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Brown adipocyte-specific knockout of Bmal1
causes mild but significant thermogenesis
impairment in mice

Nazmul Hasan ', Naoto Nagata ', Jun-ichi Morishige ', Md Tarikul Islam?, Zheng Jing ', Ken-ichi Harada 3,
Michihiro Mieda 2, Masanori Ono *, Hiroshi Fujiwara *, Takiko Daikoku °, Tomoko Fujiwara °, Yoshiko Maida’,
Tsuguhito Ota %, Shigeki Shimba °, Shuichi Kaneko '°, Akio Fujimura'’, Hitoshi Ando "

ABSTRACT

Objective: Impaired circadian clocks can cause obesity, but their pathophysiological role in brown adipose tissue (BAT), a major tissue regulating
energy metabolism, remains unclear. To address this issue, we investigated the effects of complete disruption of the BAT clock on thermogenesis
and energy expenditure.

Methods: Mice with brown adipocyte-specific knockout of the core clock gene Bmal1 (BA-Bmal1 KO) were generated and analyzed.
Results: The BA-Bmal1 KO mice maintained normal core body temperatures by increasing shivering and locomotor activity despite the elevated
expression of thermogenic uncoupling protein 1 in BAT. BA-Bmal1 KO disrupted 24 h rhythmicity of fatty acid utilization in BAT and mildly reduced
both BAT thermogenesis and whole-body energy expenditure. The impact of BA-Bmal1 KO on the development of obesity became obvious when
the mice were fed a high-fat diet.

Conclusions: These results reveal the importance of the BAT clock for maintaining energy homeostasis and preventing obesity.
© 2021 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION thermogenesis and whole-body oxygen consumption, preventing the

development of obesity [5].

Obesity and associated comorbidities, including type 2 diabetes and
cardiovascular diseases, are major worldwide health concerns.
Adaptive thermogenesis, which is defined as the regulated production
of heat in response to environmental changes in temperature and diet,
can be utilized to counteract the hypercaloric state of obesity [1]. There
are two forms of adaptive thermogenesis, shivering and non-shivering
thermogenesis, and brown adipose tissue (BAT) is the major site of
non-shivering thermogenesis. BAT’s activity is associated with obesity
in humans [2]. Moreover, genetic ablation of either BAT or uncoupling
protein 1 (UCP1), the protein responsible for the thermogenic process
in BAT, predisposes mice to obesity [3,4]. At least in mice, induction of
UCP1 by treatment with a 33-adrenaergic agonist increases both BAT

The molecular circadian clock, which is primarily composed of tran-
scriptional/translational feedback loops involving a set of clock genes,
resides in almost all cell types [6]. In mammals, the central clock
localized in the hypothalamic suprachiasmatic nuclei is regulated by
light stimuli, whereas the peripheral clocks located in other tissues
may be entrained by a combination of various humoral and neural
signals regulated, at least partly, by the central clock [7]. Accumulating
evidence has suggested a link between circadian clocks and obesity-
related diseases. Chronic jet lag under abnormal lighting conditions,
which cause the systemic disruption of circadian clocks, reportedly
causes obesity in both mice [8] and shift workers [9]. The mutation of
Clock, one of the core clock genes, induces obesity and metabolic
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syndrome in mice [10], and this Clock mutant is unable to maintain
their body temperature following 12 h of fasting [11], suggesting
impaired non-shivering thermogenesis. In humans, genetic variants of
CLOCK and another core clock gene BMALT are associated with
susceptibility to obesity and type 2 diabetes, respectively [12,13].
Peripheral clocks are also impaired in obese diabetic mice [14,15] and
patients with type 2 diabetes [16].

The pathophysiological roles of circadian clocks in each peripheral
tissue are gradually becoming clear. For example, the clock genes
Bmal1 and Dbp are required for adipose differentiation in pre-
adipocytes and lipogenesis in adipocytes [17,18]. Pancreas-specific
Bmal1 knockout (KO) mice develop diabetes due to impaired insulin
secretion [19] because the circadian clock in pancreatic [ cells plays a
role in insulin exocytosis [20]. Dyar et al. [21] demonstrated that the
muscle clock controls glucose uptake and metabolism, and our group
[22] revealed that the hepatic clock regulates the daily rhythms of
gluconeogenesis and fasting glucose levels using muscle- and liver-
specific Bmal1l KO mice, respectively. Regarding BAT, systemic KO
of the clock gene Nr1d7 (also known as Rev-erb «) in mice abolishes
normal daily rhythms of BAT activity and body temperature and in-
creases cold tolerance because NR1D1 is a major negative tran-
scriptional regulator of not only Bmal1 but also Ucp1 [23]. However,
mice harboring a global mutation in the clock gene Per2 are more
sensitive to cold because PER2 may modulate UCP1 expression as a
co-activator of peroxisome proliferator-activated receptor alpha
(PPARc) [24]. Thus, the effect of each clock gene on BAT activity is
diverse, and the pathophysiological role of the whole circadian clock in
BAT remains unclear.

To address this issue, we generated mice with brown adipocyte-
specific KO of the main core clock gene Bmal1 (BA-Bmal1 KO) and
investigated the effects of complete disruption of the BAT clock on
thermogenesis and energy expenditure.

2. MATERIALS AND METHODS

2.1. Animals

To generate BA-Bmal1 KO mice, Bmal1-floxed mice [25] were crossed
with mice expressing a Cre transgene driven by the Ucp7 promoter
(stock no. 024670, Jackson Laboratory, Bar Harbor, ME, USA) [26].
The mice were maintained under controlled temperature (~23 °C),
humidity (~55%), and light (12-h/12-h light/dark cycle) conditions
and fed a regular diet (CRF-1, Oriental Yeast, Tokyo, Japan) and water
ad libitum. A subset of mice was fed a high-fat diet (012492, Research
Diets, New Brunswick, NJ, USA) for 22 weeks. Male mice (8—9 weeks
old [unless specified]) were used for the experiments, and Bmal1-
floxed mice were used as controls. All of the animal procedures were
approved by the Institutional Committee for Ethical Use of Experimental
Animals (approval no. AP-173889) and performed in accordance with
the Guidelines for the Care and Use of Laboratory Animals at Kanazawa
University (Kanazawa, Japan).

2.2. RNA isolation and quantitative PCR

The mice were sacrificed to obtain blood, interscapular BAT, and
epididymal fat samples every 4 h for 24 h. Total RNA was extracted from
frozen tissues by TRIzol using an RNeasy Mini Kit (Qiagen, Valencia, CA,
USA), and cDNA was synthesized using a High-Capacity cDNA Reverse
Transcription Kit (Thermo Fisher Scientific, Waltham, MA, USA) ac-
cording to the manufacturers’ instructions. Gene expression was
analyzed by quantitative PCR performed using an Applied Biosystems
ViiA 7 Real-Time PCR System. The specific sets of primers and TagMan
probes (TagMan gene expression assays) used in this study are listed in

Supplemental Table 1. Data were analyzed using the comparative
threshold cycle method with Aplp0 as the internal control.

2.3. Western blotting analyses

Total protein lysates were prepared from frozen tissues by homoge-
nization in RIPA lysis buffer containing protease inhibitor cocktail
(Nacalai Tesque, Kyoto, Japan), and subjected to sodium dodecyl
sulfate polyacrylamide gel electrophoresis. The resolved proteins were
transferred to PVDF membranes. The membranes were incubated
overnight at 4 °C with primary antibodies and then incubated with
appropriate secondary antibodies. The antibodies are listed in the
Supplemental Key resources table. Protein bands were imaged using
an ImageQuant LAS 4000 Camera System (GE Healthcare, Chicago, IL,
USA) after visualization with EzWestLumi Plus (ATTO, Tokyo, Japan),
and the pixel density was quantified with Image Studio Lite software
version 5.2 (LI-COR, Lincoln, NE, USA).

2.4. Measurements of glucose and lipid concentrations

Blood glucose levels were determined in tail blood using a Glucocard
G+ meter (Arkray, Kyoto, Japan). Serum concentrations of total
cholesterol, triglycerides, and non-esterified fatty acids were
measured using commercial kits (LabAssay, Fujifilm Wako Pure
Chemical, Osaka, Japan).

2.5. Core body temperature and locomotor activity

At 7 weeks of age, the mice were implanted intraperitoneally with an
ultra-small temperature logger (DST Nano-T, Star-Oddi, Gardabaer,
Iceland) under anesthesia and housed individually in specialized cages
for an infrared sensor detection system (Supermex, Muromachi Kikai,
Tokyo, Japan). Two weeks later, core body temperature and locomotor
activity were continuously measured for five consecutive days.

2.6. Electroencephalography and electromyography

Implantation of electroencephalography/electromyography (EEG/EMG)
electrodes, EEG/EMG recordings, and data analyses were performed
as previously described [27]. Specifically, all of the mice were provided
at least 14 days to recover from surgery prior to the start of EEG/EMG
recording. Before starting the EEG/EMG recording, the mice were
habituated in the recording chamber for at least 3 days. EEG/EMG
signals were amplified through an amplifier (MEG-6108, Nihon Koh-
den, Tokyo, Japan) and recorded on a computer using recording
software (Vital Recorder, Kissei Comtec, Matsumoto, Japan). The
polysomnographic recordings were scored using sleep analysis soft-
ware (Sleep Sign, Kissei Comtec). Scoring was executed based on
visual inspection of the EEG and EMG waveforms as well as the power
spectra of 4 s epochs. We defined wakefulness by the presence of
desynchronized low-amplitude EEG activity and an increase in EMG
activity. We scored non-rapid eye movement (non-REM) sleep when
EEG showed high-amplitude and low-frequency (0.5—4 Hz) oscilla-
tions along with reduced EMG activity. We defined REM sleep by the
presence of theta rhythms (4—10 Hz) and a very low muscle tone.
For EMG data analyses, we selected the first four time frames per hour
of the non-REM sleep period when the waveform was stable with no
high-amplitude spike for at least for 16 s. Then the raw EMG signal
was rectified using Sleep Sign software (Kissei Comtec) amplified
1,000 times, and the root mean square (RMS) of the EMG signal was
calculated.

2.7. Thermographic imaging

The dorsal side of the mice was shaved 48 h before taking images, and
thereafter the mice were kept individually. Thermal images (at least 3
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images/mouse) were taken from non-anesthetized mice at ZT 8 using
a FLIR C2 thermal camera (FLIR Systems, Wilsonville, OR, USA) with an
emissivity of 0.97 and a 0.25 m distance. Images were analyzed using
FLIR Tools software. The highest temperature values of the selected
regions (interscapular and dorsal region) were retrieved and subjected
to analyses of the ratio of BAT to the dorsal region.

2.8. Measurement of urinary catecholamines

The mice were placed individually in metabolic cages with free access
to food and water. After 4 days of acclimation, 24 h urine samples
were collected in glass vials containing 60 pL of 6 M hydrochloric acid
[28] for four consecutive days. The concentrations of epinephrine,
norepinephrine, and dopamine were measured using the established
method of high-performance liquid chromatography with post-column
fluorescence derivatization [29].

2.9. Histological examination

BAT was fixed in 4% paraformaldehyde phosphate-buffered solution
(Nacalai Tesque), embedded in paraffin, and stained with hematoxylin
and eosin. Analyses of the fat area were conducted using QuPath
software [30] in a blinded fashion.

2.10. Indirect calorimetry measurements

The mice were individually housed in chambers of an Oxymax system
(Columbus Instruments, Columbus, OH, USA). After a 2-day acclima-
tion period, their oxygen consumption and carbon dioxide production
were measured for six consecutive days. The respiratory exchange
ratio (RER) and energy expenditure (heat) were computed using
standard equations.

2.11. Metabolome analysis

Approximately 40 mg of frozen tissue was homogenized in 50% (v/v)
acetonitrile/water containing internal standards (H3304-1002, Human
Metabolome Technologies [HMT], Tsuruoka, Yamagata, Japan). The
homogenate was then centrifuged, and the upper aqueous layer was
centrifugally filtered through a 5-kDa cutoff filter (Ultrafree MC-PLHCC,
HMT) at 9,100 g and 4 °C for 120 min to remove macromolecules.
The filtrate was evaporated to dryness under a vacuum and recon-
stituted in Milli-Q water for metabolome analysis at HMT.
Metabolome analysis was conducted via the HMT C-SCOPE package
using capillary electrophoresis time-of-flight mass spectrometry (CE-
TOFMS) for cation analysis and CE-tandem mass spectrometry (CE-
MS/MS) for anion analysis based on previously described methods
[31,32]. Briefly, CE-TOFMS and CE-MS/MS analysis were carried out
using an Agilent CE capillary electrophoresis system (Agilent Tech-
nologies, Santa Clara, CA, USA) equipped with an Agilent 6210 time-
of-flight mass spectrometer and Agilent 6460 Triple Quadrupole LC/
MS, respectively. The systems were controlled by Agilent G2201AA
ChemStation software version B.03.01 for CE and connected by a
fused silica capillary (50 pm i.d. x 80 cm total length) with com-
mercial electrophoresis buffer (H3301-1001 and 13302-1023 for
cation and anion analyses, respectively, HMT) as the electrolyte. The
time-of-flight mass spectrometer was scanned from m/z 50 to 1,000
and the triple quadrupole mass spectrometer was used to detect
compounds in the dynamic MRM mode. Peaks were extracted using
MasterHands automatic integration software (Keio University, Tsur-
uoka, Yamagata, Japan) [33] and MassHunter Quantitative Analysis
B.04.00 (Agilent Technologies) to obtain peak information including the
m/z, peak area, and migration time (MT). Signal peaks were annotated
according to the HMT metabolite database based on their m/z values
with the MTs. The peak area of each metabolite was normalized with
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respect to the internal standard area, and the metabolite concentration
was evaluated by standard curves with three-point calibrations using
each standard compound. Hierarchical cluster analysis and principal
component analysis [34] were performed by HMT’s proprietary MAT-
LAB and R programs, respectively. Detected metabolites were plotted
on metabolic pathway maps using VANTED software [35].

2.12. Statistical analysis

Data are presented as the mean and standard deviation (SD). Differ-
ences between the genotypes were analyzed using Student’s t test or
the Mann—Whitney U test. Regression analyses were conducted to
assess the relationship between locomotor activity and core body
temperature. The calculations were performed using IBM SPSS Sta-
tistics (version 24.0). P < 0.05 was considered statistically significant.

3. RESULTS

3.1. BA-Bmal1 KO increased UCP1 expression in BAT

The BA-Bmall KO mice were generated by crossing Bmal7-floxed
mice [22,25] with Ucp1-Cre mice [26]. As expected, the daily rhythmic
mRNA expression levels of Bmal1 were extensively dampened in the
BAT but not in the white adipose tissue of the BA-Bmal1 KO mice
(Figure 1A). Consistent with this, the rhythmic mRNA expression of
other clock genes (Per1, Cry1, and Nr1d1) was also markedly altered in
the BAT. Probably because NR1D1 acts as a repressor of Cry7 [36], the
mRNA levels of Cry7 were significantly elevated.

The thermogenic activity of BAT is mediated by the sympathetic ner-
vous system (SNS) through the action of the $3-adrenergic receptor
(encoded by Adrb3), which ultimately activates the transcription of
Ucp1 partly due to the increase in PPARY coactivator-1a (encoded by
Ppargcia) [37]. In the BAT of the controls (Bmal7-floxed mice), the
mRNA expression of Adrb3 exhibited an obvious 24 h rhythm with a
peak at the beginning of the light phase (zeitgeber time [ZT] 0; ZT was
used to describe the experimental time with ZT 0 defined as lights on
and ZT 12 as lights off) (Figure 1B). This rhythm was dampened in the
BA-Bmal1 KO mice. Although the mRNA levels of Ppargcia did not
differ between genotypes, both mRNA and protein levels of UCP1 were
significantly elevated for 24 h in the BA-Bmal1 KO mice as reported in
systemic Nr1d7 KO mice [23] (Figure 1B,C). However, this increase in
UCP1 did not affect the body weight, food intake, body composition,
and circulating glucose and lipid concentrations under a normal chow
diet (Figure 1D and Table 1).

3.2. BA-Bmal1 KO increased locomotor activity without affecting
core body temperature

The themogenic activity of the BAT, which greatly depends on the
UCP1 expression, plays an important role in maintaining body tem-
perature [1]. Therefore, we investigated the effects of BA-Bmal1 KO on
the core body temperature. The BA-Bmal1 KO mice housed at 23 °C, a
mild cold temperature for rodents, showed a similar 24 h core body
temperature rhythm compared to the control mice (Figure 2A). The
body temperature tended to be lower during the early rest phase (ZT
0—4) in the BA-Bmal1 KO mice than in the controls. Moreover, the
locomotor activity significantly increased, particularly in the active
phase (Figure 2B). Consistently, the duration of non-rapid eye move-
ment sleep was shorter in the middle of the active phase (ZT 16—20) in
the BA-Bmal1 KO mice (Figure 2C). Interestingly, the 24 h area under
the core body temperature time curve was positively correlated with
the 24 h cumulative sum of locomotor activity in the control mice, but
the correlation was completely inverted in the BA-Bmal1 KO mice
(Figure 2D). Namely, the lower the body temperature, the higher the
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Figure 1: BA-Bmal1 KO increased UCP1 expression in BAT. (A—C) Daily expression profiles of the clock genes and thermogenesis-related genes. The mice housed at 23 °C
were sacrificed to obtain brown (A—C) and white adipose tissue samples (A) at the following ZTs: 0, 4, 8, 12, 16, and 20, in which ZT 0 was defined as lights on and ZT 12 as lights
off. The mRNA expression of the clock genes (A) and thermogenesis-related genes (B) and protein expression of UCP1 (C) were quantified using quantitative PCR and Western
blotting analyses, respectively. Data are presented as the mean and SD of 3—4 mice per time point per group. *p < 0.05 and **p < 0.01 at each time point. (D) Body weight and
food intake during normal chow feeding. The mice were housed three animals per cage. Data are presented as the mean and SD of six mice or means of two cages.
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Table 1 — Body weight, circulating glucose and lipid concentrations, and body composition of normal chow (NC) and high-fat diet (HFD)-fed mice.

NC (8 weeks of age)

HFD (30 weeks of age)

Control BA-Bmal1 KO Control BA-Bmal1 KO
n 4 5 3 9
Body weight (g) 242 + 141 226 +£25 46.7 + 8.6 58.7 4 3.5%*
Blood glucose (mg/dl) 152 + 10 152 + 12 188 + 27 184 + 21
Serum lipid concentration TC (mg/dl) 149 + 24 132 + 16 426 + 103 440 + 67
TG (mg/dl) 136 + 23 114 + 27 89 + 10 82 + 15
NEFA (mEg/l) 1.10 £ 0.26 0.96 + 0.17 1.01 £ 0.21 0.89 + 0.25
Tissue weight (g) iBAT 0.06 + 0.01 0.06 + 0.01 0.36 + 0.24 0.70 + 0.22*
ingWAT 0.22 + 0.01 0.19 + 0.03 2.54 + 0.67 3.26 + 0.34*
eWAT 0.36 + 0.06 0.30 + 0.07 1.53 + 0.69 1.17 + 0.26
asWAT 0.30 + 0.03 0.25 + 0.06 1.57 +0.38 3.68 + 0.55**
prWAT 0.06 + 0.01 0.04 + 0.01 0.92 + 0.16 1.62 4 0.18**
Liver 1.15 + 0.08 1.02 + 0.11 297 +1.37 3.70 + 0.57

Values are presented as the mean 4= SD. *p < 0.05 and **p < 0.01 vs control. TC, total cholesterol; TG, triglycerides; NEFA, non-esterified fatty acid; iBAT, interscapular brown
adipose tissue; ingWAT, inguinal white adipose tissue; eWAT, epididymal white adipose tissue; asWAT, anterior subcutaneous white adipose tissue; prWAT, perirenal white adipose

tissue.

activity in the BA-Bmal1 KO strain. Because increased locomotor ac-
tivity is one behavioral strategy for maintaining body temperature [38],
these results suggest that BA-Bmal1 KO increases behavioral ther-
mogenesis and raise the possibility that BA-Bmall KO does not
enhance but rather reduces thermogenesis despite the increased
expression of UCP1 in the BAT.

3.3. BA-Bmal1 KO mildly reduced thermogenesis in BAT

To determine if the BA-Bmal1 KO mice had reduced thermogenesis in
the BAT, we compared the surface temperature of the interscapular
BAT region between the BA-Bmal1 KO and their littermate control
mice. Although the BAT surface temperature itself did not differ be-
tween genotypes (37.4 & 0.7 °C in the control mice vs 38.0 += 0.4 °C
in the BA-Bmal1 KO mice; p = 0.16), we found that the temperature
ratio of the BAT region to dorsal region, which was measured at ZT 8,
was significantly lower in the BA-Bmal1 KO mice than in the control
mice (Figure 3A). Consistent with this, the shivering intensity increased
at least during the late rest phase (ZT 8—12) (Figure 3B). Taken
together, these findings indicate that both shivering and behavioral
thermogenesis, which are not mediated by the SNS [39], adequately
compensated the impaired non-shivering thermogenesis in the BAT to
maintain the core body temperature. Possibly as a result, the SNS
activity assessed by daily urinary excretion of catecholamines
decreased in the BA-Bmal1l KO mice (Figure 3C). It is noteworthy,
however, that most of the observed effects of BA-Bmal1 KO were
temporal and relatively mild. In fact, the tolerance to cold exposure
(4 °C) of the BA-Bmal1 KO mice was comparable to that of the control
mice (Supplemental Fig. 1). Thus, the impairment in BAT function in
the BA-Bmal1 KO mice seemed to be very mild.

3.4. BA-Bmal1 KO mildly impaired lipid utilization in BAT

Both whole-body oxygen consumption and energy expenditure were
mostly comparable between genotypes but were significantly lower in
the BA-Bmal1 KO mice during the early active phase (Figure 4A and
Supplemental Fig. 2). Indirect calorimetry also revealed that the res-
piratory exchange ratio in the late active phase (ZT 20—24) was higher
in the BA-Bmal1 KO mice, indicating a shift in energy source from fatty
acids to glucose. Therefore, we then focused on the fatty acid utili-
zation. As shown in Figure 4B, the concentrations of free fatty acids in
serum, the major substrates for BAT thermogenesis [40], did not differ
for 24 h between genotypes. However, as reported in systemic Bmal1

KO mice [41], histological analyses showed a significant increase in
the BAT adipocyte area in the BA-Bmal1 KO mice (Figure 4C). It has
been shown in the liver of mice that most of the proteins related to fatty
acid utilization (uptake and oxidation) and the respiratory chain have
circadian patterns of expression under regulation of the intracellular
clock [42]. Therefore, we further investigated the daily expression
rhythms of these proteins in the BAT. As shown in Figure 4D,E, and 4F,
adipose triglyceride lipase (ATGL, encoded by Pnpla2) tended to exhibit
dampened 24 h expression rhythms of mRNA and protein in the BA-
Bmal1 KO mice compared to the control mice. Moreover, carnitine
palmitoyltransferase (CPT) 1A and CPT2, which are enzymes essential
for long-chain fatty acid influx from cytosol to the mitochondrial matrix,
were expressed at significantly lower levels in the BA-Bmal1 KO mice,
particularly when these levels nearly peaked in the control mice. BA-
Bmal1l KO somewhat increased the levels of proteins involved in the
assembly of mitochondrial oxidative phosphorylation complexes
(Figure 4E,G), suggesting minimal harmful effects of this KO on
mitochondria. Collectively, these results suggest that BA-Bmal1 KO
mildly impairs lipid utilization in the BAT possibly due to the disruption
of daily rhythms in fatty acid metabolism.

3.5. BA-Bmal1 KO reduced energy charges in BAT

Consistent with these results, a hierarchical cluster analysis
(Figure 5A) and principal component analysis (Figure 5B) of the
metabolome data (Supplemental Table 2 and Supplemental Fig. 3)
showed that the BAT samples of the BA-Bmal1 KO mice were clearly
distinguishable from those of the control mice. The amount of acetyl
CoA, a metabolite derived from fatty acid catabolism, was significantly
lower in the BA-Bmal1 KO mice than the control mice (Figure 5C). In
addition, ketogenic amino acids, which can also produce acetyl CoA,
and several glucogenic amino acids including glycine, arginine, and
methionine, decreased in the BA-Bmal1 KO mice. Furthermore, not
only ATP and ADP concentrations but the adenylate energy charge, an
index of cellular energy status [43], was significantly lower in the BA-
Bmal1 KO mice (Figure 5D). Notably, both creatine and creatinine also
decreased in the BA-Bmal1 KO mice (Figure 5E). Creatine is known to
be synthesized from glycine, arginine, and methionine, metabolize to
creatinine [44], and have a key role in UCP1-independent thermo-
genesis in the BAT [45]. Specifically, the BAT might produce heat
through the hydrolysis of phosphocreatine, although the precise
mechanisms underlying the regulation of this process remain unclear
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[46,47]. Because phosphocreatine increased in the BA-Bmall KO 3.6. BA-Bmall KO mice were more prone to diet-induced obesity
mice, it is also possible that BA-Bmall KO impairs this UCP1-  We investigated whether BA-Bmal1 KO leads to obesity. Body weight
independent thermogenesis. did not differ between genotypes when they were fed a normal chow
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*p < 0.05.

diet (Figure 1D). However, after over 7 weeks of high-fat diet feeding,
the BA-Bmal1 KO mice gained significantly more weight than their
littermate controls with no change in food intake (Figure 6A and
Supplemental Fig. 4). Consistent with body weight gain, the weights of
most of the adipose tissues were higher in the BA-Bmal1 KO mice than
the control mice (Table 1). Quantitative PCR (Figure 6B) and Western
blotting analyses (Figure 6C) reconfirmed the effects of BA-Bmal1 KO
on the expression of fatty acid utilization-related genes even under a
high-fat diet. However, the differences in UCP1 expression between
genotypes, which were observed in the mice fed a normal chow diet
(Figure 1B,C), disappeared after high-fat diet feeding (Figure 6D,E).
This may not be surprising because UCP1 expression is reported to be
increased in normal mice fed a high-fat diet [48]. Rather, this disap-
pearance could potentially contribute to the exacerbation of obesity in
the BA-Bmal1 KO mice. Taken together, these results clearly indicate

that disruption of the circadian clock in BAT is an exacerbating factor of
obesity.

4. DISCUSSION

Chang et al. [49] analyzed BA-Bmal1 KO mice harboring Bmal1-floxed
alleles (RRID:IMSR_JAX:007668) and showed that, compared to wild-
type mice, both the core body temperature and blood pressure were
significantly lower during the rest phase at 22 °C with no change in
locomotor activity. However, the BA-Bmal1 KO mice used in this study,
which harbored RRID:MGI:5613396, exhibited a similar core body
temperature rhythm with increases in both locomotor activity and
shivering compared to the control mice. We also found that the mice
with lower body temperatures were more active, suggesting that
behavioral thermogenesis, that is, body heat produced by increased
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*¥p < 0.01.

locomotor activity [38], increased in the BA-Bmall KO mice. The
decrease in SNS activity also indicated compensatory thermogenesis
in the skeletal muscle, which is not mediated by the sympathetic but
somatic nervous system [38,39]. Although the reason for those dis-
crepancies between the phenotypes of the two BA-Bmal1 KO strains
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remains unclear, a significant phenotypical difference between liver-
specific Bmal1 KO mice generated using IMSR_JAX:007668 and
those with MGI:5613396 has also been reported. Specifically, hepatic
triglyceride accumulation after high-fat diet feeding was observed in
the former [50] but not in the latter mice [25]. Interestingly, this
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Figure 6: The BA-Bmal1 KO mice were more prone to diet-induced obesity. (A) Body weight (left) and food intake (right) during high-fat diet feeding. See also Supplemental
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phenotype was also observed in systemic Bmal? KO mice using
MGI:5613396 and Pgk-Cre mice [25]. Thus, the two Bmal1-floxed
alleles appear to possess somewhat different characteristics. Our re-
sults confirmed the possibility that BA-Bmal1 KO impairs non-shivering
thermogenesis in BAT. Chang et al. [49] concluded that decreases in
the blood pressure and heart rate in BA-Bmal1 KO mice might be due
to impairment of local angiotensin Il production in the perivascular
adipose tissue. However, our data raise a possibility that decreases in
the blood pressure and heart rate may occur, at least in part, as a
consequence of reduced SNS activation.

10

One of the possible mechanisms underlying the link between circadian
clocks and obesity is the regulation of adipose functions by the
intracellular clock in white adipocytes [17,18]. Reportedly, adipocyte-
specific Bmall KO mice generated using aP2-Cre mice have
decreased concentrations of polyunsaturated fatty acids in both the
plasma and hypothalamus, which regulates food intake, and conse-
quently have increased food intake and gain more body weight and fat
mass compared to control mice, particularly when fed a high-fat diet
[51]. These effects of Bmal1 deletion were considered due to the
reduced expression of Elovi6 and Scd1, the direct clock-controlled
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genes involved in fatty acid biosynthesis in white adipose tissue.
However, because Bmal1 was knocked out not only in the white ad-
ipose tissue but also in the BAT of this strain, it is possible that the
weight-increasing effects of adipocyte-specific Bmal1 KO were caused
in part by the impairment of BAT thermogenesis.

Proteomics analyses have shown that most of the enzymes involved in
fatty acid uptake and oxidation exhibit 24 h expression rhythmicity in
the mitochondria of mouse liver [42]. In particular, the rhythm of CPT1A
disappeared in Peri/2-deficient mice, suggesting that the daily rhythm
of fatty acid utilization is controlled by the circadian clock. This study
confirmed these findings in BAT and further indicated the patho-
physiological impact of this disrupted rhythmicity. The fact that the
overall 24 h BAT function was not obviously impaired in the BA-Bmal1
KO mice may highlight the importance of circadian rhythms in con-
trolling energy homeostasis.

Recent studies have suggested that futile creatine cycling is involved in
UCP1-independent thermogenesis of BAT [45]. Genetic depletion of
creatine levels in adipocytes through either synthesis [52] or uptake
from the circulation [53] impairs thermogenesis and potentiates diet-
induced obesity. In this study, BA-Bmal1 KO decreased BAT creatine
levels but increased phosphocreatine levels, suggesting the impair-
ment of futile creatine cycling. Further studies are needed to elucidate
the detailed mechanism underlying the association between creatine
cycling and the intracellular circadian clock.

In conclusion, BA-Bmal1 KO disrupted the 24 h rhythmicity of fatty acid
utilization in BAT and reduced BAT thermogenesis despite the
increased expression of UCP1. Because this impairment was
compensated by other types of thermogenesis, that is, shivering and
behavioral thermogenesis, the phenotypic effects were minimal under
normal conditions. However, the impact of BA-Bmall KO on the
development of obesity became obvious when the mice were fed a
high-fat diet. These results provide novel insights into the mechanisms
underlying the association between impaired circadian clocks and
obesity.
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