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Abstract: Given the central role of interstitial fibrosis in disease progression in chronic kidney disease
(CKD), a role for diffusion-weighted MRI has been pursued. We evaluated the feasibility and
preliminary efficacy of using radiomic features to phenotype apparent diffusion coefficient (ADC)
maps and hence to the clinical classification(s) of the participants. The study involved 40 individuals
(10 healthy and 30 with CKD (eGFR < 60 mL/min/1.73 m2)). Machine learning methods, such as
hierarchical clustering and logistic regression, were used. Clustering resulted in the identification
of two clusters, one including all individuals with CKD (n = 17), while the second one included
all the healthy volunteers (n = 10) and the remaining individuals with CKD (n = 13), resulting in
100% specificity. Logistic regression identified five radiomic features to classify participants as with
CKD vs. healthy volunteers, with a sensitivity and specificity of 93% and 70%, respectively, and
an AUC of 0.95. Similarly, four radiomic features were able to classify participants as rapid vs.
non-rapid CKD progressors among the 30 individuals with CKD, with a sensitivity and specificity of
71% and 43%, respectively, and an AUC of 0.75. These promising preliminary data should support
future studies with larger numbers of participants with varied disease severity and etiologies to
improve performance.

Keywords: kidney; MRI; radiomic; diffusion-weighted imaging; CKD; ADC

1. Introduction

Approximately 15% of adults in the United States have chronic kidney disease (CKD) [1],
which increases the future risks of end-stage kidney disease, cardiovascular disease, and
death. CKD is a heterogeneous condition with a wide spectrum of underlying etiolo-
gies, pathologic and clinical manifestations, and variable rates of progression. Estimated
glomerular filtration rate (eGFR) and proteinuria are the two primary clinical indicators
used to define and stage CKD [2], but they do not provide specificity regarding underly-
ing histopathologic lesions, which also have prognostic value [3]. While low eGFR and
high-grade proteinuria portend a high risk of adverse clinical outcomes, these biomarkers
are insufficient to discern which individual patient with mild CKD will progress [4]. As
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a result, there is significant interest to explore alternate biomarkers of kidney disease to
improve risk estimation of CKD progression.

Kidney tubulointerstitial fibrosis is recognized as a hallmark of progressive CKD [3].
By assessing the displacement of water molecules in tissue, diffusion-weighted magnetic
resonance imaging (MRI) may detect kidney fibrosis [5]. Quantitative apparent diffusion
coefficient (ADC) mapping, as assessed by diffusion-weighted MRI, has shown promise
to quantify the magnitude of kidney cortical fibrosis. Lower levels of cortical ADC on
diffusion-weighted MRI may indicate greater fibrosis [5]. In a prior study of individuals
with diabetes and mild to moderate CKD (eGFR 51.2 ± 12.6 mL/min/1.73 m2), we found
lower levels of ADC in individuals with CKD compared to age-matched healthy controls,
but the difference did not reach statistical significance [6]. While there are significant data
on the feasibility to incorporate multiple MRI measurements in clinical studies [6–10],
these studies mainly focused on the mean values of the MRI biomarkers within regions of
interest (ROI). Since imaging inherently captures spatial information, there is the potential
for using a vast number of quantitative measures by processing at the level of an individual
3-dimensional sample known as a voxel. The use of radiomics, a method that extracts
a large number of features from medical images using data-characterization algorithms,
may uncover patterns, texture, or characteristics that may serve as digital fingerprints of
disease [11]. Such methods have shown promise in individuals with liver disease [12],
kidney cancer [13], and kidney transplants [14]. Based on our recent preliminary experience
with selected radiomic features [15], we now have extended the analysis to include many
more radiomic features in order to provide image phenotypes of the ADC maps and to
verify whether the phenotypes correspond to clinical classification(s). We used machine
learning techniques to highlight these latent features in radiomic data.

2. Materials and Methods
2.1. Study Population

We performed kidney diffusion-weighted MRI on individuals with and without CKD,
as previously described [8]. We included adults ≥18 years old with diabetes (type 1 or 2)
who had the ability and willingness to cooperate with the study protocol and did not have
any contraindications for MRI study (claustrophobia, pacemakers, intra-cranial clips, or
intraocular debris). CKD was defined by eGFR < 60 mL/min/1.73 m2. Healthy volunteers
took no prescribed medications and had no history of CKD, diabetes mellitus, hypertension,
coronary artery disease, congestive heart failure, liver disease, or autoimmune disease.
Exclusion criteria were (1) significant co-morbid conditions that led the investigator to
conclude that life expectancy was less than 1 year; (2) expected to progress to end-stage
kidney disease, requiring the initiation of dialysis or a kidney transplant in the subsequent
24 months; (3) pregnant or nursing; (4) involved in any other interventional research
protocol; (5) decompensated heart failure; (6) previous diagnosis of renal artery stenosis or
ureteral obstruction; (7) CKD of other etiologies, such as glomerular disease, interstitial
disease, and polycystic kidney disease; (8) chronic use of non-steroidal anti-inflammatory
agents (NSAIDs); and (9) patients treated for anemia with ferumoxytol. Participants were
recruited from NorthShore University HealthSystem and the University of Chicago. All
participants provided written informed consent. The study protocol was approved by the
Institutional Review Boards at NorthShore University HealthSystem and the University
of Chicago and is in accordance with the principles of the Declaration of Helsinki. We
enrolled 41 individuals with CKD and 13 healthy volunteers. We excluded 14 individuals
for image analysis due to the presence of cysts (n = 10 CKD and n = 2 healthy volunteers)
and 2 who were missing MRI data (n = 1 CKD and n = 1 healthy volunteer), which yielded
a total sample size of 40 for this study (n = 30 CKD and n = 10 healthy).

2.2. MRI Acquisition

All MRI procedures were performed on a 3 Tesla whole-body scanner (Siemens
Healthcare, Erlangen, Germany) using body array coils after an overnight fast. Partic-
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ipants were instructed to hold NSAIDs for 3 days prior, angiotensin-converting enzyme
inhibitors/angiotensin II receptor blockers for 1 day prior, and loop diuretics on the day
of the MRI. Medications were restarted following MRI data acquisition. Participants were
scanned in a feet-first supine position. A spin-echo echo-planar imaging (EPI) technique
with 3 directions of diffusion-sensitizing gradients were used to acquire diffusion-weighted
images in five coronal planes during free breathing [6]. Diffusion-weighted MRI acquisition
parameters used in this study were TE = 78 ms; FOV = 380–400 mm; TR = 3000 ms; band-
width = 1628 Hz/pixel; matrix = 192 × 154; slice thickness = 5 mm; and b values = 200, 300,
500, 700, and 1000 s/mm2. Acquisitions were repeated 5 times and averaged to improve
signal-to-noise ratio and to minimize motion artifact.

2.3. MRI Analysis

The image analysis workflow is shown in Figure 1. Figure 1A shows the high-level
description of the processing steps undertaken in the study. Figure 1B shows the specific
steps involved in the image analysis using FireVoxel (FV), including the manual definition of
regions of interest (ROI), quantitative parametric mapping, and radiomic feature extraction.
Diffusion-weighted images were directly loaded to FV, and the images with different b
values were co-registered by rigid transform to correct for respiratory motion. ROIs were
defined on 5 slices of the left and right kidney cortices separately by author EW (Figure 2).
Functional ROI maps were generated with FV on the left and right kidneys separately.
A constant bin width of 4 × 10−5 for a range of ADC values from 0 to 4 × 10−3 mm2/s
was used for all individual datasets. A total of 54 radiomics features were generated for
left and right kidney ADC maps and averaged for a single representative value for each
participant. The radiomic features from the right and left kidneys were highly correlated
(Spearman ρ = 0.986 and p << 0.01), supporting their combination. FV software includes
several categories of radiomic features. The radiomic features are separated into first-
order (histogram features), such as central tendency parameters (mean, median, standard
deviation, kurtosis, and skewness), gray level co-occurrence matrix (GLCM), and gray level
run length matrix (GLRLM) textural features [16]. A recent publication [17] documented
an agreement of texture features extracted from six software packages, including FireVoxel
and 3D Slicer, with a radiomics extension based on the PyRadiomics library.
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Figure 1. (A) High-level descriptions of the steps involved in the image analysis pipeline. The
dotted lines indicate possible future extension. (B) A flow chart of kidney segmentation, quantitative
analysis, and feature extraction using FireVoxel.
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Figure 2. (a) Representative diffusion-weighted image. (b) Manually defined regions of interest
(ROI) on left and right kidneys. Color identifies ROIs individually on the left and right kidneys.
(c) ADC maps within the cortical ROI with color bar generated by FV, indicating relative ADC values
in units of mm2/s.

2.4. Exposures and Outcomes

In analyses that compared the 54 radiomic features in healthy volunteers and indi-
viduals with CKD, the exposure variable was CKD status (CKD vs. healthy volunteer). In
analyses that investigated the associations of the 54 radiomic features with CKD status and
CKD progressor status, the exposure variables were the radiomic features, and the outcomes
were CKD status and rapid progressor status (defined as eGFR loss ≥ 3 mL/min/1.73 m2

per year), respectively.

2.5. Assessment of Clinical Information

At baseline, we collected participant demographics, diabetes mellitus status, body mass
index (BMI), and eGFR. Blood pressure, proteinuria, and additional eGFR measurements were
collected from the electronic medical record for CKD patients. We used the creatinine-based
CKD Epidemiology Collaboration 2009 equation to calculate eGFR [18]. Proteinuria was
quantified from a 24 h urine collection using the immunoturbidometric method.

2.6. Statistical Analysis

Descriptive statistics were summarized as count with percentages for categorical vari-
ables and mean ± standard deviation (SD) or median with interquartile range for normally
distributed continuous variables or non-normally distributed continuous variables, respec-
tively. To evaluate differences in radiomic parameters and clinical variables by CKD status,
we used a t-test for normally distributed continuous variables and a Wilcoxon rank-sum



J. Clin. Med. 2022, 11, 1972 5 of 16

test for non-normally distributed continuous variables. We used Spearman correlation coef-
ficients to determine associations between non-normally distributed continuous variables.

We performed a hierarchical cluster analysis to identify distinct clusters of radiomic
features using the Seaborn Clustermap module in Python 3.7 [19]. We transformed radiomic
feature data using a Z-score prior to clustering according to the following: Z = (x−mean)

SD [19].
Clinical characteristics were blinded for this computation. The sample distance between
samples u and v was calculated using distance correlation: 1− (u−u)·(v−v)

‖(u−u)‖2 ‖(v−v)‖2
[20]. We

created a Gaussian mixture model (GMM) with 1–10 clusters using a full variance matrix
and plotted the Bayesian information criterion (BIC) versus the number of clusters to
estimate the optimal number of clusters [21]. We utilized a hierarchical cluster map and
dendrogram to determine cluster membership, qualitative inspection of trends in radiomic
features, and to evaluate clinical features of radiomic clusters. To evaluate differences in
radiomic parameters and clinical variables by cluster group, we performed a t-test for
normally distributed continuous variables and a Wilcoxon rank-sum test for non-normally
distributed continuous variables.

We also performed logistic regression to identify the most prominent features that
distinguish those individuals with known CKD from the controls [20]. The regression
model utilized forward selection of features, using the area under the curve of a receiver
operating curve (AUC-ROC) to determine the best model. Terms were added sequentially
to improve the AUC-ROC until there was no further improvement in the AUC-ROC. We
reported the sensitivity, specificity, AUC-ROC, and accuracy of the regression models.
All statistical tests were two-sided, and p-values < 0.05 were considered significant. In
additional analyses, in individuals with CKD, we created 3 models using radiomics, clinical
features, and a combination of both, to predict rapid versus non-rapid progressors.

3. Results
3.1. Study Participants

Baseline characteristics of the study cohort are shown in Table 1. The mean age
of the individuals with CKD was slightly higher than that of the healthy volunteers
(65.3 ± 9.6 vs. 58.1 ± 9.4 years; p = 0.05). The mean eGFR was lower in the individuals with
CKD compared to the healthy volunteers (51.5 ± 12.2 vs. 88.6 ± 12.6) mL/min/1.73 m2;
p < 0.001). The median urine protein excretion was 0.16 (IQR 0.02–0.25) g/day in individu-
als with CKD. The individuals with CKD had a higher BMI than the healthy volunteers
(32.4 ± 7.5 vs. 25.8 ± 2.7 kg/m2; p = 0.01). During a mean follow-up time of 4.4 years, the
mean annual eGFR slope was −0.5 ± 3.7 mL/min/1.73 m2 per year in the individuals with
CKD. Seven participants (23%) experienced rapid CKD progression, defined as a mean
annual loss of eGFR > 3 mL/min/1.73 m2 per year.

Table 1. Baseline characteristics of healthy and CKD groups.

Healthy (n = 10) CKD (n = 30) p-Value

Female or Male? 0.4 0.5 0.86
Age (years) 58.1 ± 9.4 65.3 ± 9.6 0.05

SBP (mmHg) 133.87 ± 15.9
DBP (mmHg) 67.9 ± 10.6

CKD-EPI eGFR (mL/min/1.73 m2) 88.6 ± 12.6 51.5 ± 12.2 <0.001
BMI (kg/m2) 25.8 ± 2.7 32.4 ± 7.5 0.01

eGFR slope (mL/min/1.73 m2/year) −0.53 ± 3.68
24 h urine protein excretion (gm) 0.16 (0.018–0.253)

Blood glucose (mg/dL) 149.6 ± 68.0
Note: Mean values with standard deviation (SD) are reported for normally distributed variables; otherwise,
median values with interquartile range (IQR) are reported: CKD: chronic kidney disease; CKD-EPI: the
CKD Epidemiology Collaboration; eGFR: estimated glomerular filtration rate; SBP: systolic blood pressure;
DBP: diastolic blood pressure; BMI: body mass index.
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3.2. Correlations between Radiomic Features

Figure 3A is a correlation map between all 54 radiomic features. There was a high
degree of statistically significant correlation between many features. Some features had
strong negative correlations with one another, such as DiffAvg and InvDiff, and Variance
and InvVar. Some first-order, GLCM, and GLRLM features shared derivations and had
strong positive correlations with one another, such as such as Variance, GLVar, and DiffVar.
There were 975 statistically significant correlations out of a potential 1431 between the
54 radiomic features, including 412 strong, 563 moderate, and no weak correlations (Figure 3B).
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color coding was based on the Spearman ± ρ values: strong (0.7 to 1.0), moderate (0.3 to 0.7), weak
(0 to 0.3), and indicated as positive (pos) or negative (neg). (B) Radiomic feature correlation histogram.
Histogram demonstrating the counts of each type of significant correlation.

3.3. Radiomic Features in Individuals with CKD vs. Healthy Participants

Table 2 summarizes all 54 radiomic features by CKD status (15 first-order, 23 GLCM,
and 16 GLRLM features). A total of 37 radiomic features differed by CKD status, including
8 first-order, 16 GLCM, and 13 GLRLM features. Three first-order features (CoV, 0.01,
and 0.05), five GLCM (DiffAvg, InvDiffMom, InvDiff, InvDiffNorm, and InvVar), and one
GLRLM feature (GLNU) had strong statistically significant correlations (p < 0.001).

Table 2. Differences in radiomic features between two groups defined by eGFR.

Healthy (n = 10) CKD (n = 30) p-Value

CoV 1.64 × 10−1 (1.58 × 10−1–1.94 × 10−1) 2.41 × 10−1 (2.01 × 10−1–2.97 × 10−1) 0.001

1st order

Mean 1.83 × 10−3 (1.77 × 10−3–1.87 × 10−3) 1.75 × 10−3 (1.65 × 10−3–1.82 × 10−3) 0.092
Variance 9.77 × 10−8 (8.09 × 10−8–1.19 × 10−7) 1.68 × 10−7 (1.12 × 10−7–2.29 × 10−7) 0.006
Skewness −1.22 × 10−1 (−5.36 × 10−1–2.70 × 10−1) −3.02 × 10−2 (−4.68 × 10−1–5.80 × 10−1) 0.288
Kurtosis 2.89 × 100 (1.77 × 100–3.77 × 100) 1.65 × 100 (1.23 × 100–2.70 × 100) 0.126
Entropy 3.38 × 100 (3.27 × 100–3.46 × 100) 3.59 × 100 (3.39 × 100–3.69 × 100) 0.006
0.01 9.75 × 10−4 (9.12 × 10−4–9.92 × 10−4) 7.11 × 10−4 (5.77 × 10−4–8.09 × 10−4) 0.000
0.05 1.32 × 10−3 (1.25 × 10−3–1.37 × 10−3) 1.10 × 10−3 (9.55 × 10−4–1.15 × 10−3) 0.000
0.1 1.47 × 10−3 (1.38 × 10−3–1.52 × 10−3) 1.30 × 10−3 (1.17 × 10−3–1.36 × 10−3) 0.001
0.25 1.68 × 10−3 (1.60 × 10−3–1.74 × 10−3) 1.54 × 10−3 (1.45 × 10−3–1.61 × 10−3) 0.007
0.5 1.83 × 10−3 (1.76 × 10−3–1.87 × 10−3) 1.75 × 10−3 (1.67 × 10−3–1.82 × 10−3) 0.027
0.75 1.97 × 10−3 (1.95 × 10−3–2.03 × 10−3) 1.94 × 10−3 (1.88 × 10−3–2.01 × 10−3) 0.274
0.9 2.16 × 10−3 (2.08 × 10−3–2.23 × 10−3) 2.13 × 10−3 (2.03 × 10−3–2.26 × 10−3) 1.000
0.95 2.32 × 10−3 (2.20 × 10−3–2.37 × 10−3) 2.30 × 10−3 (2.14 × 10−3–2.67 × 10−3) 0.685
0.99 2.59 × 10−3 (2.50 × 10−3–2.70 × 10−3) 2.80 × 10−3 (2.41 × 10−3–3.30 × 10−3) 0.235
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Table 2. Cont.

Healthy (n = 10) CKD (n = 30) p-Value

AuCor 2.17 × 103 (2.08 × 103–2.31 × 103) 2.02 × 103 (1.84 × 103–2.21 × 103) 0.179

gray level
co-occurrence

matrix

JointAvg 4.63 × 101 (4.49 × 101–4.76 × 101) 4.44 × 101 (4.22 × 101–4.64 × 101) 0.098
ClstProm 2.29 × 105 (1.58 × 105–2.70 × 105) 5.98 × 105 (1.95 × 105–1.09 × 106) 0.053
ClstShade −1.23 × 102 (−5.89 × 102–1.55 × 103) 9.08 × 102 (−8.14 × 102–7.55 × 103) 0.492
ClstTend 1.98 × 102 (1.63 × 102–2.31 × 102) 3.12 × 102 (2.10 × 102–4.64 × 102) 0.008
GLCMContr 3.42 × 101 (3.28 × 101–4.07 × 101) 6.65 × 101 (4.95 × 101–9.84 × 101) 0.001
GLCMCor 7.00 × 10−1 (6.08 × 10−1–7.14 × 10−1) 6.22 × 10−1 (5.92 × 10−1–6.75 × 10−1) 0.190
DiffAvg 4.22 × 100 (4.04 × 100–4.46 × 100) 5.49 × 100 (4.93 × 100–6.81 × 100) 0.001
DiffEntr 3.55 × 100 (3.50 × 100–3.65 × 100) 3.91 × 100 (3.72 × 100–4.22 × 100) 0.001
DiffVar 1.66 × 101 (1.52 × 101–1.96 × 101) 3.34 × 101 (2.03 × 101–4.76 × 101) 0.002
AngSecMom 3.57 × 10−3 (3.36 × 10−3–4.18 × 10−3) 2.59 × 10−3 (2.07 × 10−3–3.64 × 10−3) 0.021
JointEntr 8.69 × 100 (8.46 × 100–8.89 × 100) 9.13 × 100 (8.63 × 100–9.36 × 100) 0.025
FirstMeasInfoCor −2.02 × 10−1 (−2.12 × 10−1–−1.93 × 10−1) −2.27 × 10−1 (−2.70 × 10−1–−1.95 × 10−1) 0.042
SecMeasInfoCor 9.24 × 10−1 (9.21 × 10−1–9.26 × 10−1) 9.49 × 10−1 (9.25 × 10−1–9.62 × 10−1) 0.018
InvDiffMom 2.33 × 10−1 (2.30 × 10−1–2.50 × 10−1) 1.84 × 10−1 (1.66 × 10−1–2.18 × 10−1) 0.001
InvDiffMomNorm 9.97 × 10−1 (9.96 × 10−1–9.97 × 10−1) 9.94 × 10−1 (9.91 × 10−1–9.95 × 10−1) 0.001
InvDiff 3.23 × 10−1 (3.20 × 10−1–3.38 × 10−1) 2.73 × 10−1 (2.52 × 10−1–3.08 × 10−1) 0.000
InvDiffNorm 9.61 × 10−1 (9.59 × 10−1–9.63 × 10−1) 9.50 × 10−1 (9.40 × 10−1–9.55 × 10−1) 0.001
InvVar 2.40 × 10−1 (2.38 × 10−1–2.58 × 10−1) 1.90 × 10−1 (1.63 × 10−1–2.26 × 10−1) 0.001
JointMax 1.16 × 10−2 (1.09 × 10−2–1.33 × 10−2) 9.03 × 10−3 (7.42 × 10−3–1.19 × 10−2) 0.065
SumAvg 9.27 × 101 (8.98 × 101–9.53 × 101) 8.87 × 101 (8.44 × 101–9.27 × 101) 0.098
SumEnt 5.69 × 100 (5.49 × 100–5.76 × 100) 5.96 × 100 (5.65 × 100–6.09 × 100) 0.016
JointVar 5.79 × 101 (4.79 × 101–7.20 × 101) 9.90 × 101 (6.54 × 101–1.38 × 102) 0.007

ShortRunEmph 9.49 × 10−1 (9.45 × 10−1–9.51 × 10−1) 9.62 × 10−1 (9.53 × 10−1–9.64 × 10−1) 0.002

gray level
run length

matrix

LongRunEmph 1.23 × 100 (1.22 × 100–1.25 × 100) 1.17 × 100 (1.15 × 100–1.21 × 100) 0.002
GLNU 6.67 × 101 (5.98 × 101–6.86 × 101) 4.43 × 101 (3.61 × 101–5.25 × 101) 0.000
GLNUnorm 4.26 × 10−2 (4.16 × 10−2–4.79 × 10−2) 3.51 × 10−2 (3.04 × 10−2–4.12 × 10−2) 0.007
RunLenNU 1.30 × 103 (1.17 × 103–1.41 × 103) 1.21 × 103 (1.06 × 103–1.32 × 103) 0.142
RunLenNUnorm 8.76 × 10−1 (8.67 × 10−1–8.80 × 10−1) 9.04 × 10−1 (8.83 × 10−1–9.10 × 10−1) 0.001
RunPerc 9.33 × 10−1 (9.27 × 10−1–9.36 × 10−1) 9.49 × 10−1 (9.38 × 10−1–9.53 × 10−1) 0.002
GLVar 6.32 × 101 (5.21 × 101–7.59 × 101) 1.07 × 102 (7.21 × 101–1.44 × 102) 0.005
RunLenVar 8.05 × 10−2 (7.40 × 10−2–8.95 × 10−2) 6.20 × 10−2 (5.36 × 10−2–7.46 × 10−2) 0.006
RunEntr 5.25 × 100 (5.10 × 100–5.33 × 100) 5.45 × 100 (5.23 × 100–5.60 × 100) 0.014
LowGLRunEmph 5.54 × 10−4 (5.17 × 10−4–6.23 × 10−4) 7.54 × 10−4 (6.06 × 10−4–1.56 × 10−3) 0.015
HighGLRunEmph 2.17 × 103 (2.07 × 103–2.30 × 103) 2.02 × 103 (1.83 × 103–2.23 × 103) 0.179
ShortRunLowGLEmph 5.29 × 10−4 (4.96 × 10−4–6.00 × 10−4) 7.26 × 10−4 (5.82 × 10−4–1.50 × 10−3) 0.014
ShortRunHighGLEmph 2.03 × 103 (1.97 × 103–2.18 × 103) 1.93 × 103 (1.75 × 103–2.10 × 103) 0.235
LongRunLowGLEmph 6.65 × 10−4 (6.46 × 10−4–7.26 × 10−4) 8.87 × 10−4 (7.09 × 10−4–1.64 × 10−3) 0.025
LongRunHighGLEmph 2.71 × 103 (2.56 × 103–2.89 × 103) 2.47 × 103 (2.18 × 103–2.66 × 103) 0.049

Note: Median values with inter-quartile range (IQR) are reported. p < 0.05 is considered significant.

3.4. Correlations between Radiomic Features and Clinical Parameters

Figure 4 is a correlation map between the radiomic features and clinical parameters
of the study participants. Of all radiomic features, there were 31, 20, and 8 statistically
significant correlations with eGFR, systolic blood pressure (SBP), and BMI, respectively.
Among associations between radiomic features and eGFR, there were 6, 15, and 10 first-
order, GLCM, and GLRLM features, respectively, that were statistically significant. GLNU
had the strongest correlation with eGFR (ρ = 0.58 and p < 0.001). LongRunLowGLEmph
had the strongest correlation with BMI (ρ = 0.47 and p = 0.002). SecMeasInfoCor had the
strongest correlation with SBP (ρ = −0.51 and p = 0.004).
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dissimilar clusters. Cluster 1 (the upper half of the dendrogram) consisted of 17 
individuals, all with CKD (100%), and cluster 2 (the lower half of the dendrogram) 
included 23 individuals, 13 of which had CKD (57%) (p = 0.001). 

Figure 4. Correlation map of radiomic and clinical features. Shown is a color-coded correlation
map between radiomic and clinical features. Only statistically significant (p < 0.05) correlations are
displayed. There were no significant correlations in the categories of age, sex, diastolic blood pressure,
eGFR slope, 24 h urine protein, or blood glucose. Spearman ρ value of correlations is displayed.
The color coding was based on the Spearman ± ρ values; however, all correlations were moderate
(0.3 to 0.7) and indicated as positive (pos) or negative (neg). Abbreviations: CKD: chronic kidney
disease; CKD-EPI: CKD Epidemiology Collaboration; eGFR: estimated glomerular filtration rate; SBP:
systolic blood pressure; BMI: body mass index.

3.5. Hierarchical Clustering by Radiomic Features

Figure 5 demonstrates the results of hierarchical clustering in a dendrogram and heat
map. Figure 6 demonstrates the BIC score of consecutive clusters, showing a worse model
fit (higher score) for GMM models using more than two clusters. The figure demonstrates a
clinical delineation (blue/black column representing CKD) between the two most dissimilar
clusters. Cluster 1 (the upper half of the dendrogram) consisted of 17 individuals, all with
CKD (100%), and cluster 2 (the lower half of the dendrogram) included 23 individuals,
13 of which had CKD (57%) (p = 0.001).
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represents the presence (blue) or absence (black) of CKD in the subject. The clustering shows two 
distinct phenotypes. Phenotype 1 (Cluster 1) can be identified as CKD, while phenotype 2 (Cluster 
2) includes both CKD and controls, possibly indicating early changes. Cluster 1 had more negative 
Z-scores (darker red) in many of the first 29 feature columns and more positive Z-scores (lighter 
red) in the following 25 feature columns. 

Figure 5. Hierarchical clustering of radiomic features. Shown are Z-score normalized values of each
individual radiomic feature in each column, with each participant as a unique row. The first column
represents the presence (blue) or absence (black) of CKD in the subject. The clustering shows two
distinct phenotypes. Phenotype 1 (Cluster 1) can be identified as CKD, while phenotype 2 (Cluster 2)
includes both CKD and controls, possibly indicating early changes. Cluster 1 had more negative
Z-scores (darker red) in many of the first 29 feature columns and more positive Z-scores (lighter red)
in the following 25 feature columns.
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versus the number of clusters in a Gaussian mixture model (GMM). The dotted line indicates the
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Table 3 shows the radiomic and clinical parameters stratified by cluster. The mean
eGFR of cluster 1 and cluster 2 was 49.8 ± 11.5 and 68.9 ± 21.7 mL/min/1.73 m2, respec-
tively (p = 0.002). There were no significant differences in eGFR slope, BMI, SBP, DBP, age,
or blood glucose by cluster. There were 39 radiomic parameters that differed between the
clusters. There were three measurements that were significantly different between the CKD
and healthy groups that were not different between clusters, including 0.5, FirstMeasInfo-
Cor, and LongRunHighGLEmph. There were five measurements that were significantly
different between clusters that were not different between the CKD and healthy groups,
including skewness, 0.99, JointMax, GLCMCor, and ClstProm.

Table 3. Differences in clinical and radiomic features between two phenotypes.

Cluster 1 (n = 17) Cluster 2 (n = 23) p-Value

CKD 1.0 ± 0.0 0.6 ± 0.5 0.001

clinical

Female or Male? 0.4 ± 0.5 0.3 ± 0.5 0.689
Age (years) 65.1 ± 10.3 62.3 ± 9.7 0.376
SBP (mmHg) 135.4 ± 16.5 131.6 ± 15.5 0.527
DBP (mmHg) 67.1 ± 12.6 69.1 ± 7.7 0.615
CKD-EPI eGFR (mL/min/1.73 m2) 49.8 ± 11.5 68.9 ± 21.7 0.002
BMI (kg/m2) 33.2 ± 8.1 29.0 ± 6.0 0.067
eGFR slope (mL/min/1.73 m2/year) −0.3 ± 4.4 −0.8 ± 2.6 0.745
24 h urine protein excretion (gm) 0.1 ± 0.0 0.2 ± 0.0 0.194
Blood glucose (mg/dL) 157.9 ± 74.4 138.8 ± 59.8 0.454

CoV 2.63 × 10−1 (2.37 × 10−1–3.18 × 10−1) 1.86 × 10−1 (1.59 × 10−1–2.05 × 10−1) 0.000

1st order

Mean 1.72 × 10−3 (1.61 × 10−3–1.82 × 10−3) 1.79 × 10−3 (1.72 × 10−3–1.84 × 10−3) 0.245
Variance 1.99 × 10−7 (1.67 × 10−7–2.49 × 10−7) 9.84 × 10−8 (8.25 × 10−8–1.23 × 10−7) 0.000
Skewness 5.78 × 10−1 (−2.90 × 10−1–8.08 × 10−1) −1.34 × 10−1 (−5.31 × 10−1–2.35 × 10−1) 0.014
Kurtosis 1.93 × 100 (1.24 × 100–3.31 × 100) 1.67 × 100 (1.30 × 100–3.26 × 100) 0.989
Entropy 3.66 × 100 (3.60 × 100–3.75 × 100) 3.37 × 100 (3.31 × 100–3.45 × 100) 0.000
0.01 5.86 × 10−4 (4.48 × 10−4–7.17 × 10−4) 9.24 × 10−4 (7.82 × 10−4–9.87 × 10−4) 0.000
0.05 9.77 × 10−4 (9.14 × 10−4–1.12 × 10−3) 1.25 × 10−3 (1.12 × 10−3–1.33 × 10−3) 0.000
0.1 1.19 × 10−3 (1.14 × 10−3–1.31 × 10−3) 1.37 × 10−3 (1.32 × 10−3–1.47 × 10−3) 0.000
0.25 1.52 × 10−3 (1.43 × 10−3–1.58 × 10−3) 1.61 × 10−3 (1.54 × 10−3–1.68 × 10−3) 0.003
0.5 1.72 × 10−3 (1.65 × 10−3–1.80 × 10−3) 1.80 × 10−3 (1.74 × 10−3–1.84 × 10−3) 0.057
0.75 1.94 × 10−3 (1.86 × 10−3–2.02 × 10−3) 1.96 × 10−3 (1.90 × 10−3–2.00 × 10−3) 0.613
0.9 2.20 × 10−3 (2.06 × 10−3–2.33 × 10−3) 2.13 × 10−3 (2.04 × 10−3–2.21 × 10−3) 0.245
0.95 2.40 × 10−3 (2.28 × 10−3–2.69 × 10−3) 2.26 × 10−3 (2.13 × 10−3–2.36 × 10−3) 0.109
0.99 3.05 × 10−3 (2.65 × 10−3–3.56 × 10−3) 2.56 × 10−3 (2.42 × 10−3–2.81 × 10−3) 0.029

AuCor 1.99 × 103 (1.73 × 103–2.22 × 103) 2.14 × 103 (1.95 × 103–2.26 × 103) 0.404

gray level
co-occurrence

matrix

JointAvg 4.40 × 101 (4.10 × 101–4.64 × 101) 4.55 × 101 (4.38 × 101–4.68 × 101) 0.256
ClstProm 7.26 × 105 (4.97 × 105–1.77 × 106) 2.05 × 105 (1.14 × 105–2.93 × 105) 0.001
ClstShade 5.03 × 103 (−1.49 × 103–9.33 × 103) −2.36 × 101 (−7.35 × 102–1.93 × 103) 0.318
ClstTend 3.76 × 102 (3.05 × 102–4.71 × 102) 2.01 × 102 (1.63 × 102–2.46 × 102) 0.000
GLCMContr 9.19 × 101 (7.35 × 101–1.04 × 102) 3.74 × 101 (3.33 × 101–5.00 × 101) 0.000
GLCMCor 6.06 × 10−1 (5.75 × 10−1–6.36 × 10−1) 6.80 × 10−1 (6.02 × 10−1–7.18 × 10−1) 0.009
DiffAvg 6.74 × 100 (5.86 × 100–7.44 × 100) 4.39 × 100 (4.11 × 100–4.99 × 100) 0.000
DiffEntr 4.20 × 100 (3.99 × 100–4.32 × 100) 3.61 × 100 (3.53 × 100–3.74 × 100) 0.000
DiffVar 4.29 × 101 (3.42 × 101–5.68 × 101) 1.77 × 101 (1.52 × 101–2.25 × 101) 0.000
AngSecMom 2.13 × 10−3 (1.90 × 10−3–2.33 × 10−3) 3.65 × 10−3 (3.23 × 10−3–4.52 × 10−3) 0.000
JointEntr 9.35 × 100 (9.22 × 100–9.52 × 100) 8.62 × 100 (8.30 × 100–8.85 × 100) 0.000
FirstMeasInfoCor −2.27 × 10−1 (−2.44 × 10−1–−2.18 × 10−1) −2.04 × 10−1 (−2.41 × 10−1–−1.86 × 10−1) 0.151
SecMeasInfoCor 9.50 × 10−1 (9.45 × 10−1–9.62 × 10−1) 9.24 × 10−1 (9.11 × 10−1–9.54 × 10−1) 0.024
InvDiffMom 1.69 × 10−1 (1.43 × 10−1–1.79 × 10−1) 2.31 × 10−1 (2.13 × 10−1–2.38 × 10−1) 0.000
InvDiffMomNorm 9.91 × 10−1 (9.90 × 10−1–9.93 × 10−1) 9.96 × 10−1 (9.95 × 10−1–9.97 × 10−1) 0.000
InvDiff 2.59 × 10−1 (2.32 × 10−1–2.68 × 10−1) 3.19 × 10−1 (3.02 × 10−1–3.25 × 10−1) 0.000
InvDiffNorm 9.40 × 10−1 (9.35 × 10−1–9.48 × 10−1) 9.59 × 10−1 (9.55 × 10−1–9.62 × 10−1) 0.000
InvVar 1.69 × 10−1 (1.49 × 10−1–1.80 × 10−1) 2.37 × 10−1 (2.19 × 10−1–2.49 × 10−1) 0.000
JointMax 7.47 × 10−3 (6.04 × 10−3–9.02 × 10−3) 1.17 × 10−2 (1.03 × 10−2–1.45 × 10−2) 0.000
SumAvg 8.80 × 101 (8.20 × 101–9.28 × 101) 9.11 × 101 (8.76 × 101–9.35 × 101) 0.256
SumEnt 6.06 × 100 (5.99 × 100–6.23 × 100) 5.65 × 100 (5.52 × 100–5.76 × 100) 0.000
JointVar 1.17 × 102 (9.70 × 101–1.50 × 102) 5.86 × 101 (4.86 × 101–7.32 × 101) 0.000
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Table 3. Cont.

Cluster 1 (n = 17) Cluster 2 (n = 23) p-Value

ShortRunEmph 9.64 × 10−1 (9.63 × 10−1–9.71 × 10−1) 9.50 × 10−1 (9.48 × 10−1–9.54 × 10−1) 0.000

gray level run
length matrix

LongRunEmph 1.16 × 100 (1.14 × 100–1.16 × 100) 1.23 × 100 (1.21 × 100–1.24 × 100) 0.000
GLNU 4.40 × 101 (3.80 × 101–4.60 × 101) 5.88 × 101 (4.65 × 101–6.83 × 101) 0.004
GLNUnorm 3.19 × 10−2 (2.96 × 10−2–3.43 × 10−2) 4.29 × 10−2 (3.97 × 10−2–4.60 × 10−2) 0.000
RunLenNU 1.24 × 103 (1.13 × 103–1.30 × 103) 1.26 × 103 (1.09 × 103–1.41 × 103) 0.774
RunLenNUnorm 9.09 × 10−1 (9.06 × 10−1–9.27 × 10−1) 8.77 × 10−1 (8.73 × 10−1–8.85 × 10−1) 0.000
RunPerc 9.52 × 10−1 (9.50 × 10−1–9.59 × 10−1) 9.34 × 10−1 (9.30 × 10−1–9.38 × 10−1) 0.000
GLVar 1.24 × 102 (1.06 × 102–1.49 × 102) 6.35 × 101 (5.31 × 101–7.94 × 101) 0.000
RunLenVar 5.38 × 10−2 (4.86 × 10−2–5.64 × 10−2) 7.76 × 10−2 (7.16 × 10−2–8.55 × 10−2) 0.000
RunEntr 5.55 × 100 (5.45 × 100–5.71 × 100) 5.21 × 100 (5.10 × 100–5.33 × 100) 0.000
LowGLRunEmph 1.40 × 10−3 (6.75 × 10−4–2.20 × 10−3) 5.94 × 10−4 (5.31 × 10−4–7.09 × 10−4) 0.000
HighGLRunEmph 2.00 × 103 (1.75 × 103–2.25 × 103) 2.13 × 103 (1.94 × 103–2.25 × 103) 0.503
ShortRunLowGLEmph 1.38 × 10−3 (6.55 × 10−4–2.17 × 10−3) 5.69 × 10−4 (5.05 × 10−4–6.85 × 10−4) 0.000
ShortRunHighGLEmph 1.93 × 103 (1.70 × 103–2.17 × 103) 2.01 × 103 (1.84 × 103–2.11 × 103) 0.753
LongRunLowGLEmph 1.50 × 10−3 (7.66 × 10−4–2.32 × 10−3) 7.10 × 10−4 (6.53 × 10−4–8.17 × 10−4) 0.002
LongRunHighGLEmph 2.31 × 103 (2.09 × 103–2.61 × 103) 2.64 × 103 (2.44 × 103–2.80 × 103) 0.065

Note: Mean values with standard deviation (SD) are reported for normally distributed variables; otherwise,
median values with interquartile range (IQR) are reported. Healthy individuals (n = 10) in Cluster 2 were missing
some clinical measurements (SBP, DBP, eGFR slope, urine protein, and blood glucose) and were excluded from
the respective statistical analysis. Abbreviations: CKD: chronic kidney disease; CKD-EPI: the CKD Epidemiology
Collaboration; eGFR: estimated glomerular filtration rate; SBP: systolic blood pressure; DBP: diastolic blood
pressure; BMI: body mass index.

3.6. Radiomics-Based Prediction of CKD and CKD Progression

To predict CKD vs. healthy volunteers in the entire cohort (n = 40), the stepwise inclu-
sion of the following features improved the AUC-ROC: GLNU, ShortRunHighGLEmph,
GLCMContr, kurtosis, and skewness. For predicting CKD, the model’s sensitivity was 93%,
specificity was 70%, and the AUC-ROC was 0.95.

The rapid and non-rapid progressors had a mean annual eGFR slope of −5.27 ± 2.61
and 0.92 ± 2.57 mL/min/1.73 m2 per year, respectively (p < 0.001). To predict rapid pro-
gressor vs. non-rapid progressor status among individuals with CKD (n = 30), we created
three models using radiomics, baseline clinical features, and both radiomics and baseline
clinical features (Table 4). In the radiomics model, the stepwise inclusion of the following
features improved the AUC-ROC: GLCMContr, SumEnt, CoV, and FirstMeasInfoCor. For
predicting rapid progressors, this model’s sensitivity was 71%, specificity was 43%, and
the AUC-ROC was 0.75. In the baseline clinical features model, the stepwise inclusion
of the following features improved the AUC-ROC: 24 h urine protein excretion and sex.
For predicting rapid progressors, this model’s sensitivity was 57%, specificity was 91%,
and the AUC-ROC was 0.94. In the combination model, the stepwise inclusion of the
following features improved the AUC-ROC: 24 h urine protein excretion, sex, and AuCor.
For predicting rapid progressors, this model’s sensitivity was 57%, specificity was 96%,
and the AUC-ROC was 0.96.

Table 4. Logistic regression models to predict rapid vs. non-rapid progressors in CKD.

Model Features Features Sensitivity Specificity AUC-ROC

Radiomics GLCMContr, SumEnt, CoV, FirstMeasInfoCor 71% 43% 0.75
Clinical 24 h urine protein excretion, sex 57% 91% 0.94

Combination * 24 h urine protein excretion, sex, AuCor 57% 96% 0.96

Note: For individuals missing protein excretion measurements (n = 4), the value was imputed based upon the
mode of the data (0 g/day). * indicates a combination of radiomic and baseline clinical features. AUC-ROC: area
under the curve of the receiver operating curve.

4. Discussion

In this preliminary feasibility study, we identified significant differences in radiomic
features derived from kidney ADC maps in individuals with mild to moderate CKD
and healthy volunteers. Using unsupervised hierarchical clustering, a machine learning
approach, we were able to identify two clusters with distinct radiomic signatures and
clinical phenotypes—one cluster included individuals with CKD and another cluster that
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had a mixture of individuals with CKD and healthy volunteers. Finally, a logistic regression
model was able to identify five radiomic features that distinguished individuals with CKD
from healthy volunteers. Our modeling approach that included four radiomic features
had a limited ability to classify individuals who experienced rapid CKD progression from
individuals without rapid CKD progression. Proteinuria was the strongest clinical variable
associated with rapidly progressive CKD, which was previously reported [22]. In this
exploratory study, radiomic features were able to slightly increase discrimination of rapid
progressors from non-rapid progressors beyond clinical variables. This may indicate a
need for larger studies to evaluate their ability to improve upon already existing prediction
models. Taken together, our findings should stimulate further research to determine
whether radiomic features are able to better phenotype individuals with CKD and add
prognostic value independent of clinical characteristics.

Kidney cortical fibrosis is recognized as a hallmark of progressive CKD [3,23]. Quanti-
tative ADC mapping, as assessed by diffusion-weighted MRI, demonstrated promise to
non-invasively identify kidney cortical fibrosis [5]. However, reliance on a single imaging
biomarker may miss opportunities to utilize more of the imaging data that capture addi-
tional phenotypic signatures of disease. While radiomic-based phenotyping approaches
have been used in multiple diseased organ systems, there have been relatively few per-
formed in CKD [11,14]. Our results are the first, to our knowledge, to demonstrate the
feasibility of radiomics-based analysis applied to quantitative kidney diffusion-weighted
MRI. In a prior report, we showed that individuals with mild to moderate CKD had lower
ADC values, suggestive of increased fibrosis, compared to age-matched healthy volunteers,
but these findings did not reach statistical significance [6]. In this study, we were able
to identify a number of radiomic features that were significantly different between the
same two groups. We further demonstrated that clustering by radiomic features, agnostic
to clinical variables, was able to separate the participants into a homogenous cluster of
individuals with CKD and a more heterogeneous cluster comprised of healthy volunteers
and individuals with CKD. One potential reason for why one cluster consisted of healthy
volunteers and individuals with CKD, indicative of similar vectors of radiomic features, is
that these individuals may share a similar clinical phenotype that may not be captured by
the single clinical variable (eGFR) used to classify participants as with CKD or healthy. If
confirmed to be true, the implication of this finding may suggest that these individuals with
CKD have a lower likelihood of CKD progression, since they are more similar to healthy
volunteers, or that some of the healthy volunteers may be at risk for CKD. Future research
is warranted to determine if radiomic features can identify clinically useful sub-phenotypes
of individuals with CKD.

Prior studies have demonstrated promise for the use of radiomics to identify signatures
of disease independent of clinical variables [24]. A recent analysis in individuals with
non-alcoholic fatty liver disease demonstrated that texture analysis, a form of radiomics
that captures spatial heterogeneity of tissue, outperformed clinical variables to identify
individuals with advanced liver fibrosis [14]. Texture analysis of computed tomography
(CT) scans predicted progression of renal cell carcinoma [25], and radiomic analysis of MRI
for breast cancer predicted tumor receptor status [26]. Similarly, radiomic measurements of
kidney MRIs may serve as a prognostic marker in a heterogeneous disease like CKD. Our
logistic regression model that consisted of five radiomic features was able to differentiate
individuals with CKD from healthy volunteers with excellent discrimination. Similarly, four
radiomic features were able to moderately discriminate individuals who experienced rapid
CKD progression from individuals who did not experience rapid CKD progression. While
it is known that proteinuria is a strong predictor of CKD progression at the population
level [22], it may not be able to identify which individual patient will experience rapid
progression. In this study, radiomic features alone did not outperform clinical features,
but AuCor was able to provide a mild increase in AUC-ROC in combination with clinical
variables. These findings underscore the need to further test whether radiomic features
are able to improve risk prediction of rapid CKD progression in larger follow-up studies.
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While some of the features correlated with one another, the stepwise addition of these
radiomic features improved the ability of each respective model to predict CKD and rapid
progression status. Larger studies with a representative spectrum of disease severity, a
variety of CKD etiologies, and robust longitudinal phenotyping, are required to further
identify disease sub-clusters and to identify individuals at high risk of CKD progression
independent of clinical variables.

The strengths of our study include the use of individuals with CKD and age-matched
healthy volunteers and the use of advanced image processing tools to generate radiomic
features from kidney ADC maps. We also used kidney ADC parametric maps that have
less inter-study variability than signal intensity, which can be influenced by instrument
and acquisition parameters specific to each collection. Our study has several limitations
that warrant consideration, as well. Our preliminary feasibility study utilized existing data
in a small number of individuals, and future studies that include more individuals across
the spectrum of CKD severity, with longer follow-ups, are needed to fully evaluate the
efficacy of these approaches by allowing for appropriate size for cross validation, external
validation, and comprehensive multivariable adjustment of potential confounders. We
only used the 54 radiomic features available in FV, while many other encoding methods
exist [11], which will require investigation in follow-up studies. A lack of reproducibility
data for radiomic features and a need for validation of quantitative imaging studies is
a limitation. Future investigators must exercise caution and become fully familiar with
radiomics workflow processing details [27]. We measured eGFR in our healthy volunteers,
but some of these individuals had eGFR values that may be considered early or mild CKD,
which we did not confirm with proteinuria measurements. We only included manually
defined cortical ADC ROIs, and future studies should consider deep learning methods
to segment renal parenchyma [28] for feature extraction and classification. Since the
participants did not undergo a native kidney biopsy, we were unable to assess whether the
radiomic features provide better estimates of underlying kidney cortical fibrosis than the
single mean ADC values, which will require further study in initiatives such as the Kidney
Precision Medicine Project.

5. Conclusions

In conclusion, a number of radiomic features showed significant differences between
individuals with CKD and healthy volunteers on kidney ADC maps, even though mean
ADC values were not significantly different. Importantly, our preliminary data support the
use of machine learning-based clustering techniques of radiomic features of quantitative
MRI parametric maps to provide additional phenotyping of individuals with CKD. Our
findings suggest the need for larger prospective studies that incorporate radiomics-based
approaches to analyze kidney MRI as a tool to identity individuals at high risk of rapid
CKD progression, in an effort to improve upon existing prediction models.
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