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The brain mechanisms of memory consolidation remain elusive. Here, we examine
blood-oxygen-level-dependent (BOLD) correlates of image recognition through the
scope of multiple influential systems consolidation theories. We utilize the longitudinal
Natural Scenes Dataset, a 7-Tesla functional magnetic resonance imaging human study
in which ∼135,000 trials of image recognition were conducted over the span of a year
among eight subjects. We find that early- and late-stage image recognition associates
with both medial temporal lobe (MTL) and visual cortex when evaluating regional activa-
tions and a multivariate classifier. Supporting multiple-trace theory (MTT), parts of the
MTL activation time course show remarkable fit to a 20-y-old MTT time-dynamical
model predicting early trace intensity increases and slight subsequent interference (R2 >
0.90). These findings contrast a simplistic, yet common, view that memory traces are
transferred from MTL to cortex. Next, we test the hypothesis that the MTL trace signa-
ture of memory consolidation should also reflect synaptic “desaturation,” as evidenced by
an increased signal-to-noise ratio. We find that the magnitude of relative BOLD
enhancement among surviving memories is positively linked to the rate of removal (i.e.,
forgetting) of competing traces. Moreover, an image-feature and time interaction of
MTL and visual cortex functional connectivity suggests that consolidation mechanisms
improve the specificity of a distributed trace. These neurobiological effects do not repli-
cate on a shorter timescale (within a session), implicating a prolonged, offline process.
While recognition can potentially involve cognitive processes outside of memory retrieval
(e.g., re-encoding), our work largely favors MTT and desaturation as perhaps comple-
mentary consolidative memory mechanisms.

memory consolidation j multiple-trace theory j fMRI

Systems consolidation refers to the reorganization of a memory trace with prolonged
time and experience across large-scale neuronal networks (1). The precise mechanisms
underlying this process remain unclear, but the end result includes the stabilization of
certain memories, the equally vital forgetting of nonessential information (2), and the
transformation of some memories into more behaviorally adaptive or gist-like represen-
tations (3). Influential theories of systems-level consolidation are largely built upon the
seminal observations that varying medial temporal lobe (MTL) damage causes an
inverse memory effect, whereby the ability to recall recently encoded memories is
reduced while many older memories (weeks to years) remain intact (4).
Theoretical approaches to explain these findings began with the standard consolida-

tion theory (SCT), which proposed that MTL contributions to any memory trace
diminish over time (5). Alternatively, multiple-trace theory (MTT), put forward in
1997, clarified inconsistencies of this standpoint with many experiments showing that
MTL lesions caused more severe retrograde amnesia for episodic than for semantic
memories (6, 7). For example, Bright et al. (8) showed limited retrograde amnesia for a
variety of tests of public events and personalities (semantic memory), while for autobio-
graphical episodes, a retrograde amnesia extended back further. Episodic memories
contain elements often in the form of visual images (9) that are recollected within
some overlaying context (10). MTT posited that an episodic memory must rely on the
MTL, and on multiple content-relevant cortical modules, across its entire lifespan, not
just the beginning. Early MTT developments emphasized that episodic memory reacti-
vations—which occur during conscious recall or recognition but also during “offline”
memory replays (11) within waking quiescence and sleep (12, 13)—lead to a rich dis-
tributed network of multiple, overlaid traces in the MTL over time. This process,
coined as “trace expansion,” would presumably provide memory protection from
partial lesions (14). Within the human functional magnetic resonance imaging (fMRI)
literature, there are conflicting reports (14) showing both SCT-predicted decreases in
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hippocampus activity during recall (e.g., refs. 15–17) and MTT-
predicted increases in hippocampus activity during recall (e.g.,
refs. 18–20). Most of this prior work has a limited time perspec-
tive (with only three or fewer timepoints), and brain measure-
ments were not acquired with high-field fMRI. Moreover, while
multiple time-dynamical analytic models of MTL trace intensity
have been inspired by the nonlinear probability time curves of ret-
rograde amnesia (21), to our knowledge, there has not yet been
any application of these mathematical formulations to functional
human neuroimaging data due to the paucity of timepoints and
samples.
The analysis of the connectivity between the MTL and the

neocortex offers a crucial perspective of systems-level memory
consolidation (3). Intracranial human studies are now establish-
ing precise timing links between the hippocampus and content-
relevant cortex necessary for memory retrieval (22–26). For
instance, Norman et al. (26) investigated autobiographical memory
remoteness spanning days, weeks, and months. They demonstrated
that hippocampal ripples—high-frequency (∼80 to 100 Hz in
humans) oscillatory events in hippocampal local field potentials—
correlate with memory remoteness and promote communication
across large-scale networks. According to the authors, their find-
ings “support theories that emphasize richer hippocampal repre-
sentations of remote memories (e.g., the MTT)” (26), which
conflicts with SCT. SCT emphasizes that the MTL’s role should
be diminished over time. While SCT does not posit that MTL
traces are entirely removed, a simplistic but common narrative
derives itself from SCT: fully consolidated memories (episodic
or semantic) may completely lose their dependency on the hip-
pocampus (12, 27, 28), which we refer to hereon as “trace trans-
fer.” The validity of these viewpoints—MTT, SCT, and trace
transfer—remains unclear.
Mechanistic underpinnings of systems consolidation may

rely on an increased signal-to-noise ratio of traces, although this
has not been explicitly addressed by either SCT or MTT. Spe-
cifically, because most learning involves strengthening synaptic
connections throughout the brain, intense learning is poised to
increase cellular needs for energy and supplies, move synapses
close to saturation, and decrease signal-to-noise ratios (2). Sleep is
the principal mechanism that renormalizes net synaptic strength
and restores cellular homeostasis while maintaining certain mem-
ory traces (2, 29). In this regard, retaining memories—through
sleep or other consolidation mechanisms—may result in the
reorganization of the synaptic landscape to promote desaturation
and, thus, improve signal-to-noise ratios of surviving traces at the
systems level. Simulation models and recent studies in mice have,
indeed, supported this perspective (30–32). However, more evi-
dence is necessary to advance this hypothesis.
Here, we utilize the recently acquired, publicly available

Natural Scenes Dataset (NSD), an unprecedented resource to
study memory consolidation (33). Over 300 d, eight subjects
participated in weekly 7-Tesla (7T) fMRI scans while exposed
to the NSD; ∼135,000 trials (∼2/3 of total trials) involved sub-
jects seeing an image that was previously presented in the
experiment. We first examined the relevant memory consolida-
tion models in describing trace evolution. Does natural scene
image recognition, which we presume to be episodic in nature,
continually rely on the MTL over time as MTT suggests, or are
these traces transferred to cortex as suggested by the trace trans-
fer thesis? Furthermore, in regard to MTT, can MTL time
dynamics be explained by a precise mathematical model formu-
lated in the early MTT literature? And can the timescale (days
vs. min) of trace evolution be distinguished from different
mathematical frameworks? In the latter part of this work, we

investigated the hypothesis that increased signal-to-noise ratio
of brain traces would occur over time. Specifically, we tested
whether the relative blood-oxygen-level-dependent (BOLD)
enhancement of surviving traces over time is linked to the con-
comitant deletion of other traces (i.e., forgetting). Finally,
because the MTL is proposed to bind content-relevant cortical
modules, we assessed whether the specific MTL connectivity
changes according to specific image-feature content.

Results

Data Volume and Memory Performance. The NSD experiment
used ultra-high-field fMRI (7T, whole-brain, T2*-weighted
gradient-echo echo-planar imaging, 1.8-mm resolution, 1.6-s
repetition time) to acquire BOLD responses in each of eight
participants who viewed 9,000 to 10,000 distinct, color natural
scenes (22,500–30,000 trials) in 30 to 40 weekly scan sessions
over the course of a year. In each scan session, 750 images were
shown. A trial here is defined as one 4-s image presentation
(3-s image presentation followed by 1-s fixation). Images were
from Microsoft’s Common Objects in Context image database
(https://www.cocodataset.org). As participants fixated a central
point, they performed a continuous recognition task in which
they judged whether they had seen each image at any time dur-
ing the experiment, either in the current scan session or in any
previous scan session (Fig. 1A). Hereon, “rep0” designates a
trial where a novel image was shown, and “rep1” and “rep2”
designate repetition trials upon their second and third presenta-
tions, respectively. Most repetitions (rep1/rep2) were acquired
in sessions and trials that were temporally near a preceding pre-
sentation (Fig. 1B and C ); the exact placement of all trials was
chosen according to a mixture of a von Mises and uniform dis-
tribution (see ref. 33).

The NSD demonstrates that not only could subjects accu-
rately recognize images within a session (average = 90.69% hit
rate), but their recognition also persisted over an extended
period of time. In Fig. 1C, we plot the adjusted hit rate, which
is the hit rate (rate of rep1/rep2 remembered) minus the false
positive rate (rate of rep0 images identified as old, plotted for
reference) over 10-d windows. The adjusted hit rate for rep1
and rep2 images remains above 0, even at 200 d. While the vol-
ume of applicable repetition trials decreases as the time window
from the previous repetition gets longer, there still are ample
samples even at the 200- to 210-d time window: n = 714 rep1,
n = 496 rep2 trials. While the NSD maximum distance extended
for 300 d, our analysis was limited to 210 d because the adjusted
hit rate rapidly approached 0 after this timepoint (in addition to
smaller sample size). For an extended discussion of the memory
metrics of this NSD, see Allen et al. (33).

MTL Activation during Recognition Increases over Time, in
Support of MTT. For this study, anatomical regions of interest
(ROIs) included the most commonly considered parcels of the
MTL: the hippocampus proper (HP), parahippocampal cortex
(PhC), perirhinal cortex (PrC), and entorhinal cortex (ErC)
(Fig. 2A). Because of a broad literature supporting a differential
long axis of the HP (34), we split HP into anterior and poste-
rior portions.

We first assessed whether the MTL activation significantly
increased over time among recognized images, which MTT would
suggest under the assumption that BOLD activation can indeed
be used as a proxy for “trace density.” We compared activations
per each MTL region between within-session image recognition
(day 0) and outside-session (>day 0) recognition among successful
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rep1 and rep2 trials. We, indeed, found that outside-session image
recognition activation was significantly greater in each MTL parcel
besides the posterior HP (Bonferroni-corrected P < 0.05) (Fig.
2B). Upon further separating the data among each subject, we

found that medium effect sizes were present in PhC and PrC
(d ∼ 0.3), while small effect sizes were present in the anterior HP
and ErC (d ∼ 0.1) (Fig. 2C). To further characterize these
increases, we plotted the activation time course of each parcel with

Fig. 1. NSD: stimuli, hit rates, and data volume. (A) Example of image presentations and their repetition “rep1” (image previously seen once) or “rep2”
(image previously seen twice) designations. For each 4-s trial, each subject was asked whether they had seen the image before. (B) Unmarked lines on top
( y axis, left) show the within-session hit rate (i.e., proportion of repetition images recognized), which remains high (average = 91%). Red crosses and blue
circles mark the number of trials across subjects at that specific timepoint (binned every 10 d) for rep 1 and rep2, respectively (y axis, right). Time since last
image repetition (rep1 minus rep0 or rep2 minus rep1) is on the x axis in trials. (C) Unmarked lines on top (y axis, left) show adjusted hit rate (hit rate – false
positive rate), where random guessing would result in an adjusted hit rate of 0 (dashed line). Red crosses and blue circles mark the number of trials
across subjects at that specific timepoint (binned every 10 d) for rep1 and rep2, respectively (y axis, right). Time since last image repetition (rep1 � rep0 or
rep2 � rep1) over extended time period (1 to 200 d).

Fig. 2. MTL ROIs and outside- vs. within-session recognition differences in activation/evolution. (A) MTL ROIs identified with ASHS tool in one subject.
(B) Activation (percent increase in BOLD signal after image presentation) differences between within-session and outside-session recognition conditions, per MTL
ROI, along with associated P value and effect size. (C) Differences in effect size among outside- minus within-session recognition among subjects. Significance cor-
responds to Bonferroni-corrected P < 0.05. (Bottom) Evolution of activation across trials, within-session (D), and across days, outside-session (E). LOWESS is shown
in black, and the mean is shown with a dotted line. Only correctly recognized rep1/rep2 trials are shown. Error estimates on scatterplots are 95% bootstrap CIs.
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locally weighted scatterplot smoothing (LOWESS) plots (Fig. 2D
and E).

Classifier Model Shows MTL and Cortex Remain Steady across
Time. To investigate changes in brain regions’ contributions to
recognition over time, we applied a multivariate classifier model
of BOLD activations to predict successful versus unsuccessful
recognition. This pattern analysis approach allowed us to quan-
tify sets of brain regions that optimally contributed to image
recognition, with the goal of comparing trace transfer (i.e.,
decreasing MTL and increasing visual contributions with time)
and MTT models (i.e., maintenance or increase of MTL and
visual contributions over time). A multivariate logistic regres-
sion classifier was applied with the MTL and visual sets on their
own and in combination (5, 25, and 30 ROIs, respectively) in
outside- versus within-session recognition (Fig. 3A). We report
the cross-validation balanced accuracy in classifying hit vs. miss
responses among rep1 images. To simplify any interpretations,
we focused on rep1 images for this and all following analyses
(Figs. 3–6), which do not incorporate “reconsolidation” effects.
The trace transfer model would assume that MTL would be
most predictive of recognition early (with little to no
contribution from the visual system [VS]), and the VS would
be most predictive of recognition later, with little to no
contribution from the MTL.
The trace contributions between early and late recognition

were not significantly different—neither the main effect of ses-
sion (within vs. outside; F = 3.0 P = 0.12) nor the session ×
ROI interaction (F = 1.3, P = 0.29). The main effect of
ROI combinations (BOLD activations within MTL, VS, and
MTL + VS sets) was highly significant (F = 46.8, P <
0.0001): for the outside-session recognition condition (Fig.
3B), the 25 visual ROIs and the 5 MTL ROIs in combination
showed the best mean balanced accuracy at 59.6%. This was
significantly better than the VS (58.6%), at a P (corrected) of
0.027. The MTL showed 56.4% balanced accuracy. Early rec-
ognition (within-session) accuracies included the MTL + VS
(63.1%), VS (61.9%), and MTL (58.2%). We also provide a
supplementary analysis separating early memory, intermediate
memory, and later-stage memory, which did not alter our

initial conclusion since there was no significant effect across
timepoints (SI Appendix, Fig. S5).

Time-Dynamical Modeling Further Corroborates MTT. We next
evaluated the time evolution of MTL activation with two time-
dynamical models. The first model we test is derived accord-
ing to MTT principles (Fig. 4A). The second model is the
memory-chain model (35). The latter model is most representa-
tive of trace transfer, as it hypothesizes a complete trace transfer
from a lower-level store to a higher-level store (from working
memory neural systems to the MTL, or from MTL to neocorti-
cal system).

The MTT model by Nadel and colleagues (21) assumed that
1) MTL traces expand over time, 2) this expansion rate decays
with time (with a preferential effect on more recent memories
to expand as opposed to older memories), and 3) these traces
are vulnerable to natural degradation or interference (replace-
ment with newer traces). The multiple-trace model that was
applied to the BOLD data here is provided below (Eq. 1):

TI1 ¼ e κðτ�tÞ þ e
τ
σ�κtα

ðe tσ
e
τ
σ

dx
x κσ�1

x � 1
[1]

Parameters referenced here include trace intensity TI1, the
average intensity of traces per memory at time stamp τ; κ is the
constant interference rate; α is the total replication rate, which
is constant; and σ quantifies the replication rate decay function,
which decreases exponentially with memory age.

The memory-chain model (35) assumes that memory repre-
sentations in a store decline in strength while trying to induce
new representations in higher-level, more permanent stores;
one process induces another, more permanent process. The
memory-chain model can potentially be applicable to either the
within-session (short) or outside-session (long) timescales. A
complete removal of the early store gives the following
“relative-retrograde” curve where only the late-store can con-
tribute to a memory:

TI2 ¼ c
�a1ð1� ea1t Þ�1

μ2
þ 1

" #�1

[2]

Fig. 3. Early- and late-trace contributions from ROI activation patterns. (A) ROI activations used as features in classifier analysis (from subject 1). Colors cor-
respond to combined n = 5 MTL parcels and n = 25 VS (Kastner Atlas) designations. (B) Recognition success was tested per subject on rep1 images by using
a logistic regression model with a combination of ROI feature sets. Training/testing cross validation was done per subject. Marked “x”s show significance
(P < 0.05) pertaining to distribution of balanced accuracy (average of sensitivity and specificity, also plotted) of 500 iterations of shuffled labels. n = 25,753
early (within-session) rep1 image samples and n = 46,091 late (outside-session) rep1 image samples were collected. MTL included 5 ASHS ROIs, and VS
included 25 Kastner Atlas ROIs; in combination (“ALL”), there were 30 distinct ROIs. Boxes/whiskers entail 25th to 75th and 5th to 95th percentiles.
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Here, a1 represents the early-chain decline, and a2 is the late-
chain decline. μ1 and μ2 are the early-chain and late-chain
growth parameters, respectively. c is a constant that marks the
height of the asymptote.
Both neurobiological models were fit to MTL activations

in the within-session (Fig. 4B) and outside-session (Fig. 4C)
timescales. The memory-chain model showed strong fits to the
within-session timescale: anterior hippocampus R2 = 0.8, PrC
R2 = 0.93, and PhC R2 = 0.88. The multiple-trace model
showed poor within-session fits: anterior hippocampus R2 =
0.34, PrC R2 = 0.64, and PhC R2 = 0.51. However, this
model performance shifted when analyzing the outside-session
timescale. The multiple-trace model here showed an excellent
outside-session fit: R2 = 0.97 and R2 = 0.91 in PhC and PrC,
respectively, compared to the memory-chain model (R2 = 0.68
and R2 = 0.50).
As hypothesized, the outside-session timescale was fit well by

the MTT mathematical model. While a separate memory-chain
mathematical model explained outside-session evolution quite
well, which is valuable in its own right, it could not explain the
prolonged evolution of memory traces as well as MTT. Using a

least-squares optimizer from the lmfit Python package (36) to
obtain Bayesian information criteria (BIC), we indeed found bet-
ter PrC/PhC multiple-trace model versus memory-chain model
fits for outside-session evolution (PrC/PhC BIC = �129/�133
vs. �102/�95.9, respectively).

Does Increased Signal-to-Noise Ratio Underlie Relative BOLD
Enhancement? To investigate the hypothesis that an increase
in signal-to-noise ratios underlies trace consolidation with time,
we tested for a potential association between change in memory
performance (forgetting) and the increase in MTL activation
upon recognition. Specifically, we hypothesized that the increased
rate of forgetting here should represent reduced noise among
those surviving memories, which should, thus, translate to a
stronger averaged BOLD signal among the surviving mem-
ory traces.

In computing the subject-specific derivative of memory recog-
nition across sessions (hit rate), we found considerable variation
across subjects. Still, the peak of the memory loss rate usually
occurred at around 5 d, and the derivative stabilized at around 15
to 20 d (Fig. 5A). Crucially, we found that the peak forgetting

Rep1
Recognition a���early-chain decline

�����late-chain generation 
c - peak

Memory Chain Model Multiple-Trace Model
����trace expansion rate

����interference rate
����trace expansion rate decay

A

Applied Models

C

B

Fig. 4. Memory-chain model fits within-session while multiple-trace model fits outside-session MTL evolution. (A) Summary of variables within each model.
(B and C) Each model is fit to PhC/PrC neural activation evolution among (B) within-session and (C) outside-session activation evolution along with a labeling
of associated variables. Analytic model fit to rep1 neural activation data upon recognition (increases were assessed by parameter estimates from dummy
encoding time bins). (Right) Explained variance from each corresponding model per MTL ROI. Neural activation was uniformly shifted along the y axis so that
the mean of activation at day 0 (within-session recognition) was in accordance with each model’s initial condition. Error bars represent 95% CIs of parameter
estimate.
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rate of rep1 images significantly correlated with the peak increase
in MTL activation of surviving memory traces (i.e., those correctly
recognized) within the PrC (r = �0.88, Bonferroni-corrected P =
0.008) and PhC (r = �0.82, Bonferroni-corrected P = 0.02; Fig.
5B). Anterior HP (r = �0.71) and posterior HP (r = �0.51)
were not significant. Furthermore, when we tested the association
of the outside-session rep1 peak forgetting rate with the increases
in PrC/PhC BOLD activation of rep1 trials within a session, we
did not find any significant effect (Fig. 5C ).

Changes in Connectivity for Feature-Specific Recognition over
Time. We next tested whether specific features of the images mod-
ulated changes in MTL connectivity. Thus, we asked whether
changes in MTL connectivity to neocortex were dependent on the
type of image recognized. We focused on face images and con-
fined this connectivity analysis to the specialized occipital face area
(OFA) and two fusiform face areas (FFA1 and FFA2) as provided
by the NSD project for each subject. This line of results was more
focused on image features since the MTL serves to bind specific,
content-relevant cortical modules (23). We had a priori interest in
the PrC as a “seed” because of its selectivity to faces and object
memory (37, 38). Using the cortical face areas as separate depen-
dent variables, we performed a three-way (seed × time × face)
interaction test with a linear mixed-effects model (Fig. 6) to test
whether the decline in connectivity differed between face images,
which can be considered the “signal,” and no-face (noise) images
in these regions.
The strongest interaction effect for each face-selective region

peaked within a window of 1 to 20 d since the most recent
image presentation. The interaction peak effect was strongest
in the OFA (βOFAinteraction

= 0.025 ± 0.013, P = 0.0001), but the
other face-selective regions were also significant (βFFA1interaction =
0.019 ± 0.012, P = 0.002; βFFA2interaction = 0.019 ± 0.01,
P = 0.005). These interactions were further investigated post hoc
by calculating the correlations within the session of interest and
face versus no-face groupings at the peak magnitude of the inter-
action effect (trials 1 to 20 d since the recent image presenta-
tion). This analysis suggested that the interaction effect was
driven by a more significant decrease in connectivity in nonface
image recognition over time (Fig. 6).

To evaluate the specificity of this effect to the outside-session
timescale (i.e., across days), we also applied the same connectiv-
ity analysis to the short within-session timescale (i.e., across
trials). There was no significant (Bonferroni P < 0.05) seed ×
time × face interaction on the within-session timescale (SI
Appendix, Fig. S4) in the PrC-OFA, PrC-FFA1, or PrC-FFA2
connectivity.

Discussion

In this work, we used the recently released NSD to test either
MTT or trace transfer in understanding systems consolidation.
We employ “trace transfer” to represent a more simplistic
narrative of SCT, where MTL traces are thought to perhaps
entirely transfer from MTL to cortex. Specifically, we found
that increased MTL activity is associated with recognition at
both early and late timepoints. The time-dynamical properties
of the MTL suggest that surviving traces become more robust
in the weeks after encoding and persist over extended periods
of time (>200 d) with slight decline. Our classifier analysis also
demonstrated that both the MTL and visual cortex supported
image recognition at early and late timepoints, which distinctly
contrasts with the concept of trace transfer. Furthermore, the
PrC and PhC outside-session evolution showed an excellent fit
to an early mathematical model of MTL trace strength by
Nadel et al. (21).

The applied MTT time-dynamical model is based on the idea
that episodic memories expand their traces within the MTL over
time upon repeated reactivations (21) or implicit/offline reactiva-
tions (10). This process is thought to offer a protective effect to
partial MTL damage, whereby any intact trace could contribute
to successful recognition if others are lost. Extrahippocampal
MTL structures (PhC and PrC) showed the strongest evidence
for increased activation across sessions, yet the anterior HP and
ErC still demonstrated a small but significant groupwise effect
of increased activation when considering outside-session versus
within-session recognition. This small but significant effect in
anterior HP should be emphasized, as it relies on the vast sample
size, timescale, and high-field resolution of the current experiment.
Perhaps related to shortcomings among those attributes, one recent

Fig. 5. Overall forgetting rate associates with MTL BOLD signature of surviving memory traces across individuals. (A) The derivative of the smoothed
“forgetting curve” [remembered trials/(remembered + forgotten trials)] for each subject across 1 to 15 d since the previous image repetition for rep1 presen-
tations. Circles designate the peak forgetting rate for each subject, which occurs at around 5 to 9 d and eventually stabilizes at around 15 to 20 d. Derivative
is z-scored from 0 to 250 d data. (B) Scatterplots showing the correlations between competing memory loss (x axis) and surviving memory BOLD increase
( y axis) for each subject among the anterior HP, posterior HP, PrC, and PhC. PrC and PhC fits were significant, corresponding to P corrected < 0.05. BOLD
percent increase corresponds to changes from average within-session recognition to peak of curve fit (via MTT model) per subject (see Fig. 3). (C) As a con-
trol analysis, the peak outside-session rep1 forgetting rate was also correlated with the within-session BOLD increases among the PrC/PhC parcels
(increased BOLD at trial 350; y axis). No significant association was found.
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image recognition experiment did not find such a significant effect
using the entire hippocampus as an ROI (14). While there are
difficulties in interpreting the BOLD activations only with respect
to memory retrieval, as opposed to other cognitive processes (see
Limitations), these results may indeed reflect a richer trace contribu-
tion of the MTL over time. Lesions in extrahippocampal MTL
regions (PrC/PhC/ErC) have, indeed, been implicated in more
severe amnesia when compared to damage restricted to HP (35,
39). And while there are undoubtedly functional intricacies and
interactions within the MTL, from our understanding, the early
work of SCT (40) and MTT (21) lumped together the PrC, ErC,
PhC, and HP for their model formulations. We believe this
to be a useful dichotomy (MTL vs. cortex), which guided our
analyses here.
The precise fit of the MTT time-dynamical model to the

outside-session activation data is remarkable when considering
that it was formulated roughly 20 y ago. The separate memory-
chain model did not perform nearly as well on the outside-
session timescale as the multiple-trace model. However, the
memory-chain model did perform well on the within-session
timescale. This model presupposes that a rapidly declining
initial chain (assumed here to be cortical areas involved in
working memory) is transferring traces to a more permanent
chain (assumed here to be MTL). In summary, the shift of
model performance from the short to long timescales suggests
that a differential mechanistic process is, indeed, occurring for
systems-level (i.e., outside-session) transformations.
A classifier model to predict image recognition via a multi-

variate pattern analysis provided more evidence against trace
transfer. Specifically, the results of this analysis do not indicate
a representational transfer from MTL to the neocortex (specifi-
cally, visual cortex) for natural scene image recognition.
Instead, trace contributions (as measured by predictive ability
to discriminate successful recognition) from the VS and MTL
occur at both early and late timepoints. Our classifier analysis
also showed the best accuracy for the MTL and visual cortex in

combination and only at outside-session recognition. This may
be another indicator of improved specificity in MTL and visual
cortex connectivity (among a backdrop of decreased connectiv-
ity for the broader MTL and visual cortex) that resulted in bet-
ter predictive capability of recognition.

The significant association between the magnitude of overall
memory decline and increased PrC/PhC activation among
remembered rep1 trials (across subjects) is interesting to con-
sider in the context of trace expansion. While trace “replicas”
may, indeed, be instantiated with time as initially proposed, we
offer evidence that a growing signal-to-noise ratio (i.e., reduced
noise over time) in the MTL may be a complementary factor
(30) supporting memory consolidation. In other words, as
many memory traces with similar “time stamps” degrade at a
rapid rate, the neural signature of the intact ones could expand
accordingly because of the reduction of interference/noise by
competing traces. The relative increases in BOLD responses
over those days may, thus, result from the preservation of some
traces in the context of a net decrease in synaptic strength dur-
ing that time or from the formation of multiple traces (2).

Functional connectivity of the cortex with the hippocampus
is known to increase when events are remembered as opposed
to forgotten (41). In support of a role of the hippocampus
to “bind” disparate cortical modules (42), recent work found
that distinct internetwork connections of the MTL (perirhinal
and parahippocampal aspects) with neocortical areas, indeed,
tracked the precision of remembering certain episodic memory
aspects by their item-feature or spatial-context quality (43).
A content-general connectivity analysis (SI Appendix, Fig. S2)
shows broad decreases in MTL-VS connectivity upon recogni-
tion over time. This analysis appears to be more in line with
SCT predictions of “fast-changing” MTL-VS diminishing con-
nections to potentially be replaced with slower cortico-cortical
connections. Furthermore, we do not know to what extent that
image recognition here may be transitioning from an episodic
to a semantic representation over time (which both theories

Fig. 6. Feature-specific MTL connectivity time evolutions: OFA in red, FFA1 and FFA2 in green and blue, and PrC defined within a given subject. Seed × time
(days) × face interaction beta estimates for each MTL ROI designation within a linear mixed-effects model, where OFA activation was the dependent variable.
Betas were calculated across various timepoint cutoffs since the last image presentation (10, 20, 30, 40, 50 … 200). The 95% CIs of beta estimates are dis-
played, and a circle/asterisk denotes significance at P < 0.05, corrected. Correlations of each condition of interest are shown where trials were cut off to
recent repetitions of 20 d or less. Distribution corresponds to correlations derived from n = 1,000 bootstrap resamples with replacement. Only correct rep1
trials were considered.

PNAS 2022 Vol. 119 No. 44 e2123426119 https://doi.org/10.1073/pnas.2123426119 7 of 10

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123426119/-/DCSupplemental


allow). One possibility is that the decrease in MTL BOLD
activity after the peak—which MTT describes as a decreasing
trace-replication rate combined with interference—may allow
for semantic representations to form in cortical representations,
which SCT emphasizes. Future work may shed more light on
this question.
While the positive effects of sleep on memory consolidation

and integration are well established, the underlying mechanisms
remain highly debated. According to the synaptic homeostasis
hypothesis, sleep allows a renormalization of synaptic weights
after learning has led to a net increase in synaptic strength, a
claim supported by molecular, ultrastructural, and electrophysi-
ological evidence (2, 29). Renormalization keeps the high
energy costs of synaptic activity under control and avoids syn-
aptic saturation. It also promotes memory consolidation by
increasing the signal-to-noise ratio, because sleep-dependent
synaptic weakening is hypothesized to be selective and affords
relative protection to the synapses engaged by new learning.
Supporting this idea, a recent study found that sleep promotes
the consolidation of a motor skill by broadly weakening synap-
ses that did not potentiate during encoding, thus providing a
relative advantage to the “learned” synapses (32). Another pro-
posed mechanism for sleep-dependent memory consolidation is
the further strengthening, during sleep, of the synaptic connec-
tions potentiated by learning (13, 44). This process is thought
to occur by the sequential reactivation of specific neurons and
synapses during cortical slow oscillations and hippocampal
sharp-wave ripples (45–47). The current experiment was not
designed to test whether the offline consolidation of some
memories occurred during sleep or wake, but an obvious differ-
ence between within- and outside-session recognition is that
multiple sessions are separated by several days, which include
multiple episodes of sleep. We found that the peak forgetting
rate of rep1 images was correlated with the peak increase in
MTL activation of surviving memory traces. Furthermore,
while there were widespread decreases in recognition-related
connectivity over time between MTL and visual cortex, specific
functional connections relevant to image features (faces) remained
resilient as compared to no-face images. Like the correlation
between peak forgetting rate and BOLD activation of surviving
memory traces, the interaction between time and feature-related
connectivity was present over the weeks following the encoding of
successfully recognized images but not over minutes and hours
within the encoding session. Therefore, the successful recognition
of some images depended on the forgetting rate of all other images
over weeks but not within a single session. Similarly, the successful
recognition of face images was associated with a decline in func-
tional connectivity between MTL and cortical face areas over
weeks but not within a single session, and this decline was mainly
driven by the no-face images. This offline, long-term (across
sessions) effect may reflect feature-irrelevant “noise removal”
among the surviving, distributed traces. The OFA encodes low-
level image-based properties, while FFA1/2 encode complex
social traits (48). We assume MTL connectivity to these cortical
modules is necessarily maintained for face recognition at the
expense of MTL connectivity to those same cortical modules
during recognition of scene images without faces.
In principle, an increase in the signal-to-noise ratio is com-

patible both with synaptic down-selection (2, 29) and with
sleep-dependent synaptic strengthening (13, 44). On the other
hand, the finding that BOLD activation of surviving memory
traces was correlated with peak forgetting rate may be more in
line with the idea that sleep serves to maintain overall synaptic
strength, which requires protecting some synapses at the expense

of others. In summary, the qualitative difference between memory
consolidation within and outside sessions suggests that factors
other than simple passage of time may be involved. Whether sleep
is one such factor, as well as the underlying mechanisms, will
require direct experimental tests.

Limitations. We interpret changes in brain activity upon image
recognition over time as associated with retrieval-related, recol-
lection processes (or “trace density”) to compare memory theo-
ries. However, there are other cognitive processes occurring
simultaneously to retrieval that are likely contributing to the
BOLD signal. These include 1) cognitive effort (i.e., task diffi-
culty), 2) familiarity as opposed to recollection, and 3) re-
encoding. Regarding cognitive effort, our reported PrC/PhC
MTL time-evolution curves do not reflect a simple linear
increase to ultimate peak, as might be expected when consider-
ing only task difficulty. Instead, this curve is parabolic, which
MTT concisely parameterizes with trace “growth rate,” “growth
rate decrease,” and “interference.” With familiarity, the present
analysis did not employ the common “remember versus know”
study paradigm (49, 50), which treats recognition confidence as
a proxy of episodic versus semantic memory systems. The infer-
otemporal cortex and even PrC have been previously implicated
in image familiarity detection, but the direction of such modu-
lation in the PrC is unclear (51). In one item-recognition task
by Ritchey et al. (50), no significant difference was found in
anterior HP, PrC, and PhC activity via a recollection versus
familiarly contrast in either immediate or delayed timepoints.
Finally, re-encoding likely occurred during repetition trials, and
its impact on the analyzed BOLD signal is unknown. The com-
bination of these factors must be considered while interpreting
the current results.

Materials and Methods

We analyzed data from the NSD, which is freely available at naturalscenesdataset.
org. The eight participants included two males and six females, with an age
range of 19 to 32 y (see SI Appendix, Table S1). The starting point for all analy-
ses in this work were the version 3 betas “b3” as shared through the NSD pro-
ject. These betas correspond to the percent BOLD signal change (relative to the
blank image presented) before the image stimulus. We provide a basic expla-
nation of b3 betas in SI Appendix, and an exhaustive explanation regarding
the b3 extraction can be found in the original data paper (33).

ROIs. All analyses included ROIs, where betas were averaged over that space:
5 MTL regions, 25 VS regions, and 3 specialized face cortex regions. The auto-
mated segmentation of the hippocampus (ASHS) tool (ashs-fastashs_2.0.0) was
applied using the Institute of Cognitive Neurology and Dementia Research
Magdeburg Young Adult 7T Atlas (52) to segment the MTL into bilateral ante-
rior hippocampus (ant hp), bilateral posterior hippocampus (pos hp), bilateral
ErC, bilateral PrC, and bilateral PhC. Anterior/posterior hippocampus were sepa-
rated at y = �27 (Montreal Neurological Institute reference).

When investigating the VS (Fig. 3 and 6), 25 ROIs were utilized from the
Kastner Atlas (53). Three face ROIs (utilized in Fig. 6) were derived per subject
through the NSD fLoc experiment (separate from the continuous recognition
NSD experiment). These ROIs included the OFA and two FFAs (FFA1, FFA2). In a
supplementary analysis, the Yeo17 network parcel was also used (54).

Outside- vs. Within-Session Recognition. In Fig. 2B, D, and E, raw betas are
shown to display the percentage BOLD activation per trial. Correctly recognized,
rep1/rep2 trials were extracted from all sessions. A linear logistic regression clas-
sifier was applied to different groups of features (MTL, VS, MTL + VS). Only rep1
trials were considered, and only the betas were further grouped (per session) to
be standardized before analysis. Models were trained within each subject accord-
ing to a randomly shuffled k-fold (inner = 20 splits; outer = 40 splits) nested
cross-validation procedure (via sklearn’s cross_val_score method). Mean

8 of 10 https://doi.org/10.1073/pnas.2123426119 pnas.org

https://naturalscenesdataset.org
https://naturalscenesdataset.org
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123426119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123426119/-/DCSupplemental


balanced accuracy, grand averaged across sessions and subjects, was applied as
our metric of interest. Differences in balanced accuracies between feature sets
were identified with a mixed-effects model accounting for random intercepts of
subjects. A difference among balanced accuracies was tested with a two-way,
repeated measures ANOVA (using a mean aggregate function per subject). Each
sample here corresponds to the balanced accuracy of one cross-validation fold,
and there were 40 folds per subject. Because feature groupings were found to
be significantly different in the ANOVA, post hoc differences were then assessed
between feature groupings (e.g., within-session MTL vs. within-session VS).

Memory Model Fits. Using eight simple assumptions, the MTT model (21) is
based on the following first-order differential (Eq. 3) and initial condition (Eq. 4):

∂
∂t
μðτ, tÞ þ κμðτ, tÞ ¼ αθðt� τÞ ρðμ, τ, tÞ

Zð½μ�, tÞ þ δðt� τÞ [3]

μðτ, 0Þ ¼ 0 [4]
Furthermore, their primary model assumed an exponential decrease in trace for-
mation rate with memory age (Eq 5):

ρðμ, τ, tÞ ¼ e�
t�τ
σ [5]

Parameters referenced here include μ, the mean number of traces per memory
at time stamp τ; t corresponds to the total timepoints in the model; κ is the
constant forgetting rate that can be interpreted as the total trace formation rate
times the probability that a newly created trace will destroy a given trace by
interference; α is the total replication rate, which is constant; ρ is the replication
rate decay function, which decreases; Z is a normalization constant; θ is a heavid-
side step function; and δ is the Kronecker delta.

The memory-chain model is derived from a two-process intensity model:

r12 ¼ μ1e
�a1 t þ μ1μ2

a1 � a2
ðe�a2 t � e�a1 tÞ [6]

Here, a1 represents the early-chain decline, and a2 is the late-chain decline.
μ1 and μ2 are the early-chain and late-chain growth parameters, respectively.
Of note, a2 is assumed to be much larger than a1 and, thus, was taken to be
zero in Eq. 2.

Mean changes in rep1 beta activation since time after the last image presen-
tation were extracted by encoding dummy variables (days since most recent
image presentation) in a linear mixed-effects model. For Fig. 5, the MTT model
was fit to the outside-session data per subject. The percent increase was

calculated based on the peak of the model fit. More information is provided in
SI Appendix. Furthermore, in a supplementary analysis, we investigated poten-
tial shifts in signal “baseline” across sessions (SI Appendix). Toward this end, we
regressed out the session-of-recognition variable. Our findings and interpreta-
tions remained consistent after this procedure.

Connectivity. A seed × time × face interaction was assessed with a linear
mixed-effects model. Trials included in the model varied with a maximum cutoff
of days since most recent image repetition and were tested at max days of 10,
20, 30, 40, 50, 75, 100, 125, 150, and 200. The number of trials per category
that powered this analysis is provided in SI Appendix, Table S3, which provides
evidence against any potential bias due to sample size. No interaction effect
remained significant when the analysis was limited to images that were not suc-
cessfully recognized. A content-general connectivity analysis was also applied
between all MTL and VS ROIs (SI Appendix, Fig. S2) and is described in
SI Appendix.

Code Availability. The NSD is freely available to the public. More information
about the NSD can be found at www.naturalscenesdataset.org/. Open-source
Python packages were utilized for all analyses and are detailed in SI Appendix.
Furthermore, we feature our code implementation in SI Appendix.

Data Availability. All code is shared in the SI Appendix.
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