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Abstract
Most organisms possess several cell cycle checkpoints to preserve genome stability in periods of stress. Upon starvation, the 
absence of chromosomal duplication in the bacterium Escherichia coli is ensured by holding off commencement of replica-
tion. During normal growth, accumulation of the initiator protein DnaA along with cell cycle changes in its activity, ensure 
that DNA replication starts only once per cell cycle. Upon nutrient starvation, the prevailing model is that an arrest in DnaA 
protein synthesis is responsible for the absence of initiation. Recent indications now suggest that DnaA degradation may 
also play a role. Here we comment on the implications of this potential new layer of regulation.
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Introduction

Nutrient availability affects the cell cycle of all organisms. 
In Eukaryotes, checkpoints known as ‘Restriction’ or ‘Start’ 
prolong the G1 phase following nutritional stress until 
a favorable cellular energy state is reached (Johnson and 
Skotheim 2013; Solaki and Ewald 2018). In the well-studied 
prokaryotic organism Escherichia coli, no such checkpoints 
have been identified. Instead, accumulation of the initiator 
protein DnaA, whose expression is coupled to mass increase, 
is thought to play a determining role in deciding when DNA 
synthesis starts (Lobner-Olesen et al. 1989; Si et al. 2017).

Initiation of DNA replication depends 
on accumulation and activation of DnaA

DnaA is a multi-domain protein that binds the origin of 
replication and loads the replicative helicase (Hansen and 
Atlung 2018; Katayama et al. 2017; Leonard and Grimwade 

2015; Riber et al. 2016). Like other initiator proteins, it pos-
sess an AAA + domain with ATPase activity that determines 
its ability to form a nucleoprotein structure on the origin and 
to load the helicase; the initiator being active when bound 
to ATP while inactive in its ADP bound form. Because 
DnaA has an equally high affinity for ATP and ADP and 
because ATP is about seven times more abundant in the cell 
than ADP during normal growth, it is assumed that newly 
synthesized DnaA mainly binds ATP. In other words, the 
energy state of the cell could influence the ratio of active 
to inactive initiator. Thus it is expected that overproduction 
of DnaA will increase the amount of  DnaAATP relative to 
 DnaAADP. Accordingly, overproduction of a mutant DnaA 
that binds ATP and ADP equally well but has lost its ATPase 
activity (DnaAR334A), results in an increase of  DnaAATP 
from ~ 10% to ~ 60% and an enormous increase in initiation 
frequency (Nishida et al. 2002). Contrary to the expecta-
tion, overproduction of wild-type DnaA does not increase 
or even reduce the ratio  DnaAATP/DnaAADP (Kurokawa et al. 
1999; Nishida et al. 2002) and has a relatively minor effect 
on the initiation frequency (Nishida et al. 2002; Riber et al. 
2006). The fact that an accumulation of  DnaAATP alone 
is much more potent in starting DNA replication than an 
accumulation of  DnaAATP together with  DnaAADP indicates 
that  DnaAADP has an inhibitory function on initiation. Thus, 
DnaA needs to be both in sufficient amount and predomi-
nantly in active form (high  DnaAATP/DnaAADP ratio) to start 
DNA replication (Fig. 1). DnaA is predominantly found in 
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the ADP bound form at the population level (~ 70%) (Kato 
and Katayama 2001). This is because the nucleotide bound 
state of DnaA is determined by a balance between control 
mechanisms.

Regulation of DnaA activity

On one hand, there is Regulatory Inactivation of DnaA 
(RIDA) (Kato and Katayama 2001) and datA-dependent 
DnaAATP hydrolysis (DDAH) (Kasho and Katayama 
2013) that stimulate DnaA ATPase activity to reduce the 
 DnaAATP/DnaAADP ratio. On the other hand, the rejuve-
nation of  DnaAADP to  DnaAATP at DnaA Rejuvenating 
Sequences DARS1 and DARS2 serves to increase the 
 DnaAATP/DnaAADP ratio by promoting the dissociation of 
ADP from DnaA (Fujimitsu et al. 2009); the Apo-DnaA 
produced binds preferentially ATP (Fig. 1). These regu-
latory mechanisms act in concert during the cell cycle 
to ensure that  DnaAATP accumulates pre-initiation and 
is subsequently converted to  DnaAADP post-initiation. 
Mechanistically, DDAH at the datA locus and rejuvena-
tion at DARS sites distinguish themselves by the type of 
DnaA-DNA complex formed and the auxiliary proteins 
required to function. DARS1 is constitutively active and 

does not require helper proteins while IHF is required 
for DDAH and DARS2. Rejuvenation at DARS2 rejuve-
nation is also depends on Fis function and is expected to 
be growth phase regulated (Frimodt-Moller et al. 2016; 
Inoue et al. 2016; Kasho et al. 2014) because Fis is abun-
dant in exponential phase but absent during stationary 
phase. RIDA, is orchestrated by the Hda protein inter-
acting with the DNA loaded β-clamps. During replica-
tion, β-clamps tether the DNA polymerase to the template 
DNA. However, numerous β-clamps are left loaded on 
double stranded DNA behind the replication forks for 
several minutes (Moolman et  al. 2014). These DNA-
bound β-clamps act as a platform for several activities 
such as DNA repair and in the case of RIDA serve to 
complex DnaA with the protein HdA resulting in activa-
tion of DnaA ATPase. RIDA is expected to be less active 
in absence of DNA replication where few β-clamps are 
left loaded on DNA (Katayama et al. 1998; Kurokawa 
et al. 1999). Because RIDA is the predominant process 
lowering the  DnaAATP/DnaAADP ratio, we speculate that 
DnaA becomes more ATP-bound during stationary phase 
and energy starvation (Fig. 1). In cells where only DDAH 
and DARS1 are functional, the  DnaAATP/DnaAADP ratio 
increases (Fujimitsu et al. 2009). Furthermore,  DnaAADP 
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Fig. 1  Regulation of DnaA activity. During normal growth (left), 
 DnaAATP (blue) is formed through DnaA synthesis (apo-DnaA bind-
ing ATP that is more abundant than ADP) and by DARS ‘rejuvena-
tion’ (DARS1 and FIS-dependent DARS2) through dissociation of 
ADP from  DnaAADP (orange). The formation of  DnaAADP is con-

trolled by DDAH and RIDA through stimulaion of DnaA ATPase 
activity. On average, total DnaA is constituted of ~ 30%  DnaAATP 
and ~ 70%  DnaAADP in exponentially growing cells. In energy 
starved cell (right), DARS2 and RIDA are both inactive, and the ratio 
 DnaAATP/DnaAADP is not known
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is slowly converted into  DnaAATP in a RIDA-deficient cell 
when protein synthesis is blocked by chloramphenicol 
treatment (Fujimitsu et al. 2009; Kurokawa et al. 1999).

DnaA synthesis arrest upon starvation

Upon energy starvation, DNA replication stops and it was 
assumed that a general reduction in protein synthesis (Holm 
et al. 2010), including DnaA, is responsible for this arrest 
(Fig. 2). In this model, DnaA fails to accumulate to a level 
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Fig. 2  A role for degradation of DnaA during energy etarvation. Dur-
ing normal growth (upper panel), DNA replication is initiated when 
enough DnaA molecules have accumulated and when  DnaAATP/
DnaAADP is high (level of DnaA required to for initiation: I). During 
short-term energy starvation (lower panel), DnaA does not accumu-

late to sufficient level and  DnaAATP/DnaAADP is low. During long-
term energy starvation, we propose that  DnaAATP/DnaAADP becomes 
sufficiently high to allow for replication initiation despite of fewer 
DnaA molecules, unless DnaA level is lowered by degradation
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sufficient to promote a new round of replication. The DNA 
replication arrest is specific to the initiation step, with ongo-
ing replication allowed to proceed to completion. This is also 
the case when DnaA expression is blocked by treatment with 
antibiotics that arrest protein synthesis such as chloramphen-
icol and rifampicin or during the stringent response when 
the alarmone (p)ppGpp is induced (Chiaramello and Zys-
kind 1990; Lark 1972; Schreiber et al. 1995; Skarstad et al. 
1986). This is corroborated by the fact that the hyperactive 
DnaA mutant DnaAcos continues to initiate DNA replica-
tion in the presence of chloramphenicol (Kellenberger-Gujer 
et al. 1978) and by the observation that overexpression of 
dnaA bypasses the DNA replication arrest seen in (p)ppGpp-
induced cells (Riber and Lobner-Olesen 2020).

DnaA degradation during ATP starvation

Recently, a manipulation of the cellular ATP level indicates 
that additional regulation mechanism exist. Normally, DnaA 
is extremely stable during steady state growth, with protein 
half-life exceeding 24 h (Atlung and Hansen 1999; Torheim 
et al. 2000). It is shown now that depletion of ATP results 
in a replication initiation arrest as expected, but surpris-
ingly, this is accompanied by degradation of about 30% of 
the DnaA proteins after 1-hour ATP starvation (Charbon 
et al. 2021). The nucleotide binding of DnaA does not affect 
DnaA stability during energy starvation (Charbon et al. 
2021). However, the mechanism responsible for the deg-
radation remains elusive and neither of the ATP-dependent 
proteases Lon or ClpP, implicated in the initiator proteolysis 
in the bacterium Caulobacter crescentus, are involved. Fol-
lowing carbon starvation, a similar DNA synthesis arrest 
is observed despite the fact that DnaA is stable during the 
initial stages of starvation where ATP/ADP level is remains 
unchanged. Nonetheless, following long-term carbon star-
vation, the ATP/ADP level falls (Chapman et al. 1971), and 
DnaA is degraded (Charbon et al. 2021).

DnaA degradation during stringent response

Although DnaA was originally described as stable or even 
more abundant in stationary phase (Ali Azam et al. 1999; 
Sakakibara and Yuasa 1982; Sekimizu et al. 1988), recent 
work indicates that DnaA is degraded during the stringent 
response (increased levels of (p)ppGpp) occurring upon 
entry into stationary phase, or upon amino acid starva-
tion (Gross and Konieczny 2020). Indeed, the amount of 
DnaA per cell decreases over time following induction of 
(p)ppGpp, a decrease that is not observed in a lon or ppk 
mutant (polyphosphate synthesis). In vitro, Lon specifi-
cally degrades  DnaAADP in the presence of polyphosphate 
(PolyP) (Gross and Konieczny 2020). Thus it is proposed 
that accumulation of PolyP acts as a starvation signal to 

degrade DnaA and prevent initiation of DnaA replication. 
Note that the degradation of DnaA apparently depends on 
how (p)ppGpp is induced as it is not observed elsewhere 
(Riber and Lobner-Olesen 2020).

A new regulatory mechanism?

Because dnaA expression is reduced or arrested during 
energy starvation and the stringent response respectively, 
future work should address the need for DnaA degradation 
as extra layer of regulation. For example, for cells enter-
ing carbon starvation, the DNA replication block does not 
require DnaA degradation (Charbon et al. 2021). In this 
case, cessation of de novo DnaA synthesis is sufficient to 
arrest initiation and degradation of DnaA comes only much 
later. The question therefore remains why DnaA degrada-
tion in ATP depleted or (p)ppGpp accumulating cell is at 
all necessary. One possibility is that DnaA degradation 
is incidental; i.e., DnaA instability may be a mere conse-
quence of a protein degradation in general. This explains 
why mutants in proteolytic pathways have not been isolated 
in genetic screens for suppression of DnaA hyperactivity 
(Charbon et al. 2018). On the other hand, although the block 
in expression of DnaA is a sufficient short-term solution, we 
suggest that it becomes ineffective if the  DnaAATP/DnaAADP 
balance increases over time (Fig. 2). We speculate that upon 
long-term energy starvation during which RIDA and DARS2 
are inactive,  DnaAADP is converted into  DnaAATP overtime, 
thereby lowering the number of DnaA molecules needed 
to trigger initiation of replication (Fig. 2). Thus, DnaA is 
capable to re-initiate DNA replication despite being at a 
level normally deemed insufficient. This is in accordance 
with the observation that a hyperactive DnaA protein mim-
icking  DnaAATP can continue to initiate new rounds of 
replication despite protein synthesis arrest (Kellenberger-
Gujer et al. 1978). Degradation of DnaA in general dur-
ing ATP depletion (Charbon et al. 2021) could lower the 
cellular amount of protein and prevent this (Fig. 2). The 
observation that specifically  DnaAADP is degraded during 
PolyP accumulation (Gross and Konieczny 2020) is coun-
terintuitive, as this would increase the  DnaAATP/DnaAADP 
ratio and theoretically lower the amount of DnaA needed 
to start replication; fewer DnaA molecules but more active. 
Since  DnaAADP is the most abundant species, accounting 
for 70% of total DnaA,  DnaAADP proteolysis could provide 
a fast way to degrade the majority of DnaA molecules. How-
ever this is not supported by the modest ~ 20% reduction 
in total DnaA observed after 30-min amino acid starvation 
(Gross and Konieczny 2020). On the other hand, degrading 
the inactive form of DnaA could be a way to quickly restart 
DNA replication following starvation. Post starvation, cells 
would be left with only  DnaAATP and therefore fewer DnaA 
molecules would be required to re-initiate. Finally, we do 
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not exclude that the role of DnaA degradation is to control 
transcriptional activity (Messer and Weigel 1997) instead 
of or in addition to its initiator activity. Indeed, DnaA over-
production during late phase has been reported to induce 
the transcription of polA gene encoding DNA polymerase 
I in a manner independent of the late phase sigma factor 
RpoS (Quinones, et al. 1997). Thus, DnaA transcriptionial 
activity could clash with other master regulators specialized 
in promoting survival during starvation, justifying DnaA 
degradation.
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