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Abstract: The chemical composition of a hexanic extract of Eryngium campestre, obtained from its aerial
parts, was investigated by GC-FID, GC/MS, HRMS, NMR and VCD analyses. The main compounds
were germacrene D (23.6%), eudesma-4(15)-7-dien-1-β-ol (8.2%) and falcarindiol (9.4%), which are
associated with a new uncommon and naturally found 17-membered ring lactone. This 17-membered
ring features conjugated acetylenic bonds, named campestrolide (23.0%). The crude extract showed
moderate antitrypanosomal (Trypanosoma brucei brucei), antileishmanial (Leishmania mexicana mexicana)
and anticancer (cancerous macrophage-like murine cells) activities, and also displayed cytotoxicity,
(human normal fibroblasts) in similar concentration ranges (IC50 = 3.0, 3.9, 4.0 and 4.4 µg/mL
respectively). Likewise, campestrolide displayed low activity on all tested cells (IC50: 12.5–19.5 µM)
except on Trypanosoma, on which it was very active and moderately selective (IC50 = 2.2 µM. SI= 8.9).
In conclusion, the new compound that has been described, displaying a singular structure, possesses
interesting antitrypanosomal activity that should be further investigated and improved.
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1. Introduction

The genus Eryngium, the most common of the Apiaceae family, comprises more than 250 species
with cosmopolitan distribution in temperate regions of all continents, mainly in Eurasia, North Africa
and South America [1]. This genus has been the subject of several phytochemical investigations.
A remarkable richness in natural chemicals with interesting bioactivities was reported in the literature:
terpenoids, polyacetylenes, saponins, steroids and phenolics (such as, flavonoids and coumarins) [2].
This phytochemical diversity can explain the large traditional uses of many Eryngium species in the
treatment of emetic and gastrointestinal infections [3], several types of inflammatory disorders [4] and
various parasitic infections [5]. More traditional uses of many Eryngium species include use in antidotes
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for poisons, hypoglycemic agents [6], diarrhea remedies, stimulants, aphrodisiacs, antitussives and
diuretics [7].

Among this large variety of species is the E. campestre species (Figure 1), which is a perennial
plant that measures from 30 to 60 cm in length. This species is widespread in Western and Central
Europe, North Africa, the Middle East and the Caucasus [8]. The plant has been used in European
herbal medicine as an infusion for the treatment of whooping cough, as well as in the treatment of
kidney and urinary tract inflammations [9].
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Many compounds belonging to different phytochemical classes were already identified in this
plant. Some of these were flavonoids and flavonoacyl derivatives, extracted from the aerial parts
and the roots [10–12]; monoterpene glycosides with cyclohexanone moiety [13]; and a coumarin
derivative [14] and triterpene saponins were found in the roots [15]. E. campestre essential oils
displayed a complex chemical composition with hydrocarbon and oxygenated sesquiterpenes.
The main components were germacrene D, β-curcumene, (E)-β-farnesene, spathulenol, α-bisabolol
and α-cadinen-15-al [16,17].

E. campestre has been the subject of many biological investigations. The methanol extracts from the
aerial parts showed very strong antitumoral activity on potatoes’ tumor cells induced by Agrobacterium
tumefaciens (ATCC 23341), but no significant antimicrobial activity [18]. The flavonol-rich methanol
extracts of E. campestre aerial parts exhibited moderate to strong antioxidant activity in DPPH radical
scavenging and reducing power assays; in contrast, no effect on Alzheimer’s disease was reported [19].
Ethanol extracts, obtained from the aerial parts and the roots, revealed noticeable anti-inflammatory
and antinociceptive activities [20].

Protozoan neglected diseases, such as African trypanosomiasis and cutaneaous leishmaniasis,
are tropical infections affecting more than one billion people worldwide and lacking financial
investments. The current available treatments suffer from some toxicity, administration difficulty
and even resistance development. In this area, the plants and their bioactive secondary metabolites
constitute a potential source of crucially needed new and effective drugs [21,22].

As part of our research work on bioactive metabolites from Algerian plants, phytochemical
investigation of the hexane extracts obtained from the E. campestre aerial parts was performed.
This study describes the isolation and structural elucidation of a new 17-membered ring lactone
using chromatography techniques (GC-FID, GC-MS), HRMS, 1D and 2D NMR experiments and
circular dichroism, along with two known polyacetylenes: falcarinol and falcarindiol. The cytotoxicity
and some antiprotozoal activities of the bulk extract and the newly isolated macrocyclic lactone were
then investigated in vitro, in order to evaluate their potential pharmacological properties.
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2. Results and Discussion

2.1. Chemical Composition

The analysis of the filtered hexane extract of the E. campestre (HEEC) aerial parts using hyphenated
methods allowed the identification of 34 components, which accounted for 84.0% of the total
composition (Table 1). The chemical composition was dominated by the oxygenated compounds
(52.8%). The principal classes were sesquiterpenes (48.6%) and polyacetylenes (35.2%). Hydrocarbon
compounds were exclusively represented by sesquiterpenes (31.2%). The main components were
germacrene D 9 (23.6%), unknown compounds 33 (23.0%), 34 (9.4%), eudesma-4(15)-7-dien-1-β-ol
27 (8.2%) and falcarinol 32 (2.8%). Thirty-two components were identified by comparison of their
RI and MS data with those from our home library, “Arômes”. The spectrometric data of 33 and 34
were not found in our MS-library. Their identifications were achieved after purification by column
chromatography, using a combination of analytical techniques: GC-FID, GC/MS-EI, HRMS, exhaustive
NMR characterization and VCD. The structures of the main components that were identified are
presented in Figure 2. The structure elucidation of 33 will be presented and discussed separately.
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Table 1. The chemical composition of the hexane extract of Eryngium campestre (HEEC).

No. Components a LRIa b Ria c RIp d HEEC e Identification f

1 α-Copaene 1379 1375 1438 0.4 RI, MS
2 β-Bourbonene 1385 1383 1515 0.1 RI, MS
3 β-Elemene 1388 1387 1589 0.5 RI, MS
4 β-Ylangene 1420 1416 1562 0.6 RI, MS
5 β-Copaene 1431 1432 1581 0.2 RI, MS
6 Alloaromadendrene 1451 1454 1631 tr RI, MS
7 diepi-4,5-Aristolochene 1467 1465 1665 0.4 RI. MS
8 α-Curcumene 1470 1471 1742 1.0 RI, MS
9 Germacrene D 1476 1480 1704 23.6 RI, MS
10 β-Selinene 1483 1484 1712 0.8 RI, MS
11 α-Muurolene 1496 1503 1720 0.2 RI, MS
12 β-Bisabolene 1500 1500 1720 1.2 RI, MS
13 Sesquicineole 1505 1506 1737 1.1 RI, MS
14 τ-Cadinene 1507 1509 1752 0.2 RI, MS
15 β-Curcumene 1509 1510 1733 0.5 RI, MS
16 δ-Cadinene 1516 1514 1752 1.0 RI, MS
17 α-Cadinene 1535 1533 1743 0.1 RI, MS
18 1,5-Epoxysalvial4(14)-ene 1545 1548 1941 0.8 RI, MS
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Table 1. Cont.

No. Components a LRIa b Ria c RIp d HEEC e Identification f

19 Germacrene B 1553 1551 1827 0.4 RI, MS
20 Spathulenol 1563 1562 2103 1.3 RI, MS
21 β-Copaene-4-α-ol 1575 1573 2141 1.0 RI, MS
22 Salvial-4(14)-en-1-one 1583 1585 2005 0.5 RI, MS
23 Ledol 1600 1602 2030 0.8 RI, MS
24 τ-Cadinol 1632 1638 2169 0.9 RI, MS
25 α-Cadinol 1645 1645 2231 1.6 RI, MS
26 α-Bisabolol 1663 1672 2199 0.7 RI, MS
27 Eudesma-4(15)-7-dien-1-β-ol 1681 1667 2333 8.2 RI, MS
28 14-hydroxy-α-Muurolene 1755 1755 2599 0.3 RI, MS
29 14-hydroxy-τ-Cadinene 1788 1784 2607 0.2 RI, MS
31 Hexadecanoic acid 1942 1941 2930 0.2 RI, MS
32 Falcarinol 2028 2026 - 2.8 RI, MS, [23]
33 Campestrolide - 2143 2970 23.0 RI, MS, NMR
34 Falcarindiol 2190 g 2164 - 9.4 RI, MS, NMR

Total identification (%) 84.0
Hydrocarbon compounds 31.2
Oxygenated compounds 52.8

Hydrocarbon sesquiterpenes 31.2
Oxygenated sesquiterpenes 17.4
Non terpenic compounds 3.0

a Elution order is given on the apolar column (Rtx-1). In bold are the main compounds. b Retention indices from the
literature [24] are on the apolar column, except for 34 [25] (lRIa). c Retention indices are on the apolar Rtx-1 column
(RIa). d Retention indices are on the polar Rtx-Wax column (RIp). e HEEC: Hexane extract of Eryngium triquetrum.
The relative percentages of the extract constituents were calculated from the GC peak areas, without application of
correction factors. tr = trace (<0.05%). %: Percentages are given on the apolar column, except for components with
identical RIa (in such cases, percentages are given on the polar column). f RI: Retention Indices; MS: Electron Impact
Mass Spectrometry; g The reported value was determined on a different apolar column [25], which would explain
the significant difference as compared to our measurement.

2.2. Identification of Compounds Not Present in MS-Libraries

Column chromatography was carried out using a gradient of polarity with hexane and diisopropyl
ether and then followed by UV detection, producing 75 fractions from the hexane extract of E. campestre.
Among them, 34 (8 mg of an almost pure sample) was isolated in the fraction F34 obtained with
diisopropyl ether/hexane (10/100). EI mass spectra of 34 exhibited a base peak at m/z 129 and a signal
at m/z 260, which could be attributed to the molecular ion. ESI (+)-HRMS measurement confirms the
molecular formula of C17H24O2 (detected ion C17H24O2Na+ (m/z)experimental 283.1668 and (m/z)theoretic
283.1667; error +0.4 ppm). Additionally, the acquired 13C-NMR spectra showed the presence of both
oxygenated sp3 methyne groups detected at 63.50 ppm and 58.61 ppm, respectively, and four sp carbon
atoms detected between 79.86 ppm and 68.69 ppm. These observations lead us to an oxygenated
polyacetylene skeleton, a derivative of falcarinol 32. A comparison of mass spectra and NMR data
in the literature [26] allowed the identification of falcarindiol (Figure 2—34). This polyacetylenic
compound, accounting for 9.4% of the E. campestre hexane extract, is a main component of the roots
of Angelica japonica [26], Daucus carota [27], and Petroselinum crispum [Mill.] Nym. ssp. tuberosum [25].
Its identification in the Eryngium species was first reported by Bohlmann and Zdero [28] in ether
extracts of E. alpinum, E. coeruleum and E. giganteum. However, this is the first time it has been
identified in E. campestre. Falcarindiol has been shown to have anti-inflammatory, antibacterial and
anticancer activities, as well as protective effects against hepatotoxicity [29,30].

Column chromatography using the gradient of solvent diisopropyl ether/hexane (5/95) produces
a yellow, odorous, oily compound (F21: 13 mg, 33 at 96%). GC/MS-EI spectra of 33 exhibited an
isotopic cluster at m/z 270 and 271, and a base peak at m/z 115. Other fragment ions were observed
at m/z 55, 91, 128 and 145 (Figure 3). The ESI (+)-HRMS measurement performed on 33 reveals
the elemental composition of C18H22O2 (detected ion: C18H22O2Na+: (m/z)experimental 293.1513 and
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(m/z)theoretic 293.1512. error +0.3 ppm), which would correspond to a compound possessing an
additional carbon atom and one supplementary unsaturation (DBE: double bounds equivalent = 8) as
compared to the falcarindiol 34 (C17H24O2, DBE = 7). The IR spectrum exhibits absorption peaks at
1739 cm−1, 1098 cm−1 and 1225 cm−1, corresponding to C=O and C-O vibrations. This indicates the
presence of a cyclic lactone function. Additionally, absorption bands at 2255 cm−1 and 2856–2928 cm−1

indicated the presence of C≡C and CH2 bonds, respectively.
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A rapid analysis of the 1H- and 13C-NMR spectra (Figure 4) showed the absence of -CH3 groups
and the presence of a ketone group (172.98 ppm). Furthermore, the characteristic resonances of a
polyacetylene skeleton (constituted by a sequence of two consecutive triple bonds) are identified using
the 13C-NMR spectrum in combination with DEPT data (Table 2).
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Figure 4. 13C-NMR spectrum (125.76 MHz in CDCl3, 300 K) and structure (inset) of Campestrolide
33 (N.B. NMR signal assignments refer to the numbering of the molecule illustrated on the inset;
the stereochemistry of 17-CH would be revealed subsequent to the VCD experiments).
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Table 2. NMR spectroscopic data (500 MHz, CDCl3) for Campestrolide (33).

Position δC, Type δH (J in Hz) HMBC a

2 172.97, C - 3, 4, 17, 18

3 34.55, CH2
2.41, m

4, 52.38, m

4 26.45, CH2
1.76, m

3, 5, 61.67, m
5 b 28.68, CH2 1.44, m 3, 4, 6, 7
6 29.67, CH2 1.28, m 4, 5, 7, 8
7 30.17, CH2 1.36, m 5, 8, 9

8 b 28.70, CH2 1.44, m 6, 7, 8

9 28.26, CH2
2.10, m

8, 10, 112.15, m
10 135.23, CH 5.62, m 8, 9, 12,
11 121.13, CH 5.52, dt (9.96, 7.53) 9, 12

12 16.91, CH2
2.96, dd (18.30; 7.50)

10, 113.07, dd (18.30; 7.50)
13 81.15, C - 11, 12
14 64.51, C - 12, 17
15 71.87, C - 12, 17
16 72.15, C - 12, 18, 19
17 64.45, CH 5.92, d (5.85) 18, 19
18 131.88, CH 5.91, ddd (5.85; 10.17; 16.90) 17, 19

19 119.65, CH2
5.37, dd (16.90; 1.2)

185.60, dd (10.17; 1.2)
a HMBC correlations are from proton(s) stated to the indicated carbon; b the values could be inverted.

The complete assignment was achieved using the 2D NMR spectra (Figures S1–S3 in the
supplementary information with this article). In addition, NOE correlations showed spatial vicinity
among the aliphatic chain and the unsaturated part of the molecule, in particular between 3-CH2

→ 17-CH and 7-CH2 → 10-CH (Figure S4). The combination of all spectroscopic data allowed
the recognition of a seventeen-atom macrocyclic lactone and its structure is represented below
(Figure 4—inset). This unprecedented 17-membered ring lactone, featuring conjugated acetylenic
bonds, has been named Campestrolide. Nevertheless, the analytical data do not establish the
determination of the absolute configuration of 17-CH, which has since been established by vibrational
circular dichroism (VCD).

In the last decade, VCD spectroscopy has become a popular technique for the elucidation
of absolute configurations of chiral molecules [31–33]. Therefore, in order to determine the
stereochemistry of the asymmetrical carbon-17 of Campestrolide, the VCD spectrum of a sample
containing 80% of compound 33 was measured in CD2Cl2. Despite the difficulties encountered
during the determination of the absolute configuration of a molecule via the VCD spectrum of
a mixture, the majority of the measured bands were in good agreement with those obtained by
calculation performed on the (Z,S)-enantiomer (region I, II and III in the VCD spectrum—Figure 5a).
Moreover, for the same spectral regions, a good accordance is also observed between the experimental
IR spectrum recorded for the analyzed sample and the theoretical IR spectrum calculated for
the (Z,S)-enantiomer (Figure 5b—region I, II and III). This observation reinforces the assignment
of these bands to our molecule. Based on the analysis of the spectral data and taking into
account the opposite signs between the measured and calculated VCD spectra, we could conclude
that the naturally obtained Campestrolide is detected as (R)-enantiomer (Figure 5c), namely
(Z)-17(R)-vinyloxacycloheptadeca-10-en-13,15-diyn-2-one. It should be mentioned that the identified
configuration is perfectly consistent with those generally reported in the literature for polyacetylenes
derivatives [33–35].
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Figure 5. A comparison between the measured (blue) and calculated (green) (a) VCD and (b) IR
spectra, respectively; (c) one of the most stable simulated structures of Campestrolide (generated for
(Z,S)-enantiomer). N.B. Atoms colors: oxygen in red; carbon in gray; hydrogen in white.

To our knowledge, this uncommon natural macrocyclic lactone that includes one cyclo-1,3-diynes
motif has only been reported in one other compound (ivorenolide B), which was extracted from Khaya
ivorensis—a dicotyledone tree from the Meliaceae family [33,36]. Furthermore, this compound, as well
as its 18-memberded ring lactone analogous ivorenolide A, showed significant immunosuppressive
activity [33,37–39]. Other macrocyclic lactones (20-membered ring) have been extracted from the
marine dinoflagellate Amphidinium species. Researchers have reported cytotoxic properties for all the
described amphidinolides mentioned above [40].

2.3. Biological Activities

Both the crude hexanic extract of E. campestre and compound 33 were evaluated for their in vitro
cytotoxicity and antiprotozoal activities (Table 3). The plant extract showed similar moderate activities
(IC50 ≈ 4 µg/mL) on all tested cells and hence, without any selectivity for the concerned parasites.
The newly identified macrocyclic lactone was strongly active on Trypanosoma (IC50 = 0.6 µg/mL or
2.2 µM ≈ 2 µM), as defined by Beaufay et al. (IC50 ≤ 2 µM) [41], with a reasonable selectivity (SI = 8.9).
As such, it fits the stated criteria for antiparasitic hits [42], i.e., activity in vitro with an IC50 < 1 µg/mL
and at least ten-fold higher than on a mammalian cell line. As the calculated campestrolide log P value
(log P = 5.56) [43] was close to the one reported for falcarinol (log P = 5.50) [44], we can assume good
membrane permeability of the macrocyclic lactone. Its newly described structure could also be used as
a prototype in structure–activity relation studies to improve activity/selectivity.
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Table 3. The cytotoxicity (WI38 and J774), antitrypanosomal (Tbb) and antileishmanial (Lmm) activities
expressed in the IC50 (Mean ± SD in µg/mL and µM for pure compounds from at least six values).

Cytotoxicity Antiparasitic Activity Selectivity Index

IC50 ± SD in µg/mL (µM for Pure Compound) IC50 WI38/IC50 Parasite

WI38 J774 Tbb Lmm Tbb Lmm

Hexanic extract 4.44 ± 0.94 4.00 ± 1.07 3.00 ± 0.88 3.86 ± 0.10 1.5 1.2

33 5.20 ± 0.24 4.84 ± 0.10 0.59 ± 0.08 3.43 ± 0.02 8.9 1.5(19.24 ± 0.87) (17.89 ± 0.35) (2.17 ± 0.28) (12.67 ± 0.09)

Positive control 0.036 ± 0.022 0.007 ± 0.005 0.031 ± 0.012 0.057 ± 0.008
(0.103 ± 0.062) a (0.021 ± 0.013) a (0.022 ± 0.008) b (0.097 ± 0.014) c

WI38: non cancer human fibroblasts; J774: cancerous macrophage-like murine cells; Tbb: Trypanosoma brucei
brucei (bloodstream forms); Lmm: Leishmania mexicana mexicana promastigotes; Selectivity index calculated for
antiparasitic activities compared to WI38 cytotoxicity. Positive control (reference drug): a camptothecin, b suramine,
c pentamidine.

The antileishmanial or anticancer activities were notable (IC50 = 3.4 and 4.8 µM, respectively) but
not as selective as those observed for the extract. Another well-known complex polyene macrolide is
amphotericin B (IC50 = 0.09 ± 0.06 µM), a reference drug widely used to treat visceral leishmaniasis
but still little studied on cutaneaous one and with dose-limiting toxicity [45]. Some patents are also
based on different kinds of macrolides as antiparasitics [46].

Campestrolide can partially explain all the activities observed for the crude extract but it
is certainly not the only active component of the mixture, as observed with the other samples
containing different percentages of campestrolide (data not shown). Therefore, other components,
e.g., the identified polyacetylenes, could influence activities by addition or synergism action. This has
already been observed, for example, with the polyphenolic compounds [47]. Indeed, natural
polyacetylenes are highly bioactive and reactive phytochemicals and were largely isolated from
the Apiaceae family, mostly due to the aliphatic C17 chains. Unstable compounds of this variety are
known to exhibit some cytotoxic behaviors and an extract, rich in these unsaturated derivatives, has
already been shown to possess synergetic cytotoxic activity in combination with taxol [48]. Previous
researchers have also shown such compounds to possess encouraging potential against protozoan
diseases. However, this requires further investigation [21]. Falcarindiol, another major compound of
the crude extract, has yet to be tested for antitrypanosomal and antileishmanial activity. However,
Falcarinol, also called panaxynol, was found to be strongly active and selective (IC50 = 0.01 µg/mL,
corresponding to 0.04 µM, and SI = 858) on Trypanosoma brucei brucei compared to HeLa cytotoxicity.
The inhibition of the trypanothione reductase was proposed as one target of this very reactive alkylating
agent [49]. Another two natural polyacetylenes, 8-hydroxyheptadeca-1-ene-4,6-diyn-3-yl ethanoate
and 16-acetoxy-11-hydroxyoctadeca-17-ene-12,14-diynyl ethanoate, were highly active and selective
on Trypanosoma brucei rhodesiense, T. cruzi, Plasmodium falciparum and Leishmania donovani axenic and the
infected macrophages amastigotes compared on L6 rat skeletal myoblasts (IC50 = 0.1–2.5 µM. SI > 10).
The terminal methylene double bond seems to improve activity [50].

In addition, germacrene D, another major identified compound, possesses some antiparasitic
activity as with other non-lactonized sesquiterpenoids and eudesmanolides, with 61% growth
inhibition of the T. cruzi trypomastigotes at 100 µg/mL. It also inhibited cruzain, an essential T. cruzi
cysteine protease, with an IC50 of 22.1 µg/mL [21].

Concerning the reported plant extract, dichloromethane and methanol compounds from the
aerial parts of the E. campestre displayed antileishmanial activity with IC50 values of 36 and 15 µg/mL,
respectively, on L. donovani promastigotes. They were inactive on the P. falciparum D6 and W strains [51].
However, the petroleum ether extract exhibited more than 50% Plasmodium growth inhibition at
4.81 µg/mL [23]. Other Eryngium species have previously shown interesting antiparasitic activities
(IC50 < 20 µg/mL) on T. cruzi [50] and L. donovani, but appeared less active or inactive on Plasmodium
falciparum [52,53]. A daucane sesquiterpene with moderate antileishmanial activity (IC50 values of
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14.33 and 7.84 µM on L. tarentolae promastigotes and L. donovani amastigotes respectively) was isolated
from E. foetidum aerial parts [5].

3. Materials and Methods

3.1. Plant Material

Aerial parts of Eryngium campestre L. (Apiaceae) were collected in June 2016, from the
north-western areas of Algeria. The botanical identification of the plants was performed according to
the botanical determination keys summarized in the Flora of Algeria [54] and a voucher specimen has
been deposited in the COSNA laboratory (Voucher Code: EC1-06-2016).

3.2. Extraction

The dried aerial parts (120 g) were powdered and weighed, then extracted with hexane (500 mL)
under reflux in a Soxhlet apparatus, at 68 ◦C. The extract was first filtered on filter paper and then
on PTFE filters (0.2 µm). After that, the extract was evaporated to dryness under reduced pressure.
This resulted in a yield of 1.05%.

3.3. Compound Identification

The identification of individual compounds in the E. campestre hexanic extract was carried out
using different techniques, such as GC/FID, GC/MS (EI) and 1D and 2D NMR. The identifications were
mainly based on comparison of the retention indices (RI) and the MS spectra with those contained in
our laboratory library “Arômes”. When spectral data were not present in the “Arômes” library, the RI
and the MS data were compared with those from commercial libraries [24,55–57]. Compounds absent
from consulted libraries were isolated by the fractionation process, using flash column chromatography
and then identified mainly by NMR spectroscopy.

3.4. Fractionation

We measured 300 mg of the hexanic extract. This was then submitted to chromatography on a
silica gel column (200–500 µm, 4 g, Clarisep® Bonna Agela Technologies, Willington, CT, USA), using
an Automatized Combi Flash apparatus (Teledyne ISCO. Lincoln., NE, USA) equipped with a fraction
collector and monitored by a UV detector. The solvents of elution were n-hexane (A) and diisopropyl
ether (B), with a gradients of elution: a (A: 100%; B: 0%), b (A: 98%; B: 2%), c (A: 96.5%; B: 3.5%),
d (A: 95%; B: 5%), e (A: 90%; B: 10%) and f (A: 0%; B: 100%).

3.5. GC-FID Conditions

Analyses were carried out using a Perkin-Elmer Autosystem XL GC apparatus (Walthon, MA,
USA), equipped with a dual flame ionization detection (FID) system and fused-silica capillary columns,
namely, Rtx-1 (polydimethylsiloxane) and Rtx-wax (polyethyleneglycol) (60 m × 0.22 mm i.d.; of a film
thickness of 0.25 µm). The oven temperature was programmed from 60 to 230 ◦C at 2 ◦C/min and
then held isothermally at 230 ◦C for 35 min and helium was employed as the carrier gas (1 mL/min).
The injector and the detector temperatures were maintained at 280 ◦C and the samples were injected
(0.2 µL of pure oil) in the split mode (1:50). The RI of each compound was determined relative to the
retention times of a series of n-alkanes (C5–C30) by linear interpolation, using the Van den Dool and
Kratz (1963) equation with the aid of the software from Perkin-Elmer (TotalChrom navigator, 6.3.1,
Shelton, CT, USA). The relative percentages of the extract constituents were calculated from the GC
peak areas by the normalization procedure, without the application of correction factors.

3.6. GC/MS-EI Conditions

Samples were analyzed with a Perkin-Elmer Turbo mass detector (quadrupole) coupled to a
Perkin-Elmer Autosystem XL, equipped with fused-silica capillary columns Rtx-1 and Rtx-Wax.
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The oven temperature was programmed from 60 to 230 ◦C at 2 ◦C/min and then held isothermally
at 230 ◦C (35 min) and helium was employed as the carrier gas (1 mL/min). The following
chromatographic conditions were employed: the injection volume was 0.2 µL of pure oil; the injector
injector temperature was 280 ◦C; split 1:80; the ion source temperature was 150 ◦C; the ionization
energy was 70 eV; the MS (EI) data were acquired over the mass range 35–350 Da; and the scan rate
was 1 s.

3.7. NMR Conditions

NMR experiments were acquired in CDCl3 (EuroIsotop, Saint Aubin, France) at 300 K using
a Bruker Avance DRX 500 NMR spectrometer (Karlsruhe, Germany), operating at 500.13 MHz for
1H and 125.76 MHz for 13C Larmor frequency with a double resonance broadband fluorine observe
(BBFO) and 5 mm probehead. 13C-NMR experiments were recorded using the one-pulse excitation
pulse sequence (90◦ excitation pulse), with 1H decoupling during signal acquisition (performed
with WALTZ-16). The relaxation delay was set at 2 s. For each analysed sample, depending on the
compound concentration, 3 k up to 5 k free induction decays (FID) 64 k complex data points were
collected using a spectral width of 30,000 Hz (240 ppm). Chemical shifts (δ in ppm) were reported
relative to the residual signal of CDCl3 (δC = 77.04 ppm and δH = 7.26 ppm, respectively). Complete
1H and 13C assignments of the requested compounds were obtained using 2D gradient-selected NMR
experiments, 1H-1H COSY, 1H-13C HSQC, 1H-13C HMBC and 1H-1H NOESY, for which conventional
acquisition parameters were used, as described in the literature [58].

3.8. High-Resolution Mass Spectrometry Experiments

High-resolution mass spectrometry (HRMS) experiments were performed with a Synapt G2
HDMS quadrupole/time-of-flight (Manchester, UK), equipped with an electrospray source operating
in the positive mode, ESI(+). The samples were introduced at a 10 µL min−1 flow rate (capillary
voltage +2.8 kV, sampling cone voltage +20V under a curtain gas (N2), flow of 100 L h−1 and heated at
35 ◦C). The samples were dissolved and further diluted in methanol (Sigma-Aldrich, St.-Louis, MO,
USA) doped with sodium chloride (0.1 mM) prior to the analysis. Accurate mass experiments were
performed using reference ions from an internal calibration procedure, with two reference ions formed
upon electrospray of a poly (ethylene oxide) (PEO). Data analyses were conducted using MassLynx 4.1
programs, which were provided by Waters (Manchester, UK).

3.9. VCD Measurements

The infrared (IR) and vibrational circular dichroism (VCD) spectra were recorded on a Bruker PMA
50 accessory, coupled to a Vertex 70 Fourier transform infrared spectrometer (Bruker, Wissembourg,
Germany). A photoelastic modulator (Hinds PEM 90, Hids Instruments, Portland, OR, USA) set
at l/4 retardation was used to modulate the handedness of the circular polarized light at 50 kHz.
Demodulation was performed by a lock-in amplifier (SR830 DSP, Zurich Instruments, Zurich,
Switzerland). An optical low-pass filter (<1800 cm−1) was used to enhance the signal/noise ratio
before use of the photoelastic modulator. A transmission cell of 200 µm optical pathlength, equipped
with CaF2 windows, was used. The solutions with a concentration of 0.1 mol L−1 were prepared by
dissolving the solid samples in CD2Cl2. The VCD spectrum of the enantiomer was measured at room
temperature using a sample with an estimated purity of 80%. The baseline of the VCD spectrum was
corrected by the subtraction of the VCD spectrum of the solvent. For each individual spectrum, about
16,000 scans were averaged at 4 cm−1 resolution (corresponding to 4 h of measurement time). For the
IR absorption spectra, the cell filled with CD2Cl2 served as a reference. The spectra are presented
without any smoothing and further data processing.

The calculation of the VCD and IR spectra was performed on the (S)-enantiomer of compound 33
using Gaussian 16 package [59]. The geometry optimizations, vibrational frequencies, IR absorption,
and VCD intensities were calculated with the Density Functional Theory (DFT) using the B3LYP
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functional combined with the 6-311G (d,p) basis set. The average solvent (CH2Cl2) effects have been
introduced using the implicit solvation model, SMD, which is based on the integral equation formalism
of the polarizable continuum model (ief-pcm). The computed harmonic frequencies are generally
larger than the fundamentals observed experimentally. They were calibrated using a scaling factor
of 0.98. The IR absorption and the VCD spectra were constructed from the calculated dipole and the
rotational strengths assuming the Lorentzian band shape with a half-width at a half-maximum of
8 cm−1. The computational method is detailed in the supplementary information with this article.

3.10. Biological Assays

The crude extract and the newly identified pure compound (91.9%), campestrolide, were evaluated
in vitro for their cytotoxicity on two mammalian cell lines: normal human fibroblasts (WI38) and
cancerous macrophage-like murine cells. Their antiprotozoal activities were also investigated on
Trypanosoma brucei brucei (Tbb. strain 427) bloodstream forms and Leishmania mexicana mexicana
(Lmm. MHOM/BZ/84/BEL46) promastigotes. The tests were performed using [60,61] stock solutions
prepared in DMSO at 10 mg/mL. For the cytotoxicity assay, the samples were tested in eight serial
1.7-fold dilutions (150 µL transferred into 100 µL fresh medium) in the 96-well microtiter plates
(concentration range: 0.7–25 µg/mL). The camptothecin (Sigma-Aldrich, St.-Louis, MO, USA) was
used as a positive control with 5-fold dilutions (concentration range: 0.00032–25 µg/mL) from a
10 mg/mL DMSO stock solution. For the antiparasitic assays, the samples were tested in eight serial
2-fold dilutions (concentration range: 0.20–25 or 0.10–12 µg/mL on Leishmania and Trypanosoma,
respectively). Suramine sodium and pentamidine isethionate salts (Sigma-Aldrich, St.-Louis, MO,
USA) were used as a positive control with 3-fold dilutions (0.0046–10 µg/mL) from a stock solution
of 2 mg/mL as well as amphotericin B. A maximum of 0.5% DMSO was previously verified to be
non-toxic in all the biological assays. The IC50 values were determined using Microsoft Excel and
GraphPad Prism 7.0 software (GraphPad, San Diego, CA, USA), based on a nonlinear regression.
The selectivity index was calculated in comparison to the WI38 cytotoxicity to assess the therapeutic
properties as antiparasitic or anticancer hits.

4. Conclusions

A new uncommon macrocyclic lactone named campestrolide, along with other known
compounds, was isolated and identified in the Eryngium campestre hexane crude extract. This newly
described compound presents a particular structure that is composed of a rigid 1,3-dynes motif and a
flexible aliphatic part. Moreover, campestrolide possesses relatively strong antitrypanosomal activity
but moderate selectivity. Therefore, we assume that campestrolide could be considered for further
investigation to improve activity/selectivity. Furthermore, it is partially responsible for the observed
antiprotozoal activities and cytotoxicity in the crude extract.

Supplementary Materials: The following are available online: 1H-NMR spectrum and 2D-NMR data of
campestrolide, computational details, enthalpies and Boltzmann populations of calculated conformations, and
additional comparison between calculated and experimental IR and VCD data.
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