fig 1). Small sample size and small effective population size are further

factors that may make 10K SNPs to be sufficient to achieve a very high R-sq.

PLOS ONE ANOVA-HD: Analysis of variance for multi-layer high-dimensional data.
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The Eigen-ANOVA yielded a very similar estimate of the proportion of variance explained

as the MC-ANOVA for p = 500. However, for SNP-panels with more than 500 SNPs, the esti-

mated proportion of variance obtained with the Eigen-ANOVA was systematically lower than

the one obtained with MC-ANOVA. This agrees with what we found in the simulations where

for high R2 the Eigen-ANOVA method gave downwardly biased estimates. (Note that while

the MC-ANOVA yields both a point estimate and measures of dispersion (across random vec-

tors) of R2, the Eigen-ANOVA only yields the point-estimates which are shown in Fig 1.)

In the previous application of the MC method, we drew random effect vectors that had

weights (drawn from a normal distribution) on all the SNPs of the UHD set. When X contains

whole-genome sequence genomes, one can think of the random vectors in LX (xs = Xαs) as

additive-genetic traits and of the MC method as exploring many possible of such traits. How-

ever, for any trait, the vast majority of variants in the genome are expected to have no effect.

Fig 1. Proportion of the variance of whole-genome-sequence-derived SNPs (1.79 million) explained by SNP-panels consisting of 500, to 50K

(K = 1000) evenly-spaced SNPs.

https://doi.org/10.1371/journal.pone.0243251.g001
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The number of variants affecting any trait could vary from very few (simple traits) to hundreds

or thousands (complex traits). Therefore, to explore the effect of the trait architecture on the

distribution of the proportion of genetic variance of those traits that could be captured by low-

density SNP panels, we repeated the previous analyses using random vectors that had

5,10,50,500 non-zero weights–the set of SNPs with non-zero weight were randomly sampled

from the UHD-genotypes, and the weights of those SNPs were iid normal (see Materials and

Methods for details).

The estimated proportion of variance explained by regression on lower-density SNP panels

was, on average, the same across “trait-architectures” (Fig 2). However, the dispersion of the

estimated means was, as expected, much larger for simple traits (e.g., 5 ‘causal variants’). For

"complex traits" with 500 "causal variants," the proportion of variance explained by regression

on 10K or more SNPs was greater than 95% for all MC replicates. However, for simpler traits

we had some random vectors with a proportion of variance explained smaller than 0.8. This

suggests that, while for highly complex traits low-density SNP arrays of 10K-50K SNPs may be

enough to span the variance of the whole genome, for some simple traits, such arrays may not

contain enough SNPs in high LD with the causal variants.

Using MC-ANOVA and Eigen-ANOVA to study shared variance in multi-omic data

sets. Cancerous processes involve the deregulation of signaling pathways controlling cell fate

and progression, arising from the accumulation of genomic and epigenomics alterations across

multiple genes [17, 18]. Genetic and epigenetic modifications can lead to changes in GE,

which in turn can lead to changes in downstream (e.g., protein expression) and upstream (e.g.,

DNA, ME) processes, thus resulting in complex multivariate association patterns between

multiple omic-layers.

We used GE, ME and CNV data from breast cancer tumors (n = 593) from The Cancer

Genome Atlas (TCGA) to study multivariate associations between those three omics. Details

of the technologies used to generate these data, as well as the data quality controls (QC) and

editions are described in the Materials and Methods. After QC and editions data consisted of

the (log-transformed) expression of 20,319 genes, counts at 11,552 CVN-sites, and ME inten-

sity at 28,241 ME CpG islands. We used the MC- and the Eigen-ANOVA methods to estimate

the proportion of variance of one omic that can be explained by regression on another omic;

we did this for all pairwise omics combinations (GE~ME, GE~CNV, ME~GE, ME~CVN,

CNV~GE, and CVN~ME).

Our results with the MC-ANOVA method indicate that the CNV data were completely

explained by both GE and ME (Table 3). About 70% of the variance spanned by ME was

explained by GE and vice versa. Finally, CNV explained a relatively small fraction of the vari-

ance spanned by either GE or ME. These results suggest that most CNVs have effects in both

ME and GE and therefore, variation in CNV can be predicted by ME and GE. However,

although there is an association between CNV and both ME and GE, many other factors (e.g.,

environmental effects) seem to intervene, thus making the proportion of GE or ME explained

by CNV relatively small (~20%). Overall the MC- and Eigen-ANOVA methods yielded similar

results. However, in cases involving high R2 (CNV~ME, CNV~GE, GE~ME and ME~GE) the

Eigen-ANOVA method gave R2 estimates that were lower than those of the MC method. This

pattern is consistent with what we observed in the simulation and in the analyses of chicken

genomes.

Eigen-vector-specific R2 values obtained with the Eigen-ANOVA method (Fig 3) showed

that the R2 values were, in most cases (except GE~CNV and ME~CNV) very high (and in

many cases very close to one) for the top-eigenvectors (i.e., those with high eigenvalue), and

very small for eigenvectors associated with low eigenvalues. The transition in the R2 profile of

individual eigenvectors showed a relatively sharp phase transition from R2 values near one to

PLOS ONE ANOVA-HD: Analysis of variance for multi-layer high-dimensional data.
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Fig 2. Proportion of variance of random vectors derived from ultra-high-density SNP-panel explained by regression on low-density SNP-panels,

by number of loci used to form “genetic traits”.

https://doi.org/10.1371/journal.pone.0243251.g002

Table 3. Proportion of variance of one omic explained (posterior standard deviation) by regression of the omic in each row on the omic in each column obtained

with MC-ANOVA (Eigen-ANOVA).

Dependent Explanatory

CNV Methylation Gene Expression

CNV — 1.00 (0.929) 1.00 (0.904)

Methylation 0.164 (0.228) — 0.715 (0.685)

Gene Expression 0.204 (0.238) 0.738 (0.660) —

https://doi.org/10.1371/journal.pone.0243251.t003
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near-zero values. Overall, our results suggest a relatively good agreement in the patterns cap-

tured by the top-eigenvectors across omics.

Discussion

Modern genomic data sets often combine information from multiple non-independent data-

layers. Quantifying multivariate associations between data layers can shed light on many

important aspects of the data. In this study, we developed two procedures to estimate the pro-

portion of variance explained in settings where both the input and output sets are high-dimen-

sional. The proposed approach uses random effects Gaussian models to estimate the

proportion of variance of (independent) vectors in the linear span of an output set (X) that can

be explained by regression on an input set (W). The resulting R2 estimate is a weighted average

Fig 3. Proportion of variance of omic-derived eigenvectors of an omic-set explained by regression on a different omic-set. Points

give the proportion of variance for individual eigenvectors. GE = Gene Expression, ME = Methylation, CNV = Copy-number variants

(global R2 estimates, derived from random vectors and from the Eigen-ANOVA method are shown in Table 3).

https://doi.org/10.1371/journal.pone.0243251.g003
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of the R2 values obtained from independent vectors. To generate independent vectors, we con-

sidered two approaches: The first one (MC-ANOVA) is a Monte Carlo method that uses ran-

domly generated vectors in the linear span of the output set. The second one (Eigen-ANOVA)

uses an orthogonal basis for the linear span of X.

The proposed methods share four important features. First, both methods can be used to per-

form analysis of variance when both explanatory and dependent data are high-dimensional. Sec-

ond, estimates are entirely based on the likelihood function and there is no need to make

regularization decisions (number of dimensions, penalty parameters). Third, for any pair of infor-

mation sets, the analysis of variance is not necessarily symmetric; therefore, the approach accom-

modates cases where the proportion of variance of W explained by X is not equal to the reciprocal.

Finally, in addition to producing an R2 estimate, the proposed methods can shed light on impor-

tant aspects of the underlying association patterns (e.g., decomposition of the global R2 on eigen-

vector specific R2’s, distribution of R2 over possible vectors in the linear span of the output set).

Our simulations suggest that MC-ANOVA renders nearly unbiased estimates of the pro-

portion of the variance of one set that can be explained by another. However, the Eigen-

ANOVA exhibited systematic biases in scenarios in which the true proportion of variance was

high. We also evaluated the PLS regression method, and our simulations suggest that PLS lead

to upwardly (downwardly) biased estimates whenever the true proportion of variance is high

(low). Therefore, for estimation of the proportion of variance explained we recommend using

MC-ANOVA. The Eigen-ANOVA method seems to be a valid alternative, provided that the

proportion of variance of one set explained by the other is not too high.

Computational considerations

The Eigen-ANOVA requires computing all the eigenvectors of the response matrix (say X)

and then estimating proportion of variance of each of the eigenvectors explained by the

explanatory matrix (e.g., W). The computational complexity of standard algorithms for singu-

lar-value decomposition is O(n3) (assuming n~p). On the other hand, the MC-ANOVA

requires forming B random vectors fo the form xs = Xαs; ignoring the cost of sampling the

weights, the computational complexity of forming each of this vectors is O(n2), again assuming

n~p; thus, in general the MC-ANOVA will be computationally less involved as long as the

number of vectors required for accurate estimation is smaller than n. In our experience, a few

hundred random vectors (say 300) are enough to estimate the average, median, and SD of the

R2. Therefore, whenever the rank of the response matrix is high, the MC-ANOVA has clear

computational advantages. These advantages would be particularly clear for very large rank

matrices. Finally, we note that the estimation process of both Eigen-ANOVA and MC-A-

NOVA is ’embarrassingly’ parallel since the R2 of each of the vectors (either eigenvectors or

random vectors) can be computed independently of each other.

Consistent with our simulation results, the analyses of experimental data showed that in

problems involving a high R2 the Eigen-ANOVA method yielded lower estimates of the pro-

portion of variance explained than those obtained with the MC-ANOVA (e.g., see Fig 1 and

Table 3). Inspection of the results of the Eigen-ANOVA for individual eigenvectors suggests

that the downward bias of the method may originate from ‘corner’ solutions (zero-estimates of

R2) for eigenvectors associated with small eigenvalues. Therefore, if the only goal is to estimate

the proportion of variance of one set explained by another set, we recommend using the

MC-ANOVA method.

The Eigen-ANOVA method yields R2-values for each of the eigenvectors of the output set.

This information can help elucidate whether global patterns (e.g., those associated with the

top-eigenvectors) in one information set can be predicted from information contained in

PLOS ONE ANOVA-HD: Analysis of variance for multi-layer high-dimensional data.
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another information set. For instance, our analysis of the multi-omic breast cancer revealed

that the patterns described in the top-eigenvectors derived from GE and ME are very similar;

therefore, one should not expect big differences in tumor classifications that are based on the

top-eigenvectors derived from either set. Interestingly, we found that in the analyses of omic

data the R2 of individual eigenvectors showed a very sharp phase transition, suggesting that

eigenvectors associated with intermediate and small eigenvalues may describe omic-specific

patterns, or perhaps measurement error associated to each of the techniques.

The MC-ANOVA method can be used to characterize the distribution of the R2 estimates

across vectors in the linear span of the output set. We used this feature to study the effect of the

trait-architecture on the distribution of the R2 estimates. Our results indicate that while the

average R2 does not seem to be affected by the sparsity of the coefficients used to form random

vectors (i.e., the αs0), the dispersion and the shape of the distribution highly depend on the pro-

cess used to generate the weights (Fig 2). Highly sparse weights lead to a distribution of the R2

values that, compared with vectors that were less sparse, had higher dispersion and in some

cases (e.g., when the proportion of variance explained was close to 1) was skewed (Fig 2).

An important feature of the methods proposed in this study is that the R2 measure is not

symmetric, in contrast to CCA. Our simulation study shows that if the underlying patterns are

non-symmetric (e.g., when one of the linear spaces is a subspace of the other) the proposed

estimation methods (in particular the MC-ANOVA) can detect the lack of symmetry very well

(see Table 2). Interestingly, our analysis of multi-omic data from breast cancer patients exhib-

ited cases where R2 was rather symmetric (e.g., the regression ME~GE and the regression

ME~GE) and others that were highly asymmetric (e.g., CNV~GE and GE~CNV). The asym-

metric cases suggest that almost all the variability in CNV can be predicted from GE (and ME

as well); however, only a fraction of the GE variance can be explained by differences in CNV

patterns. This result is consistent with the hypothesis that most CNV have an impact on GE,

but GE is also affected by factors other than CNV (e.g., methylation, environmental effects).

In this study, we focused on the application of the Eigen- and MC-ANOVA for problems

involving two input sets (e.g., a low- and a high-dimensional SNP array, or two different

omics) evaluated on the same set of individuals. However, with slight modifications, the

MC-ANOVA method will be useful for evaluating the proportion of variance of vectors in the

span of a training set (e.g., all the available genotypes/phenotypes) that could be captured/pre-

dicted by regression on a subset of it, e.g., founders, or “proven” individuals, e.g., [19, 20].

The methods discussed in this study are entirely based on linear models. However, both

MC-ANOVA and Eigen-ANOVA can easily be extended to consider non-linear relationships

by embedding each set using a non-linear mapping. For instance, in the case of SNPs, one

could generate a linear space that accounts for additive and non-additive effects by considering

contrasts for additive, dominance, and epistatic interactions [21]. More generally, one can con-

sider embedding either X or W by transforming one or both sets using a non-linear mapping f
(.) (e.g., Gaussian kernels). Then, the methods presented here could be applied using ~X ¼
f ðXÞ and ~W ¼ f ðWÞ as information sets within the context of Reproducing Kernel Hilbert

Spaces regressions (e.g., [22, 23]).

In our applications, we considered one dependent and one explanatory set; however, the

methodology presented in this study could be easily adapted to accommodate cases with one

output set (e.g., Y) and multiple explanatory sets (e.g., X, and W). This can be done by expand-

ing the model used to estimate R2 [1] by including two random effects, each with its own vari-

ance parameter. Such methods could be used to answer potential questions such as what

proportion of variance of gene expression may be explained by joint regression on methylation

and copy-number-variants.

PLOS ONE ANOVA-HD: Analysis of variance for multi-layer high-dimensional data.
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In conclusion, we developed two methods for estimating the proportion of variance

explained in problems in which both the input and output sets are high-dimensional. The

MC-ANOVA method provided nearly unbiased estimates across a range of simulation scenar-

ios. In addition to providing estimates of the proportion of variance explained, the two meth-

ods can yield useful insight into the association patterns underlying multi-layered high-

dimensional data.

Materials and methods

Data sets

The wheat data set used in Simulations 1 and 2 was generated by the International Maize and

Wheat Improvement Center (CIMMYT). This data set provides genotypes at 1,279 molecular

markers (Diversity Array Technology DNA markers) assessed in 599 wheat inbred lines. Fur-

ther details about this data set can be found in [24]. The data set is available with the BGLR R-

package [25].

The chicken data set used in Case Study 1 consisted of UHD SNP genotypes of 892 female

and male chickens from six generations of a purebred commercial brown layer line of Loh-

mann Tierzucht GmbH. The genomes of 25 layers were sequenced at 8x read-depth. A total of

4.92M (M = million) SNPs were derived from these 25 genome sequences. The remaining lay-

ers (n = 867) were genotyped using the Affymetrix Axiom Chicken Genotyping Array [16]

which contains ~600K (580,961) SNPs. Ni et al. [28] imputed the SNP-genotypes of those 867

layers to the whole-genome sequence (4.92 SNPs) using BEAGLE 3.3.2 [26] for phasing and

MiniMac3 [27] for imputation. For details on the imputing procedure we refer to Ni et al. [28].

This produced a combined genotype file consisting of 4.92M SNPs from 892 = 25+867

genomes. We further filtered the combined genotype file by removing SNPs with minor-allele-

frequency smaller than 0.005 (0.5%) and pruning adjacent SNPs that were in (almost) perfect

LD (i.e., R2�0.99). A total of 1.79M SNPs passed these last two filters.

The breast cancer data set used in Case Study 2 was from the Cancer Genome Atlas

(TCGA https://www.cancer.gov/tcga) and consisted of gene expression (GE), methylation

(ME), and copy-number-variants (CNV) data from (n = 593) breast cancer tumors from

female breast cancer patients.

Gene expression data (RNA-Sequencing counts) were generated using the Illumina HiSeq

RNA V2 platform and DNA methylation profiles were determined using the Illumina HM450

platform. RNA-sequencing data were transformed using the natural logarithm and individual

CpG site β-values were summarized at the CpG island level, using the maximum connectivity

approach implemented in the WGCNA R package [29]. The CpG island summaries were

transformed into M-values (M = β/(1-β) [30]). CNV profiles corresponded to gene-level copy

number intensity derived from Affymetrix SNP Array 6.0 platform, using hg19 as reference.

From each of the three omics we removed features with a coefficient of variation smaller

than 1% and those with a proportion of missing values greater than 20%. The missing values

that remained were imputed using the clustering algorithm described in [31]. After imputa-

tion, each feature was adjusted for batch effects using ComBat [32]. After applying the steps

described above, the data set used in the analyses consisted of the (log-transformed) expression

of 20,319 genes, 11,552 CVN-sites, and ME intensity at 28,241 ME CpG islands.

Restricted maximum likelihood estimation of variance components

For the MC-ANOVA and EIGEN-ANOVA methods, the proportion of variance of one set

(e.g., X) explained by the other set (W) was estimated using a random-effects model of the
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form

z ¼ 1mþWβþ ε;

where z was either a random linear combination of the columns of X (MC-ANOVA, see

Box 1) or one of the eigenvectors of XX0 (Eigen-ANOVA, see Box 2), μ is an intercept, β is a

vector of Gaussian random effects, b
iid

�
Nð0; s2

b
Þ, and ε is a vector containing error terms,

which were also assumed to be Gaussian, ε
iid

�
Nð0; s2

εÞ. For computational convenience and

without loss of generality, we reparametrized the above model in terms of a random-effects

model, of the form

z ¼ 1mþ uþ ε;

where u ¼Wβ � MVNð0;WW 0s2
b
Þ, whereMVN() stands for Multivariate Normal Distribu-

tion. We centered and scaled the columns of W to a standard deviation equal to 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ncolðWÞ

p
;

this leads to a covariance structure, WW0 with an average diagonal equal to one; therefore,

with this scaling, s2
b

can be interpreted as the amount of variance of z captured by regression

on W and the ratio R2
z ¼

s2
b

s2
b
þs2

ε
can be interpreted as the proportion of variance of z that can be

explained by W.

We estimated the variance components of the above model using Restricted Maximum

likelihood (REML [7]) which was implemented with a custom R-script that for optimization

uses the bobyqa function of the minqa R-package [33]. The scripts used to fit variance com-

ponents using REML are provided in the S1 File (see function fitREML).

Partial least squares

We also estimated the proportion of variance of X explained by W (and the reciprocal when

needed) by regressing X on W using the pls R-package [34].

X ¼ 1mþWβþ ε:

The ability of the pls regression to fit X depends on the number of components used. To

determine the number of components, we first fitted the PLS regressions with 1, 2, . . ., 100
components in 10-fold cross-validation and evaluated the cross-validation prediction mean-

square error of each of the resulting models. We then selected the number of components that

led to the smallest mean-squared prediction error and fitted a PLS regression with that number

of components to the entire data set. The R2 of the fitted model in the training data was used

as an estimate of the proportion of variance of X that could be explained by W. The fitPLS
function provided in the script provides a wrapper to the plsr function which implements

the procedure described above.

Simulations

Both simulations were implemented using genotypes from the wheat data set.

Simulation 1. In the first simulation setting the input set was the wheat genotypes

W599×1,279 = {w1,. . .,w1,279}, and X = {x1,. . .,x1,279} was a noisy version of W obtained by adding

Gaussian iid noise, δi � Nð0; Is2
d
Þ, to the genotypes, xi = wi+δi where i = 1,. . ., 1,279. The col-

umns of W were standardized to unit variance, and the noise variance (s2
d
) was set such that
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the proportion of variance of xi explained by wi was equal to 0.1, 0.3, 0.5, 0.8, 0.9 and 1:

R2

X�W ¼
Covðxi;wiÞ
VarðxiÞ

¼
VarðwiÞ

VarðxiÞ
¼

1

1þ s2
d

:

We also consider a scenario where R2
X�W ¼ 0 (i.e., X was purely random noise).

We conducted 1,000 MC simulations (the input set (W) did not change across MC samples;

however, the output set (X) varied across MC replicates due to the noise term), and, for each

simulated data set, estimated the proportion of variance of X explained by regression on W
using MC-ANOVA, Eigen-ANOVA, and the PLS method.

Simulation 2. We designed a second simulation to consider the case where one of the sets

(X) was included in the other set (W). In this setting X599×p was generated by including p
(�1,279) of the 1,279 DNA-markers; we used values of p that led to the inclusion of 5%, 10%,

30%, 50%, 80%, 90%, and 95% of all the available DNA markers. Subsequently, W was formed

by combining X with (p-1,279) columns filled with iid Gaussian random variables (Z):

W599×1,279 = [X599×p,Z599×(p−1,279)].

The columns of X and W were all centered and scaled to unit variance. Since Z is indepen-

dent of X, the proportion of variance of W explained by X equals p/1,279. On the other hand,

the proportion of variance of X explained by W is one because X is included in W. We con-

ducted 1,000 MC simulations and, for each simulated data sets, we estimated R2
X�W and R2

W�X

by regressing X on W and W on X, respectively, using MC-ANOVA, Eigen-ANOVA, and the

PLS method.

Supporting information

S1 File. Contains the scripts used to carry out the simulations and data analyses.

(HTML)
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