
INTRODUCTION

Colorectal cancer (CRC) is the third leading cause of can-
cer-associated death in both male and female in the United 
States, with an estimation of 149,500 new cancer cases and 
52,980 cancer deaths, in 2021 [1]. In South Korea, male have 
a higher incidence rate of age-adjusted CRC than female [2]. 
However, elderly female over 65 years of age show a higher 
mortality of CRC and a lower 5-year survival rate compared 
to their age-adjusted male [2]. CRC shows sex differences 

worldwide in the incidence and the developing site (proximal 
or distal colon), and underlying mechanisms [3].
 Nuclear factor erythroid 2-related factor 2 (Nrf2) is a tran-
scription factor that plays a pivotal role in adaptive cellular 
defense response to a variety of stimuli such as oxidation, 
proteotoxic stress, metabolic stress, and inflammation [4,5]. 
In normal cells under non-stress conditions, Nrf2 levels and 
activity are kept relatively low by its rapid proteasomal deg-
radation which is facilitated by Kelch-like ECH-associated 
protein 1 (Keap1) [6]. Under stress conditions, however, Nrf2 
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dissociates from Keap1 and then translocates to the nucle-
us [4]. Nrf2 activates anti-oxidant enzymes, such as heme 
oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase 1 
(NQO1), glutamate-cysteine ligase catalytic subunit (GCLC), 
and glutamate-cysteine ligase modifier subunit (GCLM), that 
maintain cellular homeostasis and exhibit anti-inflammatory 
and anti-tumor activity [7,8]. The anti-inflammatory mecha-
nisms of Nrf2 include suppression of pro-inflammatory cyto-
kines such as interleukin (IL)-6, IL-1β, and TNF-α by blocking 
the NF-κB signaling [9,10]. 
 Recently, there have been many reports on the dual roles 
of Nrf2 in carcinogenesis. Activation of Nrf2 in normal cells 
prevents them from transformation into cancer cells, whereas 
activation of Nrf2 in transformed or cancerous cells promotes 
their growth and survival [11]. Meta-analysis showed that 
patients with high Nrf2 expression had a lower overall sur-
vival rate and disease-free survival compared to those with 
low Nrf2 expression [12]. In addition, high Nrf2 levels were 
associated with poor prognosis in CRC patients [13]. Fur-
thermore, overexpression of Nrf2 target genes such as HO-1 
and NQO1 has been reported in prostate cancer and CRC, 
respectively [14,15]. Further, Nrf2 overexpression accounts 
for chemotherapy resistance in many malignancies including 
gastric and colon cancer [13,16]. 
 Azoxymethane (AOM) and dextran sulfate sodium (DSS) 
treatments [17-19] are the most widely used protocols for 
the establishment of animal models of colon carcinogenesis 
[20-22]. This model well reflects multistep nature of tumor de-
velopment and progression based on the aberrant crypt foci 
(ACF)-adenoma-carcinoma sequence with the relevant mo-
lecular alterations [21]. Therefore, the Nrf2 KO (Nrf2−/−) AOM/
DSS mouse model could be a useful tool to clarify the role of 
Nrf2 by sex in colitis and colon tumorigenesis. 
 We previously reported that 17β-estradiol (10 mg/
kg) reduced the expression of Nrf2 upregulated in AOM/
DSS-treated male ICR mice and suppressed the occurrence 
of colitis-related CRC to a level similar to that of females [23]. 
However, the inhibitory effect of 17β-estradiol (10 mg/kg) on 
expression of Nrf2 in C57BL/6 background male mice (wild-
type, WT) was not sufficient to inhibit tumorigenesis in the 
distal colon [24]. In contrast, in the absence of Nrf2 (Nrf2 KO), 
17β-estradiol (10 mg/kg) strongly inhibited tumorigenesis in 
the distal colon through an Nrf2-independent estrogen recep-
tor beta (ERβ)-related signaling pathway [24]. From these 
observations, we hypothesized that the contribution of Nrf2 to 
colitis-associated colon tumorigenesis could vary by sex. To 
test this hypothesis, we investigated the effect of Nrf2 on coli-
tis-associated colon tumorigenesis in AOM/DSS-treated Nrf2 
KO (Nrf2−/−) and WT (Nrf2+/+) female mice.

MATERIALS AND METHODS 

Genotyping and selection of Nrf2 knockout 
female mice
Heterozygous Nrf2 KO (Nrf2+/−) mice of C57BL6/129SV 
background generated by the laboratory of Yuet Wai Kan [25] 
were kindly provided by Prof. Y.-J. Surh of Seoul National 
University. WT (Nrf2+/+) and homozygous Nrf2 KO (Nrf2−/−) 
mice were obtained by crossing the Nrf2 heterozygous 
(Nrf2+/−) mice (Fig. 1A) as described previously [24]. The mice 
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Figure 1. Selection of nuclear factor erythroid 2-related factor 
2 (Nrf2) knockout (KO) female mice using genotyping and a 
schematic illustration of the experiment. (A) Heterogeneous Nrf2 
KO (Nrf2+/-) male and female mice were mated and then homogeneous 
Nrf2 KO (Nrf2-/-) female mice were selected. (B) Genotyping of wild-
type (WT) and Nrf2 KO mice. Representative agarose gel showing the 
PCR products. Nrf2 WT allele produces a 262-bp band, whereas the 
targeted allele produces a 214-bp band. Heterogeneous Nrf2 KO allele 
produces both, 214-bp and 262-bp bands. (C) Experimental scheme. 
WT and Nrf2 KO female mice were used in the azoxymethane (AOM)/
dextran sulfate sodium (DSS)-induced colitis-associated colorectal 
cancer (CRC) protocol. AOM (10 mg/kg) was injected to the mice 
on day 0. One week later, DSS (2.5%) was provided in the drinking 
water for one week. The mice were sacrificed at week 2 and 16 after 
AOM injection. ♂♂, male; ♀♀, female; +/+ and WT, wild-type; +/- and het, 
heterogeneous knockout; -/- and KO, homogeneous knockout. 
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were housed in cages at 23°C with a 12/12-hour light/dark 
cycle under specific pathogen-free conditions. Genomic DNA 
(gDNA) obtained using DNeasy® Blood & Tissue Kit (Qiagen 
Gmbh, Hilden, Germany) was used as the template DNA (list-
ed in Table 1) and the PCR products were visualized under 
a ChemiDocTM Imaging System (Bio-Rad Laboratories, Inc., 
Munich, Germany) (Fig. 1B). All animal procedures were ap-
proved by the Institutional Animal Care and Use Committee 
(IACUC) of the Seoul National University Bundang Hospital 
(BA1705-223/043-01) and performed in accordance with the 
ARRIVE (Animals Research: Reporting In Vivo Experiments) 
protocol.

Induction of colitis-associated CRC in a mouse 
model
For the induction of colitis-associated CRC, 2.5% (w/v) DSS 
(Cat no 160110; MP Biomedicals, Solon, OH, USA) was sup-
plied in the drinking water for 7 days, one week following the 
injection of AOM (10 mg/kg) (Cat no A5486; Sigma-Aldrich, 
St. Louis, MO, USA) counted as day 0 [24,26]. WT and Nrf2 
KO female mice were randomized into the following groups. 
Group 1: WT control mice (n = 11), Group 2: AOM/DSS-treat-
ed WT mice (n = 9-12), Group 3: Nrf2 KO control mice (n = 
10), Group 4: AOM/DSS-treated Nrf2 KO mice (n = 13-16). 
The animals were euthanized by CO2 asphyxiation at week 2 
(10 weeks of age) and 16 (24 weeks of age) after AOM injec-
tion (Fig. 1C).

Evaluation of clinical symptoms
Clinical symptoms were evaluated using the disease activity 
index (DAI), which includes loss of body weight, stool charac-
terization, and hematochezia [27,28]. The DAI was scored by 
two researchers in a blinded manner as described elsewhere 
[24].

Enumeration of lesions
The colons were opened longitudinally, and stool was 
washed out with PBS. The colon length was measured from 
the cecum to the rectum using a ruler. Polypoid lesions with 
a diameter ≤ 2 mm or > 2 mm were independently counted 
by two researchers in a blinded manner [27,28] as described 
previously [24]. The tumor incidence was determined as the 
percentage of mice bearing more than one tumor.

Tissue processing and histopathology
The extracted colon was divided into proximal and distal 
portions. The proximal colon up to 1.5 cm from the ileocecal 
valve, the rectum up to 1.5 cm from the anal verge, and co-
lonic segments containing any gross polyps were fixed with 
phosphate-buffered formalin and embedded in paraffin. The 
sections (5 mm) were stained with hematoxylin and eosin 
(H&E). The classification of adenoma and adenocarcino-
ma, and the specification of the depth of adenocarcinoma 
invasion into the colonic tissues as mucosal or submucosal 
invasion were performed in a blinded manner [29]. The histo-
logical severity was assessed using a microscopic damage 
score reflecting colonic epithelial damage and depth of in-
flammatory cell infiltration [30]. 

Table 1. List of oligonucleotide sequence and their characteristics

Gene Sequence (5’→3’) Purpose

Nrf2 WT F: GGA ATG GAA AAT AGC TCC TGC C
R: GCC TGA GAG CTG TAG GCC

Genotyping

Nrf2 KO R: GGG TTT TCC CAG TCA CGA Genotyping
Inos F: TGG TGG TGA CAA GCA CAT TT 

R: AAG GCC AAA CAC AGC ATA CC
qRT-PCR

Cox-2 F: TGA GTA CCG CAA ACG CTT CTC
R: TGG ACG AGG TTT TTC CAC CAG

qRT-PCR

Tnf-α F: ACG GCA TGG ATC TCA AAG AC
R: GTG GGT GAG GAG CAC GTA GT

qRT-PCR

Il-6 F: CTG CAA GAG ACT TCC ATC CAG TT
R: GAA GTA GGG AAG GCC GTG G

qRT-PCR

Ho-1 F: CCT CAC TGG CAG GAA ATC ATC
R: CCT CGT GGA GAC GCT TTA CAT A

qRT-PCR

Gclc F: ACA TCT ACC ACG CAG TCA AGG ACC
R: CTC AAG AAC ATC GCC TCC ATT CAG

qRT-PCR

Gclm F: GCC ACC AGA TTT GAC TGC CTT TG
R: TGC TCT TCA CGA TGA CCG AGT ACC

qRT-PCR

Gapdh F: TTC ACC ACC ATG GAG AAG GC
R: GGC ATG GAC TGT GGT CAT GA

qRT-PCR

Nrf2, nuclear factor erythroid-derived 2-related factor 2; WT, wild type; KO, knockout; F, forward; R, reverse; Inos, inducible nitric oxide 
synthase; Cox-2, cyclooxygenase-2; Tnf-α, tumor necrosis factor-alpha; Il-6, interleukin 6; Ho-1, heme oxygenase 1; Gclc, glutamate-
cysteine ligase catalytic subunit; Gclm, glutamate-cysteine ligase modifier subunit; Gapdh, glyceraldehyde-3-phosphate dehydrogenase.
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Measurement of inflammatory cytokines
The levels of myeloperoxidase (MPO), IL-6, and IL-1β in the 
colonic tissues were measured using a mouse MPO ELISA 
kit (Cat no HK210; Hycult Biotechnology, Uden, The Nether-
lands), a mouse IL-6 Quantikine ELISA kit (Cat no M6000B; 
R&D Systems Inc., Minneapolis, MN, USA), and a mouse 
IL-1β/IL-1F2 Quantikine ELISA kit (Cat no MLB00C; R&D 
Systems Inc.), respectively, according to the manufacturer’s 
instructions. All assays were performed in triplicate.

Quantitative real-time polymerase chain 
reaction (qRT-PCR)
Total RNA was extracted from the colon tissues using TRIzol® 
reagent (Invitrogen, Carlsbad, CA, USA). For qRT-PCR, 2 
μg of total RNA was reverse transcribed using High Capacity 
cDNA Reverse Transcription kit according to the manufactur-
er’s instructions (Applied Biosystems, Foster City, CA, USA). 
The cDNA was used to perform qRT-PCR using specific 
primers (listed in Table 1) in a ViiA7 instrument (Applied Bio-
systems). The expression levels were normalized to that of 
Gapdh.

Western blot analysis
Colon tissue was lysed with RIPA buffer (Cell Signaling 
Technology, Beverly, MA, USA) containing protease and 
phosphatase inhibitors. Total protein was separated by SDS-
PAGE and transferred to a polyvinylidene difluoride (PVDF) 
membrane. Western blot analysis was performed with spe-
cific primary antibodies (listed in Table 2). The signals were 
then detected with an enhanced chemiluminescence (ECL) 
kit (GE Healthcare Biosciences, Buckinghamshire, UK). The 
band intensity was quantified by densitometric analysis using 
the ImageJ software (National Institutes of Health, Bethesda, 
MD, USA).

Statistical analysis
All statistical analyses were conducted using GraphPad 
Prism, version 5.01 (GraphPad Software, Inc., San Diego, 
CA, USA) and PASW Statistics for Windows, version 18.0 
(IBM Corp., Armonk, NY, USA). Data are expressed as the 

mean ± SEM. Statistical significance was examined with the 
Mann–Whitney test or Fisher’s exact test. P < 0.05 was con-
sidered statistically significance.

RESULTS

Increased colonic epithelial damage and 
shortening of colon length by Nrf2 KO in female 
mice at the colitis stage 
To investigate the potential role of Nrf2 in AOM/DSS-induced 
inflammation and tumorigenesis in female mice, a total of four 
experimental groups were prepared as presented in Figure 
1C. Two WT groups comprised female control mice (Group 
1) and AOM/DSS-treated female mice (Group 2). In Nrf2 
KO groups, two groups also comprised female control mice 
(Group 3) and AOM/DSS-treated female mice (Group 4). 
 First, we measured the colitis-associated symptoms includ-
ing DAI, colonic epithelial damage, and colon length short-
ening. The DAI was calculated by summing the body weight 
change, stool consistency, and rectal bleeding, and by divid-
ing the result by three. In the AOM/DSS-treated animal mod-
el, body weight loss is a sensitive indicator of colitis severity 
[31], which is linked to colon tumorigenesis. The body weight 
loss caused by AOM/DSS treatment was observed in both 
WT and Nrf2 KO groups without the effect of Nrf2 KO at week 
2 (Fig. 2A and 2B). However, at week 16, significant body 
weight loss was observed in both Nrf2 KO control and AOM/
DSS groups (Fig. 2A and 2C, P = 0.040 for WT control vs KO 
control and P = 0.005 for WT AOM/DSS vs. KO AOM/DSS). 
After careful analysis of the body weight changes, the DAI 
score increased by AOM/DSS treatment was found not to be 
affected by Nrf2 KO at week 2 and 16 (Fig. 2D-2F). Repre-
sentative histopathological images (Fig. 2G) and microscopic 
damage scores (Fig. 2H) indicated that colonic epithelial 
damage induced by AOM/DSS treatment was more evident 
in the Nrf2 KO group as evidenced by higher inflammatory cell 
infiltration and strong cryptic damage than in WT mice (Fig. 
2G and 2H, P < 0.001 for WT AOM/DSS vs. KO AOM/DSS). 
Interestingly, colon length was shortened by Nrf2 KO in both 
the control and AOM/DSS-treated groups compared to WT 
mice, but showed significant differences only in the control 
group (Fig. 2I, P < 0.001 for WT control vs. Nrf2 KO control). 
As a result, colon length shortening induced by AOM/DSS 
treatment was not affected by Nrf2 KO (Fig. 2I). These results 
suggest that Nrf2 plays a protective role against inflammation 
in both the intact and colitis stages. 

Attenuation of colitis-associated tumorigenesis 
by Nrf2 KO in female mice at tumorigenesis 
stage
To determine the effect of Nrf2 on colitis-associated tumori-
genesis in females, we counted the tumor number by macro-
scopic assessment, assessing both the size and the location, 
at week 16. Tumors were well developed at week 16 in both 

Table 2. List of antibodies and their characteristics

Antigen Antibody (Cat no.) Dilution

iNOS BD Biosciences (#610328) WB (1:500)
NQO1 Abcam (ab34173) WB (1:1,000)
GCLC Abcam (ab41463) WB (1:1,000)
ERβ Abcam (ab3576) WB (1:500)
15-PGDH Cayman Chemical (#160615) WB (1:1,000)
β-Actin Santa Cruz Biotechnology 

(sc47778)
WB (1:2,000)

WB, Western blot; iNOS, inducible nitric oxide synthase; NQO1, 
NAD(P)H: quinone dehydrogenase 1; GCLC, glutamate-cysteine 
ligase catalytic subunit; ERβ, estrogen receptor beta; 15-PGDH, 
15-hydroxyprostaglandin dehydrogenase; β-Actin, beta-actin.
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adenocarcinoma incidence and invasion in each group by microscopic evaluation of the colonic tissues at the tumorigenesis stage (at week 16). The 
case number is marked on the top of the bar. WT, wild-type; KO, knockout; AOM, azoxymethane; DSS, dextran sodium sulfate; Con., control. *P < 0.05 
for Con. vs. AOM/DSS; †P < 0.05 for WT vs. Nrf2 KO. 
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the proximal and distal regions of colon in AOM/DSS-treated 
WT and Nrf2 KO mice (Fig. 3A). Interestingly, tumor num-
bers, especially those > 2 mm in size, were significantly lower 
in Nrf2 KO mice than in WT mice both in proximal and distal 
regions of colon (Fig. 3A, P = 0.023 for proximal colon and P 

= 0.002 for distal colon). Representative histopathological im-
ages are shown in Figure 3B. The incidence of microscopic 
colonic neoplasms such as adenoma and cancer is summa-
rized in Table 3. In the proximal colon, the total incidence of 
adenoma/cancer formed by AOM/DSS treatment was de-
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Figure 4. Effect of nuclear factor erythroid 2-related factor 2 (Nrf2) KO on expression/production of pro-inflammatory enzymes and 
cytokines and anti-oxidant enzymes in colonic tissues at week 2. (A) The mRNA expression of pro-inflammatory genes such as Inos, Cox-
2, Tnf-α, and Il-6 determined qRT-PCR analysis. (B) iNOS protein expression measured Western blot analysis (60 μg of protein). (C) MPO, IL-1β, 
and IL-6 production in colon tissue measured by ELISA. (D) The mRNA expression of anti-oxidant enzyme genes such as Ho-1, Gclc, and Gclm as 
assessed qRT-PCR analysis. WT, wild-type; KO, knockout; AOM, azoxymethane; DSS, dextran sodium sulfate; iNOS, inducible nitric oxide synthase; 
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creased in Nrf2 KO (56.3%) mice than in WT (88.9%) mice, 
and in particular, the incidence of mucosal invasive cancer 
was reduced by approximately 23% (66.7% in WT and 43.8% 
in KO) (Fig. 3C). The total incidence of adenoma/cancer in 
the distal colon was not affected by Nrf2 KO (93.8%) com-
pared with WT (100%) mice, whereas submucosal invasive 
cancer decreased approximately 2.7-fold in Nrf2 KO (12.5%) 
mice compared with WT (33.3%) animals (Fig. 3C). These 
findings provide evidence that Nrf2 is involved in tumor pro-
motion/progression in colitis-associated tumorigenesis.

Effect of Nrf2 KO on the expression of the  
pro-inflammatory mediators and anti-oxidant 
genes at colitis stage
To further assess the effect of Nrf2 KO on inflammatory me-
diators at the molecular level, NF-κB-mediated expression 
of pro-inflammatory enzymes and cytokines, and their gene 
levels were measured in colon tissue at week 2. The mRNA 
expression levels of inducible nitric oxide synthase (Inos), cy-
clooxygenase-2 (Cox-2), tumor necrosis factor-alpha (Tnf-α), 
and interleukin 6 (Il-6) were strongly elevated by AOM/DSS 
treatment in WT mice (Fig. 4A). However, in the Nrf2 KO 
group, the AOM/DSS-induced mRNA expression of pro-in-
flammatory genes tended to decrease compared to the WT 
group, showing a significant difference only in Tnf-α and Il-6 
(Fig. 4A, P = 0.002 for Tnf-α and P < 0.001 for Il-6). The pro-
tein expression of iNOS induced by AOM/DSS treatment was 
significantly increased in the Nrf2 KO group, but not in the 
WT mice (Fig. 4B). Next, we performed ELISA to measure 
the concentration of the pro-inflammatory mediators such 
as MPO, IL-1β, and IL-6. After AOM/DSS treatment, colonic 
MPO, IL-1β, and IL-6 levels were elevated to a similar extent 
in both the WT and Nrf2 KO groups (Fig. 4C). 
 We further measured mRNA expression of the Nrf2-medi-
ated anti-oxidant enzymes at week 2. The mRNA expression 
of Ho-1, Gclc, and Gclm increased by AOM/DSS treatment in 
WT mice was strongly attenuated in the Nrf2 KO group, with 
a significant difference observed only in Ho-1 (Fig. 4D, P < 
0.001 for Ho-1).

Effect of Nrf2 KO on the expression of the  
pro-inflammatory mediators and anti-oxidant 
genes at the tumorigenesis stage
At week 16, the mRNA expression levels of Inos, Cox-2, 
Tnf-α, and Il-6 genes were strongly elevated by AOM/DSS 
treatment in both the WT and Nrf2 KO groups (Fig. 5A). 
The AOM/DSS-induced Inos and Cox-2 mRNA expression 
showed a significant decrease in the Nrf2 KO group com-
pared to WT mice (Fig. 5A, P = 0.008 for Inos and P = 0.005 
for Cox-2). AOM/DSS-induced iNOS protein expression was 
significantly increased in the Nrf2 KO group, but not in the 
WT group (Fig. 5B). The concentrations of colonic MPO, IL-
1β, and IL-6 induced by AOM/DSS treatment were elevated 
in both the WT and Nrf2 KO groups, but their levels were low-

er more than 2-folds in the Nrf2 KO group compared to the 
WT mice (Fig. 5C). 
 We further measured mRNA and protein expression of the 
Nrf2 target genes encoding anti-oxidant enzymes at week 16. 
The mRNA expression of Ho-1, Gclc, and Gclm increased 
by AOM/DSS treatment in WT mice was strongly attenuated 
in the Nrf2 KO group, showing a significant difference only in 
Ho-1 (Fig. 5D, P < 0.001 for Ho-1). The protein expression 
of NQO1 and GCLC induced by AOM/DSS treatment also 
showed lower levels in the Nrf2 KO group compared to WT 
mice (Fig. 5E). 
 To figure out the molecular signatures on Nrf2-associat-
ed tumorigenesis in female mice, we analyzed the colonic 
expression of ERβ and 15-hydroxy prostaglandin dehydro-
genase (15-PGDH). There was no change in the protein ex-
pression of ERβ by AOM/DSS treatment in WT mice, but the 
expression of ERβ was significantly decreased by AOM/DSS 
treatment in the Nrf2 KO group (Fig. 5F, P = 0.006 for control 
vs. AOM/DSS in Nrf2 KO). In particular, the protein expres-
sion of ERβ was significantly higher in the Nrf2 KO control 
group compared to WT mice (Fig. 5F, P = 0.016 for WT con-
trol vs. Nrf2 KO control). Interestingly, the protein expression 
of 15-PGDH in the Nrf2 KO group was regulated in a manner 
opposite to that of ERβ (Fig. 5G, P = 0.045 for control vs. 
AOM/DSS in Nrf2 KO and P = 0.009 for WT control vs. Nrf2 
KO control). 

DISCUSSION

Our results showed that AOM/DSS-mediated colonic epitheli-
al damages were significantly worse in Nrf2 KO female mice 
than in WT at the colitis stage (week 2). However, at the tum-
origenesis stage (week 16), the number of tumors exceeding 
2 mm in size was significantly lower in both the proximal 
and distal colons in Nrf2 KO compared to WT female mice. 
Furthermore, the overall adenoma/cancer incidence of the 
proximal colon and submucosal invasive cancer of the distal 
colon was decreased in Nrf2 KO mice than in WT animals. 
Interestingly, the mRNA or protein expression of NF-κB-relat-
ed mediators and Nrf2-related antioxidant enzymes was sig-
nificantly lower in Nrf2 KO mice, while the protein expression 
level of 15-PGDH was higher in Nrf2 KO than in WT mice. 
These results suggest that Nrf2 acts differentially, in a way 
that it exerts an anti-inflammatory effect in the colitis stage 
and a carcinogenic effect in the tumorigenesis stage.
 Nrf2 is a key modulator of the adaptive response to a 
variety of environmental and endogenous stresses [32-36]. 
Recently, there are several reports that Nrf2 contributes to 
weight gain. The body weight of adult Nrf2 KO mice was 
lower compared to WT mice fed a normal diet [37]. Nrf2 was 
involved in weight gain in male mice during space travel 
by maintaining homeostasis of white adipose tissue [38]. 
Decreased expression of peroxisome proliferator-activated 
receptor γ due to Nrf2 deficiency prevented weight gain and 



50 J Cancer Prev 26(1):41-53, March 30, 2021

Song et al. 

obesity from a high fat diet and environmental stress caused 
by space travel [37,38]. In our previous study, the body 
weight of male control mice was not affected by Nrf2 KO at 

week 16 [24]. In the present study, however, the body weight 
of the Nrf2 KO female control or AOM/DSS-treated group 
was significantly lower compared to that of the WT group at 
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Figure 5. Effect of nuclear factor erythroid 2-related factor 2 (Nrf2) KO on the mRNA or protein expression levels of pro-inflammatory and 
anti-oxidant enzyme genes in colonic tissues at week 16. (A) The mRNA expression of pro-inflammatory genes such as Inos, Cox-2, Tnf-α, and 
Il-6 by qRT-PCR analysis. (B) iNOS protein expression by Western blot analysis (60 μg of protein). (C) MPO, IL-1β, and IL-6 concentration in colon 
tissue by ELISA. (D) The mRNA expression of anti-oxidant enzyme genes such as Ho-1, Gclc, and Gclm by qRT-PCR analysis. (E) The protein 
expression of anti-oxidant enzymes such as NQO1 and GCLC by Western blot analysis (30 μg of protein). (F, G) The protein expression of ERβ (F) 
and 15-PGDH (G) by Western blot analysis (60 μg of protein). WT, wild-type; KO, knockout; AOM, azoxymethane; DSS, dextran sodium sulfate; 
iNOS, inducible nitric oxide synthase; COX-2, cyclooxygenase-2; IL-6, interleukin 6; MPO, myeloperoxidase; HO-1, heme oxygenase 1; GCLC, 
glutamate-cysteine ligase catalytic subunit; GCLM, glutamate-cysteine ligase modifier subunit; NQO1, NAD(P)H: quinone dehydrogenase 1; ERβ, 
estrogen receptor beta; 15-PGDH, 15-hydroxyprostaglandin dehydrogenase; Con., control. *P < 0.05 for Con. vs. AOM/DSS; †P < 0.05 for WT vs. 
Nrf2 KO.
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week 16. Several studies have shown that Nrf2 KO mice are 
more susceptible to inflammatory diseases [39,40]. Khor et 
al. reported that mRNA and protein expression of COX-2 and 
iNOS induced by AOM/DSS treatment increased in colon 
tissue of Nrf2 KO male mice compared to WT animals [41]. A 
study using peritoneal macrophages prepared from WT male 
and Nrf2 KO male mice showed that iNOS protein expres-
sion was more strongly inhibited by phenethyl isothiocyanate 
and curcumin treatment in WT than in Nrf2 KO mice [32]. At 
week 2, colon length shortening and colonic epithelial dam-
ages were also affected similarly to that of Nrf2 KO-mediated 
weight loss. In males, the colon length of the control group 
and colonic epithelial damages induced by AOM/DSS were 
not affected by Nrf2 KO [24]. However, females were easily 
affected by Nrf2 KO, as revealed by shortening of the colon 
length and increased colon epithelial damage. At the mo-
lecular level, the protein expression of the proinflammatory 
mediator iNOS induced by AOM/DSS treatment was lower in 
WT females than in WT males [24]; however, sex differences 
in iNOS expression disappeared by Nrf2 KO. These results 
indicate that the contribution of Nrf2 to homeostasis mainte-
nance and inflammatory defense mechanisms is greater in 
female mice than in males. It is speculated that female mice 
are more susceptible to Nrf2 KO than males.
 Recently, Nrf2 was known to be involved in maintaining 
cancer cell growth and invasion by metabolic reprogramming, 
inhibiting cancer cell apoptosis, and enhancing the ability of 
cancer stem cells to self-renew in the tumorigenesis stage. 
More importantly, aberrant activation of Nrf2 was associated 
with chemoresistance of cancer cells and poor prognosis 
[42]. In the previous study, we also observed that Nrf2 and 
Nrf2-related antioxidant genes were highly expressed in 
AOM/DSS-treated male and female mice, which accelerat-
ed cancer development [23]. Therefore, we expected that 
tumorigenicity would be weaker in the Nrf2 KO group than in 
WT mice. As expected, the incidence of tumors was lower in 
the Nrf2 KO female mice than in the WT females, especially 

those with tumor sizes greater than 2 mm. In particular, only 
the incidence of submucosal invasive cancer at the distal 
colon was reduced by Nrf2 KO in females. In the previous 
study, the tumor incidence in male mice was not affected by 
Nrf2 KO, so there was no difference from the tumor incidence 
in WT mice [24]. Interestingly, the anti-tumorigenic effect of 
17β-estradiol was stronger in the AOM/DSS-treated Nrf2 KO 
group than in WT male mice [24]. 
 Several studies have demonstrated the tumor suppressor 
function of 15-PGDH, an enzyme that converts prostaglandin 
E2 into an inactive metabolite [43-45]. The expression of 15-
PGDH was strongly reduced in various human malignan-
cies such as colon cancer, lung cancer, and gastric cancer 
compared to normal tissues [46,47]. 15-PGDH is abundantly 
expressed in the normal colonic mucosa, and loss of 15-
PGDH is associated with CRC development [46,48]. In the 
present study, there was no change in the protein expression 
of 15-PGDH by AOM/DSS treatment compared to the female 
control in the 16-week WT group, but the expression of 15-
PGDH was strongly increased in the AOM/DSS-treated Nrf2 
KO female group compared to its control. In the male group, 
the expression of 15-PGDH was strongly inhibited in both WT 
and Nrf2 KO mice by AOM/DSS treatment, and there was no 
change by Nrf2 KO (data not shown). Interestingly, there was 
no change in the expression of 15-PGDH and ERβ by AOM/
DSS treatment in the WT female mice, but it was observed 
that protein expression of 15-PGDH and ERβ was oppositely 
regulated in the Nrf2 KO female group. Taken together our 
results regarding ERβ and 15-PGDH in the Nrf2 KO mice sug-
gest that 15-PGDH might contribute to the suppression of coli-
tis-associated tumorigenesis in Nrf2 KO female mice. Howev-
er, further experiments are needed to clarify this supposition.
 In conclusion, our study shows the possibility that Nrf2 KO 
suppresses the colitis-associated tumorigenesis by upregu-
lating tumor suppressor 15-PGDH in females. The elevated 
Nrf2 levels are associated with the development of aggres-
sive CRC, and 15-PGDH may be a useful therapeutic target 
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Figure 5. Continued.
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depending on sex in CRC patients.
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