
www.transonc.com

Trans la t iona l Onco logy Volume 7 Number 6 December 2014 pp. 726–731 726
Prognostic Significance of
Decreased Expression of Six
Large Common Fragile Site
Genes in Oropharyngeal
Squamous Cell Carcinomas
Ge Gao*, Jan L. Kasperbauer†, Nicole M. Tombers†,
Melissa D. Cornell* and David I. Smith*

*Division of Experimental Pathology, Mayo Clinic,
Rochester, MN; †Division of Otolaryngology,
Mayo Clinic Rochester, MN
Abstract
Common fragile sites (CFSs) are large regions with profound genomic instability that often span extremely large
genes a number of which have been found to be important tumor suppressors. RNA sequencing previously
revealed that there was a group of six large CFS genes which frequently had decreased expression in
oropharyngeal squamous cell carcinomas (OPSCCs) and real-time reverse transcriptase polymerase chain reaction
experiments validated that these six large CFS genes (PARK2, DLG2, NBEA, CTNNA3, DMD, and FHIT) had
decreased expression in most of the tumor samples. In this study, we investigated whether the decreased
expression of these genes has any clinical significance in OPSCCs. We analyzed the six CFS large genes in 45
OPSCC patients and found that 27 (60%) of the OPSCC tumors had decreased expression of these six genes.
When we correlated the expression of these six genes to each patient’s clinical records, for 11 patients who had
tumor recurrence, 10 of them had decreased expression of almost all 6 genes. When we divided the patients into
two groups, one group with decreased expression of the six genes and the other group with either slight changes
or increased expression of the six genes, we found that there is significant difference in the incidence of tumor
recurrence between these two groups by Kaplan-Meier plot analysis (P b .05). Our results demonstrated that those
OPSCC tumors with decreased expression of this select group of six large CFS genes were much more likely to be
associated with tumor recurrence and these genes are potential prognostic markers for predicting tumor
recurrence in OPSCC.
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Introduction
Head and neck cancer is the sixth most common malignancy
worldwide, but its overall incidence in the United States has declined
due to the decreased incidence of smoking [1]. However,
oropharyngeal squamous cell carcinoma (OPSCC), one subtype of
head and neck cancer with tumors derived from the tonsil or the base
of the tongue, has been dramatically increasing in recent decades.
This is most probably a result of the dramatic increase in the
proportion of OPSCCs that have human papillomavirus (HPV)
infection due to changing sexual practices [2,3]. The presence of HPV
in OPSCC has important clinical significance as many reports have
shown that HPV-positive OPSCC patients are associated with
significantly improved overall survival as compared to HPV-negative
OPSCC patients [4,5]. The evaluation of the presence of HPV has
been incorporated into the clinical treatment of the OPSCC, and
there is considerable discussion about de-escalation of the therapies
for the patients with HPV-positive OPSCC [6,7]. Currently,
prognostic evaluation of OPSCC patients is based on pathological
staging on tumor, nodal status, and distant metastasis (DM) and
histopathological parameters. What is lacking, however, are good
molecular markers to help determine which patients are more likely to



Table 1. Clinical Characteristics of the 45 OPSCC patients

All Tumors Recur W/ Decreased Expression
of Six Large Genes

Age
Median 59 60 60
Range 37-79 42-79 37-79

Sex, No. (%)
Male 36 (80%) 9 (25%) 22(61%)
Female 9 (20%) 2 (22%) 5(56%)

Site, No. (%)
Base of tongue 24 (53%) 6 (25%) 14(51%)
Tonsil 21 (47%) 5 (24%) 13(49%)

HPV status
Positive 36 (80%) 9 (25%) 22(61%)
Negative 9 (20%) 2 (22%) 5(56%)

AJCC stage, No. (%)
I 1 (2%) 1 (n/a) 1(n/a)
II 2 (4%) 0 (n/a) 0(n/a)
III 5 (11%) 0 (n/a) 3(n/a)
IVA 35 (79%) 9 (n/a) 22(n/a)

IVB 2 (4%) 1 (n/a) 1(n/a)
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have tumor recurrence either with local recurrence or DM, as this
clinical outcome is highly predictive of overall patient survival.
Common fragile sites (CFSs) are large regions of profound genomic

instability that are observed cytogenetically when cells are cultured in
the presence of inhibitors of replication such as the DNA polymerase
α inhibitor aphidicolin [8]. These sensitive regions are also found to
be hot spots for deletions, translocations, and other alterations in
different cancers. CFSs are hot spots for viral integrations as over 50%
of human papillomavirus 16 and 18 integration sites in the human
genome in cervical cancers occur within one of the CFS regions
[9,10]. There is a group of genes which span extremely large genomic
regions which were found to be localized within CFSs. The three
most unstable CFS regions in lymphoctyes are FRA3B (3p14.2),
FRA16D (16q23.2), and FRA6E (6q26) [11–13]. Each of these CFS
regions extends for 2 or more megabases, and each spans at least one
extremely large gene [14]. These genes are FHIT, WWOX, and
PARK2, respectively, and each has been found to function as tumor
suppressors involved in the development of many different cancers
and is also related to disease progression in different cancers
[12,13,15]. Many of the other large CFS genes are also targets for
alteration in cancers, but they have not yet been functionally tested to
determine if they too are tumor suppressors.
We previously did RNA seq analysis in a small group of head and

neck tumors and matched normal tissue from the same patients [16].
When we specifically focused on the expression of the largest human
genes, we observed that there was a select group of six large CFS genes
which consistently had decreased expression in the tumors. These
genes were DLG2, NBEA, CTNNA3, DMD, and the two tumor
suppressors, FHIT and PARK2 [17]. We validated these observations
using real-time reverse transcriptase polymerase chain reaction
(RT-PCR) examining a large number of OPSCC specimens. Almost
60% of OPSCC tumors that we tested had decreased expression of all
six of these large CFS genes. In this report, we examined the clinical
data which were available for the OPSCC tumors analyzed and
correlated them with CFS gene expression to evaluate if the decreased
expression of these genes has any clinical significance.

Materials and Methods

Patient Information
OPSCC samples were collected from patients undergoing surgical

treatment from the Department of Otorhinolaryngology at Mayo
Clinic, Rochester, MN, from 2008 to 2010. The study was approved
by the Institutional Review Board of the Mayo Clinic. After achieving
negative surgical margins, the normal tissue was collected from the
immediately adjacent site. All tissue samples were snap frozen in
liquid nitrogen for storage, and a hematoxylin and eosin slide for each
sample was also prepared for evaluating the presence or absence of
tumor by the pathologist. For all the tumor sections, over 80% of cells
being neoplastic were considered optimal. Normal tissue was also
evaluated to make sure that it did not have too many other cell types
(such as infiltrating lymphocytes or necrotic cells).

RNA Extraction and Real-Time RT-PCR
RNA from each tumor-normal pair was isolated using Qiagen

RNeasy mini kits (Qiagen, Valencia, CA) according to manufac-
turer’s protocol. Extracted RNA was quantified by NanoDrop
ND1000 (Thermo Fisher Scientific, Waltham, MA). RNA isolated
from each tumor-normal pairs was reverse transcribed using oligo dT
for cDNA synthesis (Life Technologies, Grand Island, NY). The
cDNA produced were then utilized for real-time PCR to determine
the large genes’ expression. Each sample for real-time PCR was run in
duplicate, and the difference in Ct between any two duplicated
samples was always less than 0.3. The average Ct value for each
sample was calculated for analysis. β-Actin and GAPDH were used as
an internal control. Each primer used for analysis is as previously
described [17].

Statistical Analysis
The statistical analysis for the recurrence Kaplan-Meier curve was

performed using SPSS software (Version 21.0).

Results

Patients’ Characteristics
Forty-five OPSCC patients who had surgical treatment from the

Department of Otorhinolaryngology at Mayo Clinic, Rochester,
MN, from 2008 to 2010 were used in this study. The patients’
clinical characteristics are listed in Table 1. Among these 45
patients, 80% of the patients were male, consistent with what is
observed for OPSCC in the United States. There are 24 patients
(53%) whose tumors were from the base of the tongue and 21
patients (47%) whose tumors were from the tonsil. Among these
tumors, 80% were HPV 16 positive. Among these 45 patients
analyzed, there are 11 patients who developed disease recurrence,
with 7 of them having distant pulmonary metastasis and 4 of them
having just local recurrence. We had previously analyzed 47
OPSCCs to validate the decreased expression of six large CFS
genes. Unfortunately, the clinical data for tumor recurrence were
not available for over half of these patients. Thus, in this report, we
have found a total of 45 patients (including 23 from the previous
paper) that did have this information, and these were the patients
analyzed to make our conclusions.

Decreased Expression of the Selected Six CFS Large Genes Was
Associated with Disease Recurrence

We previously reported that there were six CFS large genes that
frequently had decreased expression in the OPSCC tumor samples.
These six genes are PARK2, DLG2, NBEA, CTNNA3, DMD, and
FHIT. Each gene’s full name and its potential function are listed in
Table 2. In this group of genes, each of them has been shown to play



Table 2. The Six CFS Large Genes’ Chromosome Regions, Size and Their Implications in Different Cancers

Chromosome Locations CFS Region Size (bp) Gene Description Implications in Different Cancers

PARK2 6q26 FRA6E 1379130 parkin, RBR E3 ubiquitin protein ligase Reduced or absent PARK2 transcripts were found in ovarian cancer,
breast cancer, renal cancer, lung cancer, and sporadic colorectal cancer.

DLG2 11q14.1 FRA11F 1463760 discs, large homolog 2(Drosophila) It is involved in epithelial polarity during cell division and has been
implicated in cancer cell invasion. Recurrent somatic alteration was
observed in pediatric osteosarcoma.

NBEA 13q13 FRA13A 730451 neurobeachin It is a target of recurrent interstitial deletions in patients with monoclonal
gammopathy of undetermined significance and multiple myeloma. It is
also a translocation partner of PVT1 in multiple myeloma.

CTNNA3 10q21.3 FRA10D 1775996 catenin (cadherin-associated protein), alpha 3 Belongs to catenines family and necessary for the formation of a stable
complex with the other catenines and cadherins contributing to solid
cell–cell adhesion. Decreased expression of CTNNA3 was found in bladder
urothelial carcinoma.

DMD Xp21.1 FRAXC 2092287 dystrophin The reduced expression was found in brain tumors and frequent
inactivation was found in malignant melanoma. Its expression is associated
with genetic risk and survival in chronic lymphocyte leukemia.

FHIT 3p14.2 FRA3B 1499181 fragile histidine triad Loss of expression was observed in breast cancer, lung cancer, cervical cancer,
and B-cell lymphoma. Loss of FHIT expression was found to be associated
with lymph node metastasis, cancer progression, and poor outcome.
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some important role in cancer, and all have been shown to have
decreased expression in a number of different cancers. PARK2 and
FHIT have been demonstrated as tumor suppressors, while the
other four genes are very attractive potential tumor suppressors. In
this study, we analyzed expression of these six large CFS genes by
quantitative real-time PCR in each individual tumor and matched
normal tissue samples from 45 patients. Each individual gene’s
expression difference in tumor was calculated as a ΔΔCt by
comparing the ΔCt in the tumor to the ΔCt in its matched normal
tissue using GAPDH as an internal normalization control. Since the
Ct value is in log2 format, if the ΔΔCt value is larger than 1, it means
that the mRNA expression difference between the tumor and normal
is over greater than two times. In this study, the expression of all six
large CFS genes appeared to be coordinated in most samples. Thus,
the expression of these six genes was analyzed as a group in this study.
Of the 45 OPSCC tumors analyzed, there were 27 (60%) that had
decreased expression of all 6 large CFS genes, 9 (20%) that had had
modest or no changes in the expression of the 6 genes, and 9 (20%)
with slightly increased expression of all 6 genes (Figure 1A). The
criteria for determining whether an individual tumor had increased or
decreased expression of the six genes were based on the ΔΔCt value of
the six genes: in this group of six genes, if the ΔΔCt value of at least
four genes was above or lower than 1, we classified this group of genes
as having decreased or increased expression; if most genes’ ΔΔCt value
of difference was less than 1 or some were upregulated and some were
downregulated, it was defined as unchanged in this study. When we
correlated gene expression to each patient’s clinical characteristics,
what was most striking was that of the 11 patients that had tumor
recurrence, 10 of them had decreased expression of almost all 6 genes.
There was only one patient (patient 642) who had recurrence and yet
no decrease in the expression of these genes (actually a slightly
increased expression of almost all six genes in his tumor) (Figure 1A
and B).

We then divided the patients into two groups, one group which
had decreased expression of all six genes (n = 27) and the other group
which had either no changes in the expression of all six genes or
increased expression of all six (n = 18), and we found that there is a
significant difference in the incidence of tumor recurrence in these
two groups: 37.0% (10/27) in the first group and 5.6% (1/18) in the
other group. Kaplan-Meier plot analysis and a log-rank test analyzing
the time to recurrence on these two groups showed a significant
difference in recurrence (P = .037) (Figure 2).

Characterization of HPV Status and Its Relationship to Other
Clinical Parameters

In each of these 45 patients studied, the HPV status was evaluated
by real-time RT-PCR for E6 and E7 expression. There are 36
patients (80%) that were HPV positive and 9 patients (20%) that
were HPV negative. The high HPV-positive infection rate is similar
to other recent reports from other groups. Among the HPV-positive
OPSCCs, we observed a spectrum of expression of the E6 and E7
transcripts, with some tumors having robust expression of these
transcripts, while other HPV-positive tumors had quite low
expression of these transcripts. This could be representative of
what is now referred to as “active” as compared to latent
HPV-infected OPSCCs. We were also curious if the HPV was
associated with the patients’ disease outcome especially the
recurrence in this study. For the limited patient number of this
group of patients, we did not observe any significant difference in
disease recurrence between the HPV-positive and HPV-negative
patients. There are 9 out of 36 (25%) HPV-positive patients, and 2
out of the 9 (22%) HPV-negative patients had disease recurrence.
The tumor recurrence was also not associated with higher or lower E6
and E7 expression in the HPV-positive group. Then, we also
examined if the decreased expression of the six large genes was
associated with the patients’ HPV status. There were 22 out of 36
(61%) HPV-positive patients and 5 out of 9 (56%) HPV-negative
patients who showed decreased expression of these six CFS large
genes. Thus, there are no significant differences observed between
these 6 large genes’ expression and the HPV status either.

We then examined if other clinical characteristics have any
association with disease recurrence or the six large genes’ expression in
this group of patients. As shown in Table 1, there were no significant
differences observed between the groups who developed recurrence vs
those who did not in terms of age, gender, or tumor sites. For the 45
patients analyzed in this study, the vast majority (37 patients, 82%)
were in stage IV. While we found that 10 out of 11 patients who
developed recurrence were in stage IV, we could not do a valuable
estimation whether there is association between the clinical stages and
tumor recurrence, as there were insufficient tumors of other stages for
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Figure 1. (A) Heat map of the six CFS large genes’ expression and prognostic parameters in 45 OPSCC patients examined.Each column is
a sample, and each row is a gene showing the expression of the six genes (ΔΔCt) in each patient tumor sample as compared to each
individual matched normal. Prognostic parameters such as recurrence, live/dead, and HPV status are indicated above for each
patient.(B) The expression of the six large CFS genes in 11 OPSCC tumors which had tumor recurrence.The expression of the six large
CFS genes was tested by real-time PCR in OPSCC in both normal and tumor tissues. The difference of each gene’s expression (ΔΔCt) in
these 11 patients was listed in the Y-axis.
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the analysis. Thus, from this study, the single determination that did
have important clinical significance was which tumors had decreased
expression of these specific six large CFS genes.

Discussion
Our results demonstrate that those OPSCC tumors with decreased
expression of this select group of six large CFS genes were much more
likely to be associated with tumor recurrence. It is already well known
that the decreased expression of specific large CFS genes, most
notably FHIT, is usually associated with an overall worse prognosis in
a number of different tumor types. In addition, our previous RNA seq
analysis from 11 head and neck cancer patients revealed that the 3
tumors which had the most dramatically decreased expression for 2 of
these genes, PARK2 and DMD, were derived from patients whose
tumors recurred (data not shown). In this group of large CFS genes,
FHIT and PARK2 have been demonstrated to function as important
tumor suppressors involved in the development of many different
cancers [18,19]. Decreased FHIT expression has been shown to be
associated with tumor progression in sporadic colon adenocarcinoma
and poor prognosis in gastric cancer and oral squamous carcinoma
[20–22]. PARK2 is commonly downregulated in clear-cell renal
carcinoma and is associated with aggressive disease and a poor clinical
outcome [23].
The other four large CFS genes, DLG2, NBEA, CTNNA3, and
DMD, are each very attractive tumor suppressor candidates
(Table 2). DLG2 belongs to the membrane-associated guanylate
kinase family. A previous report indicated that HPV E6 could
efficiently degrade members of the membrane-associated guanylate
kinase family [24], and DLG2 has been implicated in cancer cell
invasion [25]. DMD is the second largest known human gene and is
localized within the chromosomal band Xp21.2. It is abundantly
expressed in normal brain but was dramatically decreased in
glioblastomas, and homozygous deletion of DMD has also been
reported to be observed in esophageal adenocarcinoma [26]. DMD
has been shown to be associated with genetic risk and prognosis in
chronic lymphocyte leukemia [25,27]). A recent report also showed
that DMD acted as a tumor suppressor and an antimetastatic factor in
cancers with a myogenic program [28].NBEA located in the FRA13A
CFS is known as a target of recurrent interstitial deletions in multiple
myeloma [29]. CTNNA3 is located in FRA10D and was found to be
frequently mutated in laryngeal carcinomas, non–small-cell lung
carcinoma, and breast cancer [30]. Hence, each of these genes is thus
an extremely attractive tumor suppressor candidate.

It is currently unclear whether overall genomic instability is
responsible for the decreased expression of all six large CFS genes in
60% of the OPSCCs. Also unclear is why these genes appear to have

image of Figure�1
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Figure 2. Kaplan-Meier analysis of recurrence curve for the 45
OPSCC patients.The patients were divided into two groups based
upon whether they had decreased expression of the six large CFS
genes or not. One group of patients has decreased expression in
most of the six large genes, and the other group of patients has no
change or increased expression of the six large genes. The
Kaplan-Meier curve (log-rank) analyzed the time to recurrence in
these two groups.
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concordant expression in an individual OPSCC. However, those
OPSCCs that had decreased expression of the two important tumor
suppressors, FHIT and PARK2, and the four additional candidate
tumor suppressors appear more likely to have local recurrence and
DM, which indicates that the loss of expression of all six of these
genes could have a profound impact upon the resulting phenotype of
the cells.

Although it has been suggested that HPV is associated with better
overall prognosis in OPSCC, different reports have indicated that
both HPV-positive and -negative patients were found to have similar
rates of DM, and DM seems to be the leading cause of death in
HPV-positive patients. Thus, finding biomarkers that are able to
predict different recurrence risk would help to stratify patients for
better treatment options. In this group of patients studied, for the 11
patients who developed recurrence, there are 7 patients who
developed DM, and 6 of them showed decreased expression of the
six large genes. However, due to limited cases in this study and
tertiary care that Mayo Clinic provides to many patients, we did not
have full clinical follow-up on each of the patients that provided
tumor and matched normal tissue. Incomplete data on the cause of
death of some of the 11 OPSCC patients who died made it difficult to
do survival analysis.

To determine if our observations on the expression of the large
CFS genes in OPSCC is relevant to other cancers, we analyzed
available data provided by the Cancer Genome Atlas on breast
cancers. We found that there is indeed a group of large CFS genes
which have lower expression in many breast tumors. The specific large
CFS genes that have decreased expression in breast cancers are
different from those observed in the OPSCCs. Thus, the expression
of selected specific large CFS genes might prove useful as diagnostic
and prognostic markers for different cancer types.
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