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Janus kinases (JAKs) are non-receptor tyrosine kinases
essential for activation of signaling mediated by cytokine
receptors that lack catalytic activity, including receptors for
erythropoietin, thrombopoietin, most interleukins and inter-
feron. Upon hormone binding, JAKs phosphorylate tyrosine
residues in the receptor cytoplasmic domains and in JAKs
themselves leading to recruitment and activation of down-
stream signaling proteins such as signal transducer and
activator of transcription (STAT). The JAK-STAT pathway is
important for functional hematopoiesis and several activating
mutations in JAK proteins have recently been described as
underlying cause of blood disorders. One of the best studied
examples is the JAK2 V617F mutant which is found in 95% of
polycythemia vera patients and 50% of patients suffering from
essential thrombocythemia and primary myelofibrosis. Much
effort has been made to understand how the JAK2 V617F
affects hematopoietic stem cell (HSC) renewal and lineage
differentiation, since convincing evidence has been provided
to support the notion that the mutation is acquired at the HSC
level. We discuss several in vivo models that support contrary
conclusions with respect to the advantage given to HSCs by
JAK2 V617F. Moreover, we provide the current knowledge
about STAT5 activation and its link to HSC expansion as well as
amplification of the erythroid compartment. Evidence for both
JAK2 V617F mutated HSCs exhibiting skewed differentiation
potential and for amplification occurring after erythroid
commitment has been provided, and we will discuss whether
this evidence is relevant for the disease.

Introduction

Type I cytokine receptors, such as receptors for erythropoietin
(Epo), thrombopoietin (Tpo), granulocyte colony stimulating
factor (G-CSF) and most interleukins (IL) receptors, and type II
interferons (IFN) lack intrinsic catalytic activity. In order to
initiate downstream signaling these receptors bind one or several

members of cytoplasmic tyrosine kinases of the Janus kinase
(JAK) family (Fig. 1A). After binding of the cytokine to the
receptor extracellular domain two scenarios are possible: (1) the
receptor exists as preformed dimer at the cell surface and ligand
binding induces a conformational change; or (2) dimerization or
oligomerization is induced after ligand binding and thus induces a
conformational change of the receptor. The conformational
change brings the cognate JAK proteins in close enough proximity
that they transphosphorylate each other (Fig. 1A). In turn,
activated JAK proteins phosphorylate tyrosine residues in the
receptor cytoplasmic domain and in JAKs themselves and provide
docking sites for signaling proteins such as signal transducer and
activators of transcription (STAT). STAT proteins become thus
substrates and are phosphorylated by JAKs, form dimers and
translocate to the nucleus where they modify gene expression.
Several activating mutations have been identified in JAK proteins.
In particular the JAK2 V617F mutant has been studied in great
detail and our current understanding about its function is
highlighted in this review.

The JAK2 V617F Mutant
and Myeloproliferative Disorders

Myeloproliferative neoplasms (MPNs) are a group of blood
disorders characterized by an overproduction of one or more of
the myelo-erythroid lineages (Fig. 2B).1 The three most
common MPNs are polycythemia vera (PV), essential thrombo-
cythemia (ET) and primary myelofibrosis (PMF). Features of
PV are the overproduction of mature, functional red blood cells,
leading to an increased red-cell mass and hematocrit, while ET
patients have an increase in platelet numbers and PMF is
characterized by scarring of the bone marrow with fibrosis and
extramedullary hematopoiesis. The JAK2 V617F mutation was
first described in 2005 as the major underlying molecular event
of Bcr-Abl negative MPN.2-5 It is found in approximately 95%
of PV and 50% of ET and PMF patients.2-7 The point mutation
occurs in the pseudokinase domain of JAK2 and causes a
substitution of valine at position 617 by phenylalanine (JAK2
V617F). The pseudokinase domain has high sequence homology
to kinase domains, but lacks key residues necessary for catalytic
activity. It is thought that the V617F mutation either releases
the inhibitory function of the pseudokinase domain on the JAK2
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catalytic domain,8 or that it induces a conformational change to the
pseudokinase domain that in turn activates the kinase domain9

(Fig. 1B). As a consequence of the JAK2 V617F kinase domain
activation, STAT proteins, especially STAT5 and STAT3,
become constitutively activated.2 It has been shown that
overexpression of JAK2 V617F promotes cytokine independent
growth of the IL-3 dependent pro B cell line Ba/F3 (Basel F3 cell
line) in the absence of cytokines;2,3,10 however, at low JAK2
V617F expression, dimeric cytokine receptors such as EpoR,
TpoR or G-CSFR have to be present to promote cytokine
independent BaF3 growth.11 It is thought that the JAK2 V617F
mutant gains full transforming activity only when the mutant
JAK2 dimerization is promoted by receptor dimerization. This is
supported by the need for oncogenic JAK2 V617F activation of
an intact FERM (homologous to protein 4.1, ezrin, radixin,
moesin)-like domain,12 a domain that normally mediates JAK
binding to cytokine receptors. This is the case for EpoR, TpoR
or G-CSFR, but other receptors can support JAK2 V617F
activation. A second model predicts that the JAK2 V617F
mutant is a weak, constitutively active kinase and that receptor

binding is necessary to induce its full kinase activity. In any case,
binding of JAK2 V617F to EpoR, TpoR or G-CSFR is predicted
to stimulate expansion of the erythroid, megakaryocytic and
granulocytic lineages which are affected in PV, ET and PMF.

The JAK2 V617F Mutant and STAT Activation

The JAK2 V617F mutant induces several downstream signaling
pathways, recapitulating in a persistent manner the pathways
transiently activated by cytokines, i.e., STAT5/3, MAP-kinase,
PI-3'-kinase/Akt and mTOR pathways. Interestingly, there are
differences in STAT signaling between different MPNs. PV
patients exhibit high STAT5 and STAT3 phosphorylation, while
ET patients exhibit high STAT3 but low STAT5 phosphoryla-
tion.13 In contrast, myelofibrosis patients exhibit low STAT5 and
low STAT3 phosphorylation. Several lines of evidence indicate
that constitutive activation of JAK2-STAT5 and STAT3 signaling
is the basis of PV, ET and PMF. Recently, it was shown that
knockout of STAT5A/STAT5B prevents induction of the
myeloproliferative phenotype by JAK2 V617F,14,15 thereby

Figure 1. Signaling via the JAK-STAT pathway. (A) Ligand binding induces a conformational change of the cytokine receptor and allows
transphosphorylation of JAK proteins. Activated JAKs phosphorylate tyrosine residues in the receptor cytoplasmic domain and provide docking site for
STAT proteins. Phosphorylated STATs dissociate from the receptor, dimerize and translocate to the nucleus where they modulate gene expression.
(B) In case of the JAK2 V617F, mutant cytosolic tyrosines are constantly phosphorylated, leading to constitutive activation of STAT proteins.
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establishing an obligatory role of STAT5 in MPNs. Furthermore,
the choice and relative levels of activated STATs can have
profound consequences on the lineage that is amplified. For
example, down-modulation of STAT5 in CD34+ cells promotes
megakaryocyte differentiation, while activation of STAT5
promotes erythropoiesis.16 More recently, STAT1 was shown to
be specifically associated with megakaryopoiesis.17

Mouse Models of JAK2 V617F

X-linked polymorphism studies showed that MPNs are clonal
disorders18 and several groups could show that the JAK2 V617F
mutation can be detected in cells with an HSC signature (Lin-
CD34+CD38−CD90+19 and CD34+CD38−20), confirming that

the JAK2 V617F mutant arises in an HSC. Previously,
Delhommeau et al. reported that JAK2 V617F is present in a
multipotent cell that can give rise to both myeloid and lymphoid
cells.21 Much effort has been made to study the in vivo
significance of JAK2 V617F with mouse models in order to
decipher the molecular mechanisms causing initiation and
progression of MPNs. Several groups performed reconstitution
assays using bone marrow cells ectopically expressing the JAK2
V617F mutant and showed that mice indeed developed hallmarks
of PV.22-24 Shortly after, Shide et al. and Xing et al. generated
stable transgenic mouse models expressing the mouse JAK2
V617F cDNA under control of the major histocompatibility
complex H-2Kb promoter25 or the human JAK2 V617F cDNA
under control of the Vav promoter,26 respectively. Both H-2Kb

Figure 2. (A) Myeloid blood cell development starts with the hematopoietic stem cell (HSC) that either self-renews or gives rise to a common myeloid
progenitor (CMP). The CMP in turn differentiates into more restricted progenitors of the megakaryocyte (MK)-erythroid (E) lineages or granulocyte-
monocyte progenitor (GM). These cells give then rise to terminally differentiated erythrocytes, megakaryocytes/platelets, granulocytes (eosinophils,
neutrophils and basophils) and monocytes. Cytokines and their receptors control cell proliferation and differentiation during hematopoiesis and ensure
the balance between renewal and cell differentiation. (B) Several reports have confirmed that the JAK2 V617F mutation occurs at the level of an HSC.
There is, however, still controversy to whether the JAK2 V617F mutant expands the true HSC pool or whether it acts downstream on a more committed
progenitor. Further studies are necessary to clarify the exact role of JAK2 V617F on HSC or progenitor expansion. Since the JAK2 V617F mutant only
influences myeloid differentiation, we have restricted the schematic to the myeloid lineage.
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and Vav promoters drive transgene expression efficiently
throughout the nucleated hematopoietic cell types27,28 and both
groups demonstrated that the mice developed key features of PV
or ET with erythrocytosis and thrombocytosis.25,26 Interestingly, a
later study used a floxed version of the human JAK2 V617F
cDNA under control of a human JAK2 promoter and showed
that the disease outcome correlates with the relative expression
levels of endogenous wild type (wt) vs. human mutant JAK2.29

For example, lower levels of human JAK2 V617F mutant than
endogenous wtJAK2 induced an ET-like phenotype, whereas
higher JAK2 V617F levels induced a PV-like phenotype.29 More
recently, several knock-in models have been published where the
JAK2 V617F mutant is expressed from the endogenous JAK2
locus thereby allowing expression in blood cells at physiological
levels. Akada et al. observed a PV-like phenotype in hetero- and
homozygous mice including increased number of red blood cells
and hematocrit levels with homozygous mice frequently progres-
sing to myelofibrosis.30 Additionally, in this particular model
heterozygous and homozygous JAK2 V617F mice showed
significant expansion of hematopoietic stem cells (HSC)
[Lin−Sca1+cKit+ (LSK) population] and myeloid progenitor cells
in the bone marrow. In another study by Marty et al. where a
murine JAK2 V617F was knocked-in,31 mice developed a marked
PV-like phenotype accompanied by erythrocytosis, leukocytosis
and splenomegaly and myelofibrosis around 9 mo of age.31 A third
study showed similar results with the JAK2 V617F knock-in
mouse developing a PV phenotype.32 However, the mice
progressed faster to PMF and had an average survival rate of
only 150 d, while mice described by Marty et al. developed PMF
after 9 mo.31 Mullaly and colleagues further showed that the HSC
compartment has the unique capacity for disease initiation, but
does not exhibit a competitive advantage over wild-type HSCs.32

In contrast, myeloid progenitor populations are expanded and
skewed toward the erythroid lineage, but could not transplant the
disease.32 Consistent with these data are microarray analysis that
indicated that gene expression profiles of LSK cells were similar to
those of wild-type LSK cells.32

In a fourth study, Li et al. generated knock-in mice encoding
the human JAK2 V617F cDNA.33 In contrast to the above

mentioned models, the authors could only observe an ET-like
phenotype with mild increase in platelets and hematocrit, and no
sign of myelofibrosis.33 Interestingly, Li et al. reported that mice at
26 weeks of age had 50% reduced numbers of LSK with increased
DNA damage, reduced cell cycling and reduced apoptosis.33 Also,
bone marrow transplantation experiments showed decreased stem
cell activity in cells expressing JAK2 V617F compared with wild-
type controls. Consistent with this, direct comparison of the
wild-type vs. JAK2 V617F bone marrow cells in competitive
transplantation experiments demonstrated that JAK2 V617F
confers a mild but significant disadvantage to HSCs, an effect that
was most striking in secondary transplantations.33

JAK2 V617F and Human Hematopoietic Stem Cells

The above described mouse models (summarized in Table 1) were
addressing the question of how the JAK2 V617F mutant affects
HSC expansion. The reasons behind the opposite conclusions
between the study of Li et al. showing a reduction of the HSC pool,
and that of Akada et al. reported HSC expansion remains to be
determined.30,33 Several studies have directly focused on the role of
JAK2 V617F in primary MPN patient samples. Jamieson and
colleagues isolated HSC and myeloid progenitors from patients and
healthy controls in order to investigate whether JAK2 V617F
positive cells have altered differentiation potential.19 The authors
analyzed cells with a HSC signature (Lin−CD34+CD38−CD90+)
and showed that the majority of HSC obtained from PV patients
harbor the JAK2 V617F mutation with the mutation being
transmitted to more committed progenitors.19 Moreover, the
authors demonstrated that the HSC numbers and the common
myeloid progenitor (CMP) pool are increased and that differenti-
ation is skewed toward the erythroid lineage.19 In contrast to this
report are studies performed by James et al. and Anand et al. The
first study by James and colleagues used xenograft assays to study
the properties of JAK2 V617F positive CD34+ cells from PV, PMF
and post-PV MF patients and demonstrated that the JAK2 V617F
repopulating cells are present in the three diseases, but the
proportion of JAK2 V617F compared with JAK2wt was markedly
different between PV and PMF.20 The authors did however not

Table 1. Summary of transplantation, transgenic or knock-in JAK2 V617F mouse models

Mouse model References Activation Platelets Hematocrit MF

Retroviral overexpression Lacout et al.22 N/A Normal . 55% Yes

Wernig et al.23 Normal . 70% Yes

Zaleskas et al.24 Normal . 65% Yes

Transgenic JAK2 V617F
mouse models

Tiedt et al.29 MX1-Cre 3,710 ± 488 49–62% Yes

Shide et al.25 Not inducible . 1,400 50% Yes

Xing et al.26 Not inducible 2,708 ± 712 51% Yes

Knock-in JAK2 V617F
mouse models

Akada et al.30 MX1-Cre ~1.5-fold increase Up to 80% Mild heterozygous
High homozygous

Mullally et al.32 Constitutive No increase Up to 80% No

Marty et al.31 Constitutive ~4-fold increase Up to 70% Yes

Li et al.33 MX1-Cre ~1.5-fold increase Up to 60% No
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find major differences in the proliferation and self-renewal
properties of JAK2 V617F repopulating cells between PV, PMF
and post-PV MF indicating that the JAK2 V617F mutant does not
confer a proliferation advantage to the HSC compartment.20 The
second study by Anand et al. examined the effects of the JAK2
V617F mutant on HSC homeostasis through analysis of bone
marrow samples from PV, ET and MF patients.34 The study
revealed that the JAK2 V617F mutant does not alter the
Lin−CD34+CD38−, CMP and granulocyte-monocyte progenitor
(GMP) compartments in ET and PV patients, but rather affects the
later erythroid CD34−CD71+GPA+ cell compartment.34 A third
study by Ishii et al. examined the engraftment potential of CD34+

isolated from PV patients in xenograft assays.35 The authors showed
that CD34+ cells from healthy donors as well as IMF patients and
PV patients with high JAK2 V617F burden reconstituted mice,
whereas cells from PV patients with low JAK2 V617F burden did
not.35 One possible explanation for this observation is a qualitative
difference between low- and high-burden JAK2 V617F HSC. As a
second possibility is that high burden JAK2 V617F cells contain
higher numbers of authentic long-term HSCs, while CD34+ cell
fractions from patients with low JAK2V617F burden contain less
HSCs that engraft in immuno-deficient mice. Based on the result of
latter study the level of JAK2 V617F decides whether or not JAK2
V617F positive HSCs have an engraftment and repopulating
advantage compared with healthy HSC (Fig. 2). In conclusion, the
results obtained by the different studies have to be compared in
order to define the differences in cell populations used and to
determine what the possible explanations are for the discrepancies
obtained with the different analyses.

STAT5 and HSCs

STAT5 was reported to be involved in self-renewal of mouse and
human HSCs and to regulate renewal vs. differentiation as a
function of its levels of expression.36-38 Using a tamoxifen-
inducible STAT5A(1*6)-estrogen receptor fusion protein, it was
shown that high STAT5 levels block myelopoiesis and promote
erythropoiesis, while intermediate levels of transactivation induce
HSC and CD34+ proliferation.37 Self-renewal of HSCs was
promoted by the same intermediate levels of STAT5 activation.
These results indicate therefore that levels of STAT5 activation are
decoded in self-renewal vs. differentiation signals. One caveat of
such models is that a double mutant STAT5 is used,39 which is
constitutively active, but might have properties different from
those of cytokine-activated STAT5. Indeed, in cell lines
persistently activated STAT5 was shown to induce common,
but also different genes than transiently activated STAT5.40,41

STAT5 was shown to induce long-term self-renewal only in
human HSCs, not in progenitors.38 One target gene of STAT5
that is induced by STAT5 in HSCs was identified to be hypoxia-
induced factor 2a (HIF2a). Expression of this gene is apparently
required for STAT5-induced HSC amplification, but not for
HSC differentiation. One model has been proposed where
STAT5 maintains expression of hypoxia-induced genes, in the
absence of hypoxia, in order to promote HSC self-renewal.38

Another gene that is modulated by STAT5 is C/EBPa, and this

gene is the major downregulated gene by STAT5 in HSCs. Re-
expression of C/EBPa impairs the effects of constitutively active
STAT5 on HSCs, indicating that part of the mechanism by which
mutant STAT5 expands long-term HSCs is represented by down-
modulation of C/EBPa.42

Interferons, HSC and IFNs Treatment of MPNs

While interferons are classical antiproliferative agents, several
studies reported that IFN-a and IFN-c induce cycling of
HSCs.43,44 IFN-a binds to the interferon a receptor 1 and 2
(IFNAR1 and IFNAR2) and thus activates the JAK tyrosine
kinase family members JAK1 and TYK2 to signal via a complex
formed of STAT1/STAT2/IRF9 (reviewed in ref. 45). IFN
gamma signal activates JAK1 and JAK2 via the interferon gamma
receptor 1 (IFNgR1) and IFNgR2 receptor subunits and signals
via STAT1 homodimers.

In response to treatment of mice with IFN-a, signaling via STAT1
and Akt induces the transition of HSCs from quiescence into cell
cycle.43,46 STAT1 and the surface protein Sca-1 are required for IFN-
a-induced HSC proliferation. Similarly, IFN-c induced in several
infections, signals via STAT1 and induce HSC cycling.44

The implications of these data might be relevant for the treatment
of MPNs with IFN-a. At this moment, approximately 40% of PV
and ET patients respond positively to IFN-a treatment, and for
JAK2 V617F patients, this leads to a decrease or disappearance of
JAK2 V617F positivity. The effect is quite slow, requiring many
month to one year, suggesting that the effect is mainly on HSCs,
and that somehow IFN treatment leads to exhaustion of the
mutated clone, with preservation of the normal clones.47 In patients
with MPNs where the JAK2 V617F mutation occurs on the
background of a clone where TET (ten 11 translocation)
methylcytosine dioxygenase 2 (TET2), a protein that converts 5-
methylcytosine in DNA to 5-hydroxymetylcytosine48 is deleted/
mutated on both alleles,49 clonal analysis showed that IFNa-2a
treatment targets the JAK2 V617F-positive clone, but does not
affect the TET2 clone.50 Interestingly, the presence of biallelic loss of
TET2 did not impair the effect of IFNa on JAK2 V617F HSCs. It
will therefore be important to determine the molecular basis of the
effect of IFNa specifically on the JAK2 V617F HSCs.

Concluding Remarks and Perspectives

The roles of JAK-STAT signaling in HSC renewal and amplification
remain poorly defined. Results obtained from studies examining the
role of STAT5 in HSC homeostasis on one hand, and the effects of
interferons on the other, provided evidence that the JAK-STAT
pathway can profoundly influence HSCs. The recent discovery of
the unique somatic acquired JAK2 V617F mutation, which is at the
basis of the majority of BCR-ABL negative MPNs provided novel
models for exploring the question of whether JAK-STAT pathway
plays an important role at the HSC level.

There are two major biological questions that to date have been
answered with apparently contradictory reports: (1) does JAK2
V617F confer an advantage to HSCs, in terms of proliferation, self-
renewal, differentiation or transplantation (Fig. 2), and (2) is JAK2
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V617F at the HSC level inducing a skew in the type of downstream
differentiation, in contrast to mere amplification of the downstream
progenitors without any skew of HSC potential?

While the acquisition of JAK2 V617F at the HSC level has
been confirmed by several groups, the reasons behind it remain
unclear. It is still not known whether the mutation is constantly
acquired (like BCR-ABL), but only some individuals select for it
(i.e., hypersensitivity to cytokines due to SNPs or unknown
previous mutations), whether the mutation protects against an
insult, and its selection is favored by such pressure, or whether
there are DNA replication defects that favor such mutation
acquisition. The G to T mutation occurs in a region with repeated
TT sequences; it is possible that it occurs from slipped mispairing,
however, the actual mechanism of mutation acquisition remains
still to be determined.

How can we explain the contradictory results coming from
mouse models and from xenotransplantation and colony assays,
where both an advantage and a disadvantage of the mutated HSCs
(or no change) were observed, or where differentiation skewing or
absence of it was each observed? One possibility is that any
transplantation approach requires homing and renewal in a
foreign niche, events that are not relevant for the disease. Another
is that, as opposed to mouse models where all HSCs are knocked-
in or transgenic, in humans the disease starts from one mutated
cell that must make its way to differentiation and gain clonal

dominance. It is possible that events linked to the latter are very
important, and remain unexplored by mouse models. Finally,
HSCs exist in several subtypes, such as myeloid-biased, lymphoid-
biased and several others51 and we have little idea at the moment
in which such HSC JAK2 V617F must arise in order to induce
ET, or PV or PMF and which events are necessary for progression
of ET and PV to secondary MF. In any case, it appears that the
JAK2 V617F burden at CD34+ or at HSC level is the most
important,52 and that MF is associated with a loss of wt HSCs and
preservation of mutated HSCs, which also exit the marrow, have
down-modulated CXCR453 and can be found in periphery.
Directly linked to the subtype of HSCs targeted by the mutation,
recently it was shown that a precursor of endothelial/HSC cells
can also acquire the mutation, and might be involved in the deep
venous thrombosis events linked to JAK2 V617F.54 Clearly a
much more detailed understanding of the HSC subtypes, their
niches, pressures and response to cytokines will be necessary for
understanding of relevant effects of JAK2 V617F on HSCs.

The major goal of therapy in MPNs is to reduce the source of
cytokine-independent myeloid progenitors that is the HSCs with
mutations. For this purpose a major advance is required to
distinguish mutated disease-initiating HSCs from possibly non-
disease initiating HSCs and non-mutated HSCs. The prediction is
that the effect of JAK-STAT signaling in each such cell will be
different.
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