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Data‑driven optimized control 
of the COVID‑19 epidemics
Afroza Shirin1,2, Yen Ting Lin3 & Francesco Sorrentino1* 

Optimizing the impact on the economy of control strategies aiming at containing the spread of 
COVID-19 is a critical challenge. We use daily new case counts of COVID-19 patients reported by 
local health administrations from different Metropolitan Statistical Areas (MSAs) within the US 
to parametrize a model that well describes the propagation of the disease in each area. We then 
introduce a time-varying control input that represents the level of social distancing imposed on the 
population of a given area and solve an optimal control problem with the goal of minimizing the 
impact of social distancing on the economy in the presence of relevant constraints, such as a desired 
level of suppression for the epidemics at a terminal time. We find that with the exception of the initial 
time and of the final time, the optimal control input is well approximated by a constant, specific to 
each area, which contrasts with the implemented system of reopening ‘in phases’. For all the areas 
considered, this optimal level corresponds to stricter social distancing than the level estimated from 
data. Proper selection of the time period for application of the control action optimally is important: 
depending on the particular MSA this period should be either short or long or intermediate. We also 
consider the case that the transmissibility increases in time (due e.g. to increasingly colder weather), 
for which we find that the optimal control solution yields progressively stricter measures of social 
distancing. We finally compute the optimal control solution for a model modified to incorporate 
the effects of vaccinations on the population and we see that depending on a number of factors, 
social distancing measures could be optimally reduced during the period over which vaccines are 
administered to the population.

The fast propagation of the COVID-19 pandemic has attracted unprecedented attention from both the public and 
the scientific community. This has resulted in much research and funding getting redirected towards COVID-19 
and stimulated strong research collaboration between countries34. Due to the high fatality rate of SARS-CoV-237, 
governments throughout the world have adopted measures such as lock-down, stay-at-home, and shelter-in-
place, which in turn have led to substantial economic losses, see e.g.,24. In many countries control interventions 
have been articulated in phases, usually phase 1 to phase 3, with higher phases corresponding to progressively 
lower restrictions14. A fundamental challenge is to balance the need to suppress the spread of COVID-19 and the 
need to contain the economic impact of measures aiming at limiting the spread of the disease. In this manuscript, 
we apply optimal control theory on a mathematical model for the propagation of the epidemics, parametrized by 
real-world data describing different regions, and compute control strategies which are optimal for each region 
from an economic standpoint.

A number of papers and reports have focused on both modeling and controlling the pandemic. Flaxman 
et al.12 looked at the effect of non-pharmaceutical interventions including school closures, banning of mass 
gathering, social distancing, etc. on the reproductive number Rt of COVID-19. Sanche et al.40 used a mathemati-
cal model with data on individual cases, real-time human travel, and infections, as well as estimated epidemi-
ology parameters to compute R0 and found that it is higher than initially estimated. Chang et al.9 adopted an 
agent-based model to determine the efficacy of several intervention strategies on the spread of COVID-19 in 
Australia. Anderson et al.6 performed a Bayesian analysis to estimate the impact of social distancing on number 
of reported cases and hospitalizations in British Columbia and found that when 78% participation in social 
distancing has been accomplished the cases would decrease; it also noted that if the participation were below 
45%, an exponential growth would restart. Morris et al.27 explored COVID-19 intervention methods which are 
robust to implementation errors and found that these methods in conjunction with optimal time-limited methods 
derived from the standard SIR model can be used to mitigate the spread of the virus. Another study analyzed 
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an open-loop optimal control policy updated weekly using real-world feedback, and found that this method is 
effective in reducing fatalities even if some measurements are inaccurate18. A study published in March 2020 
estimated the ICU occupancy and ventilator use from a statistical model under the conditions of social distancing 
and found that the demand for hospital beds and ventilators will exceed the supply11. Another study explored 
optimal policies for decreasing economic cost and mortality rates from a multi-risk SIR model and found that 
strict lock-down policies which specifically target the elderly population were most effective in minimizing 
deaths and economic losses5. Previous work has not computed optimal controls for data driven models. On 
the one hand, Refs.5,9,18,27 explicitly compute optimal control strategies, but their models were stylized and not 
parametrized/calibrated by data; On the other hand, Refs.6,11,12,40 used data to parametrize the models, but the 
models do not have controllers which can be used to infer optimal control strategies.

In what follows, we first construct a mathematical model, which is parametrized by historical and regional 
daily new case report. After parametrization, the data-driven model is capable to reproduce the regional progres-
sion of the COVID-19 epidemics up to the present. Then, we apply optimal control theory to the parametrized 
model to compute an optimal control strategy over the course of a pre-determined period into the future to 
suppress the epidemics to a desired level, while minimizing economic costs. This type of approach is suitable for 
long-term planning (i.e., over the course of several months) as opposed to short-term planning, which can be 
difficult to implement by the government and by businesses.

In most countries, distribution of the vaccine to the population is under way and will continue for most of 
2021, which points out the need for planning interventions to contain the epidemics for several months while 
only a limited part of the population has received a vaccine. Thus our proposed workflow aims to bridge the gap 
until the time Tvac when an effective vaccine is massively manufactured, and administered to the majority of the 
population. Another temporal consideration regards the time Therd at which a population achieves herd immunity 
in the absence of a vaccine and without overflowing the medical facilities. While herd immunity from COVID-19 
is the subject of much ongoing discussion36, in the Methods we provide a rough estimate of Therd from available 
data. In this paper we proceed under the assumption that the inference period Tinf  and the control horizon Tcont 
are such that Tinf + Tcont < Tvac and Tinf + Tcont < Therd.

We set out the analysis by first introducing a compartmental model which describes key features of the 
COVID-19 epidemics. The whole population is divided into the following compartments. The susceptible popu-
lation compartment (S) includes the people who can contract the pathogen SARS-CoV-2. The exposed popula-
tion (E) are those who have been infected but have not progressed long enough into the disease to transmit it to 
susceptible people. Those who can transmit the disease (‘carriers’) are divided into the asymptomatic group (A) 
who do not show symptoms and the infected symptomatic groups (I) who show symptoms. Both the sympto-
matic and asymptomatic groups can transmit the disease, but with different infectiousness—the asymptomatic 
people are less infectious. The infected symptomatic population I is divided into three sub-compartments. The 
first sub-compartment Isq includes those who just self quarantine and do not get tested. The second sub-com-
partment Itp includes those who get tested, result positive, and get quarantined. In contrast to the previous two 
sub-compartments, the third sub-compartment Is includes the rest of the symptomatic population. Those who 
were tested positive and those who decided to self-quarantine are moved into a quarantined compartment (Q), 
and stop interacting with other populations. The removed compartment (R) includes those who are completely 
recovered from the disease and have acquired immunity, and those who have died because of the disease. Both 
groups are not susceptible to reinfection and are removed from the system.

Mathematically, the time evolution of the population density—defined as the compartmental population 
normalized by the total regional population—of each compartment is governed by the following set of coupled 
ordinary differential equations, 

 where β is the transmissibility, � is the transition rate from the exposed compartment to either the asympto-
matic or symptomatic compartments, γI is the transition rate from the infected compartment to the recovered 
compartment, γA is the transition rate from the asymptomatic compartment to the recovered compartment, 
µ is the relative infectiousness of asymptomatic individuals (compared to symptomatic individuals), σ is the 

(1a)Ṡ(t) = −βP2(t)S(t)
[

Is(t)+ Isq(t)+ Itp(t)+ µA(t)
]

(1b)Ė(t) = βP2(t)S(t)
[

Is(t)+ Isq(t)+ Itp(t)+ µA(t)
]

− �E(t)

(1c)Ȧ(t) = �(1− σ)E(t)− γAA(t)

(1d)İsq(t) = psq�σE(t)−
[

γI + γsq
]

Isq(t)

(1e)İtp(t) = ptest�σE(t)−
[

γI + γtp
]

Itp(t)

(1f)İs(t) =
(

1− psq − ptest
)

�σE(t)− γI Is(t)

(1g)Q̇(t) = γtpItp(t)+ γsqIsq(t)+ psq�σE(t)− γIQ(t)

(1h)Ṙ(t) = γAA(t)+ γI
[

Is(t)+ Itp(t)+ Q(t)
]

,
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fraction of exposed people who transition into the symptomatic compartments, psq is the fraction of symptomatic 
people who will self-quarantine, γsq is the transition rate from from the Isq compartment into the quarantined 
compartment, γtp is the transition rate from the Itp compartment into the quarantined compartment, and ptest 
is the fraction of infected who get tested (but only a fraction of them will be confirmed to be positive, Itp ). The 
model assumes that testing resources are not scarce, i.e., availability of a testing kit to every person in Itp ; we 
also assume positive people are identified as such with 100% accuracy. The case with limited testing resources 
is discussed in the SI. Realistically, the time scale associated with γtp can be several days, so we assume γtp = 0.5 
(2 days). We model social distancing by the control variable 0 ≤ P(t) ≤ 1 , which measures the reduction of 
contact probabilities between the susceptible and the infectious populations (which include both A and I). The 
model is structurally similar to the models analyzed in Refs. 6,23, but simplified to allow for efficient calculations 
of optimal control solutions. Figure 1 illustrates a schematic diagram of the model.

In order to reduce the dimensionality of the dynamical system, we introduce the following simplification: 
we treat γsq as a very large number; for γsq → ∞ , we assume that those becoming symptomatic immediately 
transition into the Q compartment, yielding the following reduced-order model: 

The schematic diagram which fits the above model in Eq. (2) is shown in the Supplementary Note 1 Fig. 1.
To bridge the model and the data, we also integrate an auxiliary variable CI which counts the cumulative 

confirmed cases and evolves according to

We will fit �Ctp(t) := Ctp(t + 1)− Ctp(t) to the new case counts reported on each day, detailed in the section 
on parametrization below.

From an economic point of view, the measures of social distancing P(t) and quarantining Q(t) have very 
elevated costs for society. For example, the US real gross domestic product (GDP) dropped by roughly one third 
from year to year in the second quarter of 202024, due mainly to the COVID-19 pandemic, see e.g.,28.

We thus formulate the following optimal control problem,

(2a)Ṡ(t) = −βP2(t)S(t)
[

Is(t)+ Itp(t)+ µA(t)
]

(2b)Ė(t) = βP2(t)S(t)
[

Is(t)+ Isq(t)+ Itp(t)+ µA(t)
]

− �E(t)

(2c)Ȧ(t) = �(1− σ)E(t)− γAA(t)

(2d)İtp(t) = ptest�σE(t)−
[

γI + γtp
]

Itp(t)

(2e)İs(t) =
(

1− psq − ptest
)

�σE(t)− γI Is(t)

(2f)Q̇(t) = γtpItp(t)+ psq�σE(t)− γIQ(t)

(2g)Ṙ(t) = γAA(t)+ γI
[

Is(t)+ Itp(t)+ Q(t)
]

.

(3)Ċtp(t) = γtpItp(t),

(4)min
P

J = cp

∫ tf

ti

1− P(t)

P(t)
dt + cq

∫ tf

ti

Q(t)

1− Q(t)
dt,

Figure 1.   Compartmental model corresponding to Eq. 2. The transition from the S (susceptible) compartment 
to the E (exposed) compartment is affected by the population densities S(t), Itp(t) , Is(t) , A(t) and by the time-
varying control input P(t). The dashed lines enclose the infectious populations.
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cp, cq ≥ 0 , subject to Eq. (2), the initial conditions, the terminal constraint

and the following path constraint

where Imax is an upper limit on the number of infected people that can receive proper treatment in the hospitals. 
ti is the time at which we perform the inference and start optimizing the control action, tf  is the final time of the 
optimization, the previously defined control horizon Tcont = (tf − ti).

The objective function (4) takes into account an economic cost for social distancing with an appropriate 
coefficient cp > 0 and an economic cost for quarantining with an appropriate coefficient cq > 0 . We set the cost 
associated with social distancing per unit time to be modeled by (1− P(t))/P(t) . By choosing this functional 
form, the cost is linearly dependent on the scale of the reduction ( 1− P(t) ) when 1− P(t) ≪ 1 , and nonlinearly 
diverges near total shut-down ( P(t) ≪ 1 ). The economic cost increases with 1− P(t) to indicate that stricter 
measures of social distancing affect more and more ‘essential’ workers, and so increasingly larger parts of the 
economy. For example, the cost of limiting large gatherings of people like concerts or sport events is lower than 
the cost of limiting customers’ access to stores and restaurants. Similarly, imposing quarantine requires resources 
that are linearly proportional to the quarantined population when Q is small, and diverge nonlinearly when the 
quarantined population is close to the entire population Q = 1 . We model such a cost by the functional form 
Q(t)/(1− Q(t)).

Both social distancing and quarantining have a cost associated with the lack of economic return generated 
by limiting person-to-person interactions. It is reasonable to assume cq ≥ cp , as strict quarantining requires 
supervision costs as well as costs due to lowered productivity15 while social distancing only incurs costs due to 
lowered productivity19.

We will also consider the alternative objective function,

for which the integrand functions are linear in P(t) and Q(t). While the formulation (7) is mathematically sim-
pler, it does not take into account the fact that stricter measures of social distancing may result in progressively 
larger economic losses. The alternative objective function (7) is here mainly introduced in order to compare the 
results to those obtained with (4).

The tunable parameter ǫ represents the desired suppression level for the epidemics at the final time tf  . In gen-
eral, selected values for ǫ may depend on a number of factors, such as the time horizon over which optimization is 
performed and the particular stage of the epidemics (initial exponential growth, intermediate growth, or plateau.) 
A possibility is to require complete eradication of the epidemics, which corresponds to setting ǫ = 1/N , where 
N is the number of individuals in the population. However, the high basic reproductive number of COVID-19 
makes eradication unlikely; instead we set ǫ to a small number indicating suppression of the disease. The other 
constraint given by Imax represents the need to contain the infected population below a given threshold at all times 
(or ‘flatten the curve’.) In what follows, unless differently stated, we set the terminal constraint ǫ = 10−5 , which 
corresponds to imposing that the number of infected people is below one person per 100000. This number is 
derived from the guidelines of European countries about re-opening, see for example26, indicating that reopening 
occurred at about 2× 10−5 . Also, European countries have official guidelines for reimposing stricter lock-down 
measures, see:13, which sets a critical population equal to 50/100000 = 5× 10−4 . The values of Imax are set 
regionally based on the capacity of the ICU beds in different metropolitan areas and are summarized in Table 3.

Parametrization of the model for different US metropolitan areas.
We partitioned the model parameters into two sets: a set of fixed parameters and a set of inferred parameters 
which are estimated by the daily case counts reported by regional health administration and registered in the 
repository curated by the New York Times3.

The fixed parameter sets includes S0 , � , γI , γA , µ , σ , ptest , and psq . S0 is the regional total population, and we 
used the US Census Bureau-estimated regional population of each of the Metropolitan Statistical Areas (MSAs) 
or ‘cities’, which are delineated by the US Office of Management and Budget4. Lauer et al. 21 estimated the median 
of the incubation period to be about 5.2 days, however, there is evidence that patients become infectious roughly 
two days before the onset of symptoms29, which corresponds to approximately a three-day progression into 
contagiousness. We thus set a rough estimation for � to be 1/3 (d). In a more complex model with multiple stages 
of the disease progression23, one could account for the fact that a patient can be both pre-symptomatic and infec-
tious. The coefficients γI and γA , which are the transition rate to recovery of the symptomatic and asymptomatic 
populations, are estimated to be 0.12 (1/d)47 and 0.26 (1/d)39. The relative infectiousness µ is set at 0.945, and 
the fraction of the symptomatic population is set at 0.642,39. The parametrization of γI , γA , µ , and σ are consist-
ent with a more complex model which was used to perform daily forecasts of the disease spread23. We assume 
ptest = 0.25 and psq = 0.4 , noting that these parameters were able to reproduce the infected population at the 
time of the inference (we estimated that about 15 to 20% of the total population infected in the New York City 
MSA on 07-Jul-2020 when we parametrize the model.)

We used the data from 21-Jan-2020 to 07-Jul-2020 to infer the inferred parameters, which corresponds to the 
previously defined inference period Tinf  . We assume that the social distance function P(t) before 07-Jul-2020 is 
piecewise-linear to avoid over-fitting (due to observation noise.) At the time when the analysis was performed, 

(5)E(tf )+ Is(tf )+ Itp(tf )+ A(tf ) < ǫ,

(6)Is(t)+ Itp(t) ≤ Imax,

(7)min
P

Jalt = cp

∫ tf

ti

(1− P(t))dt + cq

∫ tf

ti

Q(t)dt,
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multiple MSAs had shown clear second-phase resurrection of the epidemics1,23. We found that a two-phase 
piecewise linear function is sufficient to reproduce the data of each of the MSAs:

where t0 is the time when the disease was introduced into a specific MSA, the monotonic t1 , t2 , t3 , and t4 ( tj ≤ tj+1 ) 
are the times when the social-distancing behavior changes, and p1 and p2 are the two social-distancing strengths. 
The two-phase model was selected by a model-selection procedure23 and is deemed the most evident model 
structure (v. one- and three-phase). We define �tj := tj − tj−1 for j = 1, . . . 4 . The time at which we perform 
the inference is t4 , which is also the time after which optimization of the control action begins. The two-phase 
piecewise linear model is the minimal model that we found capable to reproduce the data, and can be validated 
by the more rigorous model-selection procedure detailed in23.

To fit the model by the noisy daily report new counts, we adopt a negative-binomial noise model. We brief 
the procedure here, noting that the procedure is similar to the inference method detailed in23. Given a set of 
parameters θ (a stylized notation for the set of the inferred model parameters), the model Eq. (2) predicts a deter-
ministic trajectory of the new positive tested case on day j, �Itp(j; θ) . This deterministic prediction is interpreted 
as the mean of a stochastic outcome, modeled by a negative binomial distribution NB(r, pj) where r and pj are 
the parameter of the distribution, and pj is constrained by the deterministic model prediction

Here, r is the dispersion parameter which describes how disperse the noise distribution is; in the limit r → ∞ , 
the negative binomial statistics converges to Poissonian, and in the limit r → 0 the distribution looks closer to 
an exponential. The negative binomial noise model is phenomenological: it has the capability to capture a wide 
variety of single-modal distributions. With the negative binomial noise model, the likelihood function given a 
set of N daily reported new case counts 

{

�Ctp(j)
}N−1

j=0
 can be formulated23:

In summary, the inferred parameters θ include the regional-specific disease transmissibility β , onset of the 
disease spread t0 , behavioral switching times t1 , t2 , t3 , t4 , the strengths of two social-distancing measures p1 , 
p2 , and a dispersion parameter r of the negative binomial noise model. These parameters were inferred by the 
daily case reports from 21-Jan-2020 to 07-Jul-2020. With the formulated likelihood function (9), we used the 
standard Markov chain Monte Carlo procedure (MCMC) with an adaptive sampler (7, detailed in23) to estimate 
the maximum likelihood estimator of the parameters θ for each of the interested MSA’s. Figure 2 shows excel-
lent agreement between the daily new case counts reported by local health administrations (plus signs) and the 
daily new cases obtained by integrating Eq. (2) after parametrization of the model (solid line.) Table 1 is a list of 
data-driven model parameters, with indication of whether they are free or fixed and of whether they are region-
dependent. Table 2 summarizes the set of model parameters that were estimated for each MSA.

Results: optimal control solutions
Following previous work by the authors42,43, we use pseudo-spectral optimal control (see Supplementary Note 7) 
to compute solutions for the problem formulated in Eqs. (2), (4), (5), (6). We set ti = 169 (days) and tf = 259 , cor-
responding to a ninety day control horizon, (tf − ti) = 90 . We wish to emphasize that our choice of ti is somehow 
arbitrary and coincides with the day when we initially computed the optimal control solutions. However, our 
procedure is pretty general and can be replicated for many possible choices of ti . We parametrize the solutions 
in Imax , ǫ and cq , after setting without loss of generality cp = 1.

We focus on four different US metropolitan statistical areas: New York City (NYC), Los Angeles (LA), Hou-
ston, and Seattle. NYC is the largest US metropolitan area; it emerged as the main early hotspot of the epidem-
ics in the US in March and April, but since early June has achieved stable control of the epidemics. LA is the 
second largest metropolitan area in the US, it has seen a steady rise in the number of cases by the time when we 
performed the inference. Houston has seen a rapid increase of the cases in June and July. Seattle was also a very 
early hotspot, which has seen a decrease in the number of cases in April and May, followed by an increase in June 
and July. We chose these four MSA’s to cover a wide range of different dynamics before the time of the inference.

The solution of the optimal control problem is the function of time P∗(t) that minimizes the objective func-
tion (4) subject to the constraints (2), (5), and (6). Different from the observation period t ≤ ti , for which we set 
P(t) to be a piecewise linear function, in the optimization period t ∈ [ti , tf ] we let P(t) be an arbitrary function 
of t, for the purpose of computing the optimal control solution. The optimal control solutions that we obtain for 
different MSAs are shown in Fig. 3. These solutions are robust to parameter variations (such as different values 
of the coefficient cq , see the Supplementary Note 2) and also qualitatively consistent for different MSA’s. Robust-
ness is also found with respect to the choice of the constraint Imax , see the Supplementary Note 2. Typically we 

P(t) =































0, t ≤ t0,
1, t0 < t ≤ t1
1+

p1−1

t2−t1
(t − t1), t1 < t ≤ t2

p1, t2 < t ≤ t3
p1 +

p2−p1
t4−t3

(t − t3), t3 < t ≤ t4
p2 t4 < t < ti ,

(8)pj =
r

r +�Ctp(j; θ)
.

(9)L

(

θ;
{

�Ctp(j)
}N−1

j=0

)

≡

N−1
∏

j=0

(

�Ctp(j)+ r − 1

�Ctp(j)− 1

)

prj
(

1− pj
)�Ctp(j)

.
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first observe a quick drop in P∗(t) (initial tightening), followed by a long nearly constant trend at P∗s  (steady 
social distancing), and by another drop near the final time (final stranglehold). We remark that P∗s  corresponds 
to the level of reduction needed to suppress the time-varying reproduction number Rt ≈ 1 , and the cost per day 
associated with this level of reduction is 

(

1− P∗s
)

/P∗s  . It follows that for each MSA, there is an almost constant 
value of P∗s  which well describes the optimal solution, except for the initial time and the final time. The value of 
P∗s  appears to be approximately the same for LA, Houston, and Seattle, while NYC has typically a slighter higher 
value of P∗s  . This also implies that the optimal cost function J∗ is lower for NYC than for the other cities. In all 
the four metropolitan areas, P∗s  is lower than the ‘current’ value of P(t) estimated from data, as can be seen from 
the initial dip in P∗(t) . NYC has the smallest initial drop, indicating that the control action at the time at which 
we performed the inference is the closest to optimal, followed by (in the order) Seattle, LA, and Houston. For 
each metropolitan area, Imax was estimated from available data about ICU beds for different US states, as shown 
in Table 3 in the Methods.

The most important parameter of the optimal control problem is the terminal suppression constraint ǫ , which 
describes the level at which one is trying to suppress the epidemic. The lower is ǫ , the closer the goal is to eradi-
cation of the disease. The optimal value attained by the objective function J∗ versus ǫ is shown in Fig. 4(A,B). It 
should be noted that for each value of ǫ , J∗ shown in Fig. 4 is the lowest possible cost that can be attained. For 
all the US cities considered, this lowest possible cost increases dramatically as ǫ is reduced, which exemplifies 
the dilemma between saving human lives and protecting the economy. Again, here we are assuming that the 
measures of social distancing are optimally implemented, while the cost would be higher in case of non-optimal 
implementation (discussed in the Supplementary Note 7). For large values of the suppression constraint ǫ , in 
all four cities considered, a different type of solution characterized by low cost emerges, which is discussed in 
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Figure 2.   New case counts from January 21, 2020 to July 8, 2020 in four Metropolitan Statistical Areas within 
the US. Plus signs are daily new case counts reported by local health administrations. The solid line is the daily 
new cases obtained by integrating Eq. (2) after parametrization of the model, which was deemed to be sufficient 
to reproduce the trends in new daily case report23.
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more detail in what follows. Qualitatively similar results were obtained when the control input was chosen that 
minimizes the alternative objective function (7). A complete study of the effects of varying the suppression con-
straint parameter ǫ can be found in the Supplementary Note 3. There are deeper implications behind Fig. 4(A,B), 
namely setting a larger value of ǫ corresponds to delaying the economic cost in time, rather than removing it.

From Fig. 4(C,D) we also see the effects of changing the control horizon (tf − ti) of the optimal control prob-
lem, from a minimum of 60 days to a maximum of 120 days. We see here that different cities behave differently. 
For Houston and LA we see that a longer tf  corresponds to a lower value of the optimal cost J∗ , while for NYC 
the cost increases with tf  . A complete study of the effects of varying tf  can be found in the Supplementary Note 4. 
In particular, we see that increasing tf  has two contrasting effects on the objective function. On the one hand the 
cost is integrated over a longer time period, on the other hand the longer time period can be exploited to allow 
for less stringent measures of social distancing at any time (larger values of P∗ ), which may result in a lower value 
for the objective function overall. Thus it appears that finely tuning the time horizon of the objective function 
may be used to critically and selectively affect different cities. The implications are particularly significant for 
those cities, Houston and LA, that seem to need a longer time period to suppress the epidemics. For Seattle we 
see that J∗ is minimized for intermediate values of tf  in the interval [255, 285], indicating a specific advantage 
of choosing such a control horizon, see also Fig. 5. A remarkable observation is that by comparing the left plots 

Table 1.   List of data-driven model parameters.

Parameter Description Fixed/Free Region-dependent

S0 Total regional population Fixed Yes

� Transition rate constant from compartment E to I Fixed No

γI Recovery rate constant of the asymptomatic population Fixed No

γA Recovery rate constant of the asymptomatic population Fixed No

µ Relative infectiousness of asymptomatic population Fixed No

σ Fraction of exposed people who developed symptoms Fixed No

ptest Fraction of symptomatic people who took the test Fixed No

psq Fraction of symptomatic people who self-quarantine Fixed No

r Dispersion parameter of the negative-binomial noise Free Yes

β Contact probability per person per time Free Yes

t0 Time when the disease was introduced to the region Free Yes

�t1 Transition time to the first social-distancing episode Free Yes

�t2 Duration of the first social-distancing episode Free Yes

�t3 Transition time to the second social-distancing episode Free Yes

�t4 Duration of the second social-distancing episode Free Yes

P1 Strength of the first episode of social-distancing Free Yes

P2 Strength of the second episode of social-distancing Free Yes

Table 2.   Parameters by Metropolitan Statistical Area (MSA).

Parameter New York Los Angeles Houston Seattle

S0 1.92E+07 1.321E+07 7.066E+06 3.979E0+6

� 3.333E−01 3.333E−01 3.333E−01 3.333E−01

γI 1.200E−01 1.200E−01 1.200E−01 1.200E−01

γA 2.60E−01 2.60E−01 2.60E−01 2.60E−01

µ 9.00E−01 9.00E−01 9.00E−01 9.00E−01

σ 5.60E−01 5.60E−01 5.60E−01 5.60E−01

ptest 2.50E−01 2.50E−01 2.50E−01 2.50E−01

psq 4.00E−01 4.00E−01 4.00E−01 4.00E−01

r 1.183E+01 1.100E+01 5.287 1.067E+01

β 1.806 1.204 1.123 1.442

t0 2.911E+01 2.865E+01 3.195E+01 2.339E+01

�t1 2.557E+01 3.237E+01 3.153E+01 1.388E+01

�t2 2.148E+01 1.153+01 1.633E+01 3.549E+01

�t3 6.423E+01 7.171E+01 1.685E+01 6.614E+01

�t4 8.800 4.289 4.658E+01 2.016

P1 3.693E−01 5.371E−01 4.845E−01 4.160E−01

P2 4.403E−01 5.968E−01 6.391E−01 5.555E−01
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and the right plots in Fig. 4, it is evident that the optimal control solution is quite independent of the particular 
form of the objective function (either J or Jalt .) The reason for this is that when the integrand in (4) is nonlinear 
the optimal solution maintains P∗(t) as close as possible to the linear regime (high values of P∗ ), which is why 
we do not see much difference with the linear case (7).

In general, the main constraints of the problem are provided by Imax and ǫ . However, for each case considered, 
typically either one of these two constraints is dominant. In all the simulations shown in Fig. 3, the dominant 
constraint is provided by ǫ , with Is(t)+ Itp(t) remaining well below Imax over the entire period [ti , tf ] . These 
solutions, which we will refer to as the type-1 solution, are characterized by strong measures of social distancing 
(low P∗ ) throughout the whole time interval considered, and the dominant constraint is to achieve suppression 
of the epidemics at the prescribed terminal time ( tf ).

We have also seen the emergence of different solutions, which we refer to as the type-2 solution, when the 
dominant constraint is given by Imax . In these solutions there is at least one time t at which the constraint (6) is 
satisfied with the equal sign. Overall, type 2 solutions are less expensive economic-wise than type 1 solutions, i.e., 
the value of J∗ is lower. There are also cases when the optimal solution is actively affected by both constraints. In 
order to better understand the transition between type 1 and type 2 solutions, we have investigated the optimal 
control problem (4), for the cases of LA, NYC, and Seattle, as both the suppression parameter ǫ and the control 
horizon (tf − ti) are varied. The transition is characterized by a gradual change in J∗ , high for type 1 solutions (in 
green) and low for type 2 solutions (in blue), with a transition area in between shown in yellow and red. This is 
illustrated in Fig. 5 and in more detail in Fig. 19 (LA), Fig. 20 (Seattle) and Fig. 21 (NYC) of the Supplementary 
Note 5. Our results show that considerations about the timescale of the control action apply differently to differ-
ent cities. As can be seen, the particular emergence of type-1 or type-2 solutions is affected by both the choice of 
ǫ and (tf − ti) . From Fig. 5(A) for LA we see that the most expensive control solutions are achieved when one is 
trying to suppress the epidemics to a low level in a short time (small ǫ and short tf − ti .) This is opposite to what 
seen for NYC in Fig. 5(B), where longer time horizons are usually associated with more expensive solutions. The 
most convenient solution arises when the suppression constant ǫ is large but the control horizon is short (area 
shown in blue.) Finally, Fig. 5(C) for Seattle shows that in the case of small ǫ , expensive solutions are obtained 
when the control horizon is either short or long, while an intermediate control horizon is to be preferred. We 
also see that setting the suppression constraint to a larger value and the control horizon to be short can reduce 
the cost considerably (which is similar to NYC). In general, these results point out the importance of carefully 
choosing the timescale over which one is seeking to suppress the epidemics, as well as the suppression level. 
Intuitively, our results indicate that suppressing the epidemics in a short time is more costly when the epidemics 
is on the rise (LA) compared to cases when it is not (NYC.)

Next, we briefly consider the case that the transmissibility varies with time, i.e., we replace β → β(t) in Eq. 
(2). This is consistent e.g., with a situation in which the weather gets colder (such as during the fall season in 
the Northern emisphere), which has been associated with increased numbers of contagions. We then solve the 

Figure 3.   Optimal control solutions for different Metropolitan Statistical Areas within the US. (A–D) Optimal 
control inputs for the metropolitan cities of NYC, LA, Houston, Seattle (from left to right). (E–H) Time 
evolution of the states subject to the optimal control inputs. Imax are chosen as the minimum of the range in 
Table 3 ( ρ = 2/3 ) and cp = cq = 1 . The legends in (F–H) are same as the legend in (E).
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Figure 4.   Effects of varying the terminal suppression constraint ǫ and the control horizon tf − ti . (A) The 
optimal cost J∗ obtained as the solution of the optimization problem (4) vs. the parameter ǫ . (B) The optimal 
cost Jalt

∗

 obtained as the solution of the optimization problem (7) vs. the parameter ǫ . (C) The optimal cost J∗ 
obtained as the solution of the optimization problem vs. the control horizon (tf − ti) . (D) The optimal cost Jalt

∗

 
obtained as the solution of the optimization problem (7) vs. the control horizon (tf − ti) . The parameter cq and 
cp are both set to 1.

Figure 5.   The optimal cost J∗ in the (tf − ti) , ǫ plane. (A) shows the case of the Los Angeles Metropolitan 
Statistical Area. (B) shows the case of the NYC Metropolitan Statistical Area. (C) shows the case of the Seattle 
Metropolitan Statistical Area. For each city, Imax is chosen as the maximum of the range in Table 3. Type 1 
solutions (in green) are more expensive than type 2 solutions (in blue.) The regions in yellow/red correspond to 
the transition between the two types of solutions. The parameter cp and cq are both set to 1.
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optimal control problem (2, 4, 5, 6) by computing the optimal control P∗(t) that minimizes the objective func-
tion J.

The results of our calculations are shown in Fig. 6, where we focus on the New York City Metropolitan Statisti-
cal Area and compare the two cases of constant transmissibility (previously studied) and time-varying transmis-
sibility. For simplicity we take β(t) to increase linearly in time, from the initial value in Table 1 β(ti) = 1.806 
to the final value β(tf ) = 2× β(ti) = 3.612 . As can be seen, the optimal control solution P∗(t) for the case of 
linearly increasing β differs substantially from the case of time-invariant β : in the central phase P∗(t) is now seen 
to decrease linearly in time, indicating that to a linear increase in transmissibility corresponds a linear decrease 
in the control parameter (an thus increasingly stricter measures of social distancing). This can be used to plan 
long-term control interventions over periods of time over which the environmental conditions are subject to 
well characterized variations that affect the rate of transmissibility of the disease.

Finally, we include here computation of the optimal control solution for a model modified to incorporate 
the effects of the administration of an effective vaccine against COVID-19. When we initially started working 
on this paper, there was no certainty about the development and future availability of a vaccine. However, as of 
February 2021, we are now seeing several effective vaccines being developed, manufactured, and administered 
in different countries. An important observation is that the production and distribution of the vaccine is a 
process that takes time. For example, the United States is aiming to administer one million vaccine doses per 
day46, which considering the entire US population, corresponds to a time-scale of roughly one year to achieve 
complete immunization. An important question is thus how the introduction of the vaccine is going to modify 
the optimal control solutions. To address this point, we (i) modify the model to include the effects of the vac-
cine being administered to the population, (ii) re-parametrize the model from real data and (iii) compute new 
optimal control solutions. We briefly outline this process below.

We model the effects of administration of the vaccine as an additional flow from the S compartment to the 
R compartment. To accommodate for this, we keep using the set of equations (2), but replace Eq. (2a) with the 
following one,

Ṡ(t) = −βP2(t)S(t)
[

Is(t)+ Itp(t)+ µA(t)
]

− κ(t − tv)

Figure 6.   Time-varying transmissibility. We consider the NYC Metropolitan Statistical Area. Left plots: time-
invariant transmissibility. Right plots: the transmissibility increases linearly in time. As can be seen, with the 
exception of the initial phase and of the final phase, the case of linearly increasing transmissibility corresponds 
to a linearly decreasing optimal control input P∗(t).
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and Eq. (2g) with

where we take t ≥ tv and tv is the time the vaccine administration started, which for the United States is 14-Dec-
2020. Note that the model accounts for a rate of immunization linearly increasing with time, which is consistent 
with available data up to 2-Feb-2021, when we carried out this analysis.

In our calculations we focused on the MSA of Seattle, for which we estimated κ = 0.000045 (see the Sup-
plementary Information Note 11 for more details.) We then used the same approach outlined before to para-
metrize the model. The parameters were inferred by the daily case reports over the extended period of time 

Ṙ(t) = γAA(t)+ γI
[

Is(t)+ Itp(t)+ Q(t)
]

+ κ(t − tv),

Figure 7.   Effects of vaccinations on the optimal control solution. We consider the Seattle Metropolitan 
Statistical Area. In A the control horizon Tcont = (tf − ti) = 130 days and in B the control horizon 
Tcont = (tf − ti) = 150 days. For both figures, we plot P∗(t) by comparing the two cases that the model includes 
the effects of vaccination (gray curve) or does not (black curve.) The full black dot indicates the point in time at 
which the two curves depart from each other. As can be seen, the separation between the two curves appears to 
be much larger over a longer control horizon. The plot on the right shows the parameter P∗(t) approach 1 at the 
end of the control horizon, which corresponds to removal of the social distancing measures. Additional plots 
showing the time evolutions of the states corresponding to the optimal solutions in (A) and (B) can be found in 
the Supplementary Information, Note 11.

Table 3.   Imax values for U.S. Cities.

City Imax ( ρ = 2/3) Imax ( ρ = 1)

New York, NY 0.88%(5704/648000) 1.32% (8556/648000)

Los Angeles, CA 0.64% (8241/1280124) 0.97%(12361/1280124)

Chicago, IL 1.00%(4094/410508) 1.50%(6141/410508)

Dallas, TX 0.86%(8109/939600) 1.29%(12163/939600)

Houston, TX 0.86%(8109/939600) 1.29%(12163/939600)

Riverside, CA 0.64% (8241/1280124) 0.97%(12361/1280124)

Miami, FL 0.98% (6829/695952) 1.47%(10244/695952)

Philadelphia, PA 1.047%(4342/414720) 1.57%(6513/414720)

Atlanta, GA 0.65%(2249/344088) 0.98%(3374/344088)

Phoenix, AZ 0.55%(1309/2358450) 0.83%(1963/2358450)

Boston, MA 0.4%(893/223330) 0.60%(1340/223330)

San Francisco, CA 0.64% (8241/1280124) 0.97%(12361/1280124)

Seattle, WA 0.46%(1143/246888) 0.69%(1714/24688)

Indianapolis, IN 0.83%(1811/218120) 1.25%(2716/218120)

Detroit, MI 0.71%(2315/32358) 1.07%(3472/32358)

Baltimore, MD 0.40%(893/223330) 0.60%(1340/223330)

Denver, CO 0.56%(1039/186590) 0.84%(1559/186590)

Portland, OR 0.56%(768/136660) 0.84%(1152/136660

Las Vegas, NV 0.75%(752/99792) 1.13%(1129/99792)
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from 21-Jan-2020 to 14-Dec-2020. More information about the parametrization can also be found in the Sup-
plementary Note 11. We then re-computed the optimal control solution by selecting the time at which we start 
optimizing the control action ti = tv + 7 and by varying the control horizon Tcont = (tf − ti). As we already 
pointed out before, we found the choice of the control horizon to strongly affect the results of the optimization.

Figure 7 shows the results of our computations for the city of Seattle by choosing two different values of the 
control horizon, Tcont = (tf − ti) = 130 days (on the left) and Tcont = (tf − ti) = 150 days (on the right.) In both 
plots, we compared the two cases that the model includes the effects of vaccination (gray curve, κ = 0.000045 ) or 
does not (black curve, κ = 0 .) The full black dot indicates the point in time at which the two curves depart from 
each other. Both plots show the optimal control solution to deviate at an early time, roughly 15 to 25 days after the 
beginning of the administration of the vaccine (which corresponds to approximately 6% to 8% of the population 
getting vaccinated.) This indicates that vaccinations can affect the optimal control solution, even when a relatively 
little percentage of the population is immunized. In all the simulations we have always seen the optimal control 
solution to deviate soon after the beginning of vaccinations. Moreover, the separation between the two curves 
appears to be larger over the longer control horizon. The plot on the right shows the parameter P∗(t) approach 
1 at the end of the control horizon, which corresponds to complete removal of the social distancing measures.

Our results point out that in a realistic scenario the optimal level of social distancing is affected by the intro-
duction of vaccinations, especially over longer periods of time. This is not surprising as the expectation is that the 
long-term effect of administration of the vaccines will be relaxation of the social distancing measures. However, 
the advantage of our analysis is that it can be used to assess the most economically advantageous level of social 
distancing while the vaccines are being administered to the population. For example, Fig. 7B shows substantial 
relaxation of social distancing roughly five months after the date in which administration of the vaccines began. 
We remark that the derived timescale (150 days) is subject to the simple vaccination model, in which we opti-
mistically assume that (1) all the doses are reserved for and administrated to only the susceptible population, 
and (2) the production of the vaccines remains linear in this 150 days. Our simulation shows that, with these two 
assumptions, at the end of this period herd immunity is achieved and social distancing is removed. However, such 
a timescale can be treated as an optimistic forecast; the real timescale to reach herd immunity could be longer 
due to the violation of either of the assumptions. It is important to point out once again that the optimization we 
perform is one for which the goal is to minimize the impact of social distancing on the economy, in the presence 
of relevant public health constraints.

Discussion
Our analysis reveals that the cost of eradicating the disease—i.e., suppressing the number of infected individuals 
down to a certain critical threshold, such as ≪ 1 person in the formulation of our stylized mathematical model, 
even in the optimal case, is significantly higher than the cost of ‘managing’ the pandemic to avoid the satura-
tion of regional medical resources. In light of the current progression of the pandemic in the US, our analysis 
brings rigorous scientific and quantitative foundation for the latter strategy, which is adopted by many local 
administrations (e.g., State offices.)

Our conclusion that the optimal control solution is well approximated by a constant level of social distancing 
contrasts with the implemented system of reopening ‘in phases’14. In many countries, the expected progression is 
from phase 1 to phase 2 and higher, but there have been several cases in which a premature reopening followed 
by a rise in COVID-19 numbers has led to folding back into phase 117,22,41,44. Based on our results, such alternat-
ing control interventions are suboptimal because the economic benefits of momentarily relaxing the restrictions 
are lower than the costs associated with the successive tightening (such as e.g., a second lockdown.) Instead, we 
have shown that in the presence of smoothly time-varying environmental conditions (e.g., affecting the trans-
missibility), the optimal control solution also varies smoothly in time. This allows us to plan long-term control 
interventions over periods of time over which the environmental conditions are subject to well characterized 
variations that affect the rate of transmissibility of the disease.

Several countries have adopted control strategies that are region-specific. For example, Italy has assigned to 
its regions color-coded restrictions (yellow, orange, and red)31, which, based on a careful monitoring of the local 
progression of the disease, have been updated frequently. Our model focuses on individual MSA’s (or regions) and 
as such neglects the larger-scale spatial resolution of the epidemic. The need for frequent updates of the control 
interventions provides evidence of the inherent difficulty of ‘closing the control loop’, due to many possible fac-
tors, such as partial and incorrect measurements, delays in obtaining information and implementing actions, 
imperfect application of the controls, lack of resources, the effects of people traveling from area to area, and oth-
ers. While all these factors would require separate consideration, our main recommendation that interventions 
should be maintained at a (nearly) constant level stands. Our work indicates that the best intervention for the 
economy is one that does not fluctuate in time, while alternating control actions are suboptimal. In addition, 
frequently changing interventions present other disadvantages which have made them unpopular8: they are dif-
ficult to implement, and to follow, and they negatively affect business planning capability.

Occasionally, there have been claims by policy makers and/or scientists that seeking herd immunity by 
exposure to the virus (in the absence of a vaccine) may provide the best long-term path-forward20,30. However, 
the timescales over which herd immunity can be achieved without violating the Imax constraint appear to be 
quite long (see Methods) in the absence of a vaccine. By setting a very large control horizon in our simulations, 
we have seen the emergence of these ‘herd immunity solutions’, shown in the Supplementary Note 6. However, 
the parameters of our realistic scenarios, estimated from real data, are far away from the point at which such 
solutions are optimal. In general, our study allows to quantify how ‘far’ one is in the parameter space from the 
point at which a herd immunity solution becomes optimal.
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Conclusion
In this paper, we have proposed an approach to optimize social distancing measures in time in order to con-
tain the spread of the COVID-19 epidemics, while minimizing the impact on the economy. Our analysis has 
been applied to four different metropolitan statistical areas within the US, but can be directly applied to other 
geographical areas. Each MSA was shown to be well described by a stylized mathematical model whose param-
eters were inferred by daily new case counts reported by local health administrations. Our approach based on 
modeling, inferring model parameters from real data, and computing optimal control solutions for the inferred 
model is general and may be applied to other complex systems of interest.

Our choice of the objective function is quite simplified, namely we assume that increasing levels of social 
distancing and quarantining result in progressively higher economical costs. In addition, we did not account 
for the cost associated with medical treatments, which is important yet significantly smaller than the cost of 
shutting down the economical activities of the entire society10. Our approach can be easily generalized to other 
more complex, more realistic types of objective functions, see e.g.,42,43. Different from this study, these objective 
functions may also be specific to given regions or try to capture a particular socio-economical model of interest.

We have found that the optimal control solutions are quite robust to the specific choice of the objective func-
tion and of its parameters, such as cq . These control solutions tend to be qualitatively similar for different cities. 
However, they are affected by the choice of the constraints, in particular the constraint that we have associated 
to suppression of the epidemic, and by the time horizon of the control action. When these are varied, different 
cities behave differently, which points out the importance of our data-driven approach. We have also seen that 
small deviations from the optimal solution can lead to dramatic violations of the constraints.

It is possible to translate these optimal interventions in actual measures that can be imposed on the popula-
tion, such as restricting the access to certain businesses or venues. Available technology includes the usage of 
coupled digital non-contact healthcare systems35. While implementation of a time-varying control may be chal-
lenging in practice, we found that the optimal solution is typically characterized by an initial drop (due essentially 
to the non-optimality of current control interventions), followed by a nearly constant control (specific to each 
city) for a long time, and by a final drop, which is needed to achieve the desired suppression of the epidemics at 
the final time. Thus the optimal control solution is almost constant except for the initial time and the final time, 
which significantly increases the applicability of this study. The constant part of the solution could be practically 
achieved by dynamical regulation to control the time-varying reproduction number Rt ≈ 1 . A key observation 
is that the optimal solution P∗ is generally lower than the value of P inferred by data. The initial drop in P∗ may 
provide a measure of non-optimality of current interventions. This drop was seen to be smallest for NYC com-
pared to other US cities, but was present in all the cities we have analyzed.

The time-scale of control interventions, i.e., the control horizon, appears to play a fundamental role. Con-
siderations about the control horizon may vary from area to area and may be affected by a number of factors, 
including the times at which a vaccine becomes available and is distributed to the population. It appears that 
cities that have seen an increase of cases during the inference period need a longer control horizon to suppress 
the epidemics optimally. In certain instances, the impact on the economy can be minimized by tuning the con-
trol horizon; for example, for the city of Seattle we found that an optimal control horizon was equal to roughly 
90 days when the suppression constraint ǫ = 10−5 . We wish to emphasize that given the very large economical 
impact of social distancing measures, even a small improvement in the control strategy can lead to considerable 
economical benefits.

We also computed the most economically advantageous level of social distancing during the time over which 
the vaccines are administered to the population. Our simulations show that the optimal control solution is 
affected by the introduction of the vaccine quite early on, which indicates the possibility of gradually relaxing 
measures of social distancing soon after the beginning of vaccinations and strongly reduce them roughly five 
months later. While optimal control interventions computed during the vaccination period were found to be 
quite sensitive to the specific choice of model and control parameters, in all of our simulations we always saw 
that a gradual relaxation of social distancing measures was possible when roughly 10% of the population got 
vaccinated. We acknowledge that our study on the effects of the vaccines is limited, as we only focus on one 
region and we see that the optimal control solution is strongly affected by the choice of the control horizon. We 
also do not consider the emergence of new variants against which existing vaccines may be less effective. Our 
assumption of a linearly increasing rate of vaccination of the population should be validated by using region-
specific data. Extending the analysis to other regions and incorporating more realistic data would require a 
major effort that is beyond the scope of this paper. Our conclusion that over longer time periods vaccination 
would allow substantial reductions in the level of social distancing, should be taken with the due precautions. 
One should be reminded that our objective in this paper is to minimize the impact of social distancing on the 
economy, in the presence of relevant public health constraints. Nonetheless, our approach based on modeling, 
model parametrization, and optimal control, could be easily adapted to different geographical areas to provide 
region-specific recommendations.

We briefly discuss next other limitations of our work. Limited testing capabilities may affect some of our 
results. The model could benefit from incorporation of considerations about spatial effects. Many regulations have 
been introduced to limit people’s mobility during the pandemic; however essential travel has often remained in 
place, which has probably been responsible for much of the disease’s propagation. One first step to incorporate 
spatial resolution in the model would be considering an extension of the model with two communicating regions. 
This could be the subject of future work.

One relevant question is whether policy-makers can assess whether a currently employed control action is 
optimal or not. The so-called HAMVET procedure, initially proposed in38 and presented in the Supplementary 
Note 9, can be used to validate a control strategy and evaluate its optimality.
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Methods
Estimation of I

max
.  The Imax values can be approximated with simple assumptions as seen in Table 3 for a 

selection of major U.S. cities. These Imax values are a ratio of ICU beds to the population of people which require 
them. Following23, we estimate that the probability of death conditioned on symptomatic infection is equal to 
fH × (1− fR) = 0.01134 , where the two parameters fH and fR were independently computed in32 and37, respec-
tively. Data16,33 shows that the mortality rate for patients sent to ICU is between 30% and 40% , thus, it is reason-
able to assume that an overall fraction of infected people equal to 0.01134/0.35 = 0.0324 needs ICU beds. In the 
hypothetical situation that the population of an entire state contracts COVID-19 3.24% will require an ICU bed. 
The ρ term is a modifier which denotes how many ICU beds are available to COVID-19 patients as some beds 
could be used for other reasons. Reasonably, the value of ρ ranges from 2/3 to 1 in Table 3. Imax is then calculated 
as the number of available ICU beds (including the ρ assumption) divided by number people which contract 
COVID-19 and also require an ICU bed (3.24% assumption).

For all our numerical experiments, we consider two values for Imax , one corresponding to ρ = 2/3 and another 
one corresponding to ρ = 1.

Timescale for T
herd

.  We now attempt to answer the following question. By enforcing satisfaction of the 
constraint with the equal sign Is(t)+ Itp(t) = Imax and in the absence of a vaccine, how long would it take 
before herd immunity is achieved? By assuming long-term immunity of those recovered from the virus, we can 
expect herd immunity to arise when roughly 80% of the population has been exposed36. Consider for example 
the case of NYC for which from Table 3 we see that Imax is between 0.88 % and 1.32 %. We assume an aver-
age hospitalization of 20 days25. That means that the time to achieve herd immunity Therd varies between 606 
days=(80× 20/(1.32× 2)) and 909 days=(80× 12/(0.88× 2)) . The factor of 2 accounts for the fact that roughly 
one exposed person out of two develops symptoms. Analogously, for Chicago, we estimate Therd to vary between 
533 days=(80× 20/(1.5× 2)) and 800 days  = (80× 20/(1× 2)) . From these back-of-the-envelope calcula-
tions we see that the timescale over which herd immunity can be achieved without violating the Imax constraint 
appears to be quite long and definitely longer than the timescale over which vaccines have become available.
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