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This paper presents Horizon, an open-source framework for trajectory optimization
tailored to robotic systems that implements a set of tools to simplify the process of
dynamic motion generation. Its user-friendly Python-based API allows designing the most
complex robot motions using a simple and intuitive syntax. At the same time, the modular
structure of Horizon allows for easy customization on many levels, providing several
recipes to handle fixed and floating-base systems, contact switching, variable time nodes,
multiple transcriptions, integrators and solvers to guarantee flexibility towards diverse
tasks. The proposed framework relies on direct simultaneous methods to transcribe the
optimal problem into a nonlinear programming problem that can be solved by state-of-the-
art solvers. In particular, it provides several off-the-shelf solvers, as well as two custom-
implemented solvers, i.e. GN-SQP and Iterative Linear-Quadratic Regulator. Solutions of
optimized problems can be stored for warm-starting, and re-sampled at a different
frequency while enforcing dynamic feasibility. The proposed framework is validated
through a number of use-case scenarios involving several robotic platforms. Finally, an
in-depth analysis of a specific case study is carried out, where a highly dynamic motion
(i.e., a twisting jump using the quadruped robot Spot

®
from BostonDynamics1) is

generated, in order to highlight the main features of the framework and demonstrate
its capabilities.
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1 INTRODUCTION

The versatility of floating-base robots, such as legged, wheeled and, more in general, articulated
platforms, pushes forward the boundaries of robot capabilities. Motion planning exploits this
potential to impose a desired behaviour in terms of kinematic and dynamic references for the robot.
In the scenario of agile, highly dynamic and contact-rich motions, this goal corresponds to finding
feasible trajectories for under-actuated complex systems subject to non-linear, hybrid dynamics.
Indeed, as designing these trajectories by hand proves burdensome, different strategies to compute
them can be found in literature. Among the others, one powerful approach is optimal control: seeking
for a trajectory governed by the system dynamics that satisfies some desired constraints, boundary
conditions and minimizes a given performance index. This formulation allows to specify high-level
task behaviours as a combination of simple objective and constraint functions, letting the dynamics
of the system, and the desired constraint, shape the resulting motion to guarantee feasibility and
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physics consistency. This is especially critical in any complex
scenario that involves locomotion and fast interactions with the
environment, as it is crucial to generate feasible trajectories.
Furthermore, through this formulation, the complexity of the
robot model can be fully exploited: full robot kinematic and
dynamic models, as opposed to simplified templates, allows to
specify a vast range of constraint and cost functions, that
translates into more complex motions, pushing the limit of
what the hardware can accomplish in terms of speed and
strength.

Finding a solution to this family of optimal control
problems is often computationally heavy and cannot meet
the frequency requirements to run in a control loop. On the
contrary, linearizing around a nominal trajectory allows for
fast computation, but the validity of the result decreases
moving away from the region of state space where the
nonlinear dynamics were linearized. This approach is useful
when a nominal trajectory is found, as obtaining that trajectory
may imply traversing a highly non-linear state space. The sub-
problem of trajectory optimization only considers the open-
loop solution to optimal control. Indeed, if the problem can be
solved at a desired rate, it can be used to iteratively generate a
closed-loop trajectory for the robot. An effective tool to rapidly
generate robot trajectories should provide the user with a
pipeline encompassing the whole problem of loading a
robot model, imposing the desired behaviour, and obtain a
dynamically-feasible motion that satisfies the user’s
instructions. In doing so, it should supply an interface and
methods relevant to robotics applications (such as forward and
inverse dynamics). Furthermore, is should offer the possibility
to re-compute and send reference trajectories in a receding
horizon fashion.

Given these requirements, this work introduces Horizon
(Figure 1), a trajectory optimization framework designed
specifically for robotic systems, that allows to setup and solve
problems in both an offline and receding horizon fashion, seeking
to simplify the pipeline for optimal motion planning without
shadowing the underlying mechanics. Horizon provides a high-
level syntax that covers from model description to problem
formulation and solution post-processing: it is organized in
transparent modules, so that ease-of-use does not undermine
ease-of-access: it exposes each layer so that it can be easily
customized to the user needs. Nevertheless, thanks to the
intuitive syntax, the non-expert user can treat Horizon as a
black-box to generate desired trajectories for any given fixed
or floating-base robot. The contribution of this work lies in the

development of a complete pipeline consisting of four main
building-blocks:

• Robot model acquisition, i.e. the parsing of a URDF model,
in a way the exposes standard robot algorithms to the user.

• Problem definition, i.e. a concise syntax to specify costs and
constraints, and distribute them over the planning horizon.

• Solver selection: different solvers are available to meet
different requirements, as detailed in Section 4.4.

• Receding horizon formulation, thanks to tools for cheaply
relocating costs and constraints to different nodes, to
accommodate for a receding horizon scenario.

• Optimal trajectory post-processing, i.e. methods to re-sample
the trajectory at a given frequency, and perform mesh
refinement to meet physics constraints between time knots.

Horizon leverages on the CasADi framework (Andersson
et al., 2019), taking advantage of state-of-the-art automatic
differentiation techniques for derivatives computation, as well
as the Pinocchio library for robot kinematics and dynamics
(Carpentier et al., 2019), to provide standard algorithms in a
symbolic form to be compatible with the CasADi computations.
The resulting framework collects the useful tools to prototype
highly dynamic maneuvers in a simple and intuitive way. Horizon
was successfully tested to generate a vast range of behaviours
using several robots, as it support fixed and floating-base models:
from simple template models of legged robots to full models of
quadrupeds and humanoids. It is worth mentioning that, thanks
to the fully generic symbolic layer provided by CasADi, Horizon
can be used even outside the scope of robotics. Besides the above-
mentioned functionalities, Horizon was conceived with the
following key properties in mind:

• Robotics focus. The toolbox targets robotic applications by
providing built-in methods and robotics-oriented utilities.
The user should be able to choose from a broad selection of
standard algorithms that can use to define system dynamics
given state and input variables and generate constraint and
cost functions, such as inverse dynamics, under-actuation
and friction cone bounds.

• User-friendly interfaces. The syntax to build the
optimization problem should be as intuitive as possible.
As the construction of an optimal control problem tends to
be tedious and verbose, Horizon offers an environment that
simplifies the formulation process. Also non-expert users,
lacking an in-depth knowledge of optimization algorithm,
should be able to set up an optimization task to prototype
complex motions with minimal effort. Experienced user, on
the other side, should be able to access easily each module of
the toolbox for customization.

• Open-source. The software is based on open-source
packages, and should be freely available itself. Any user
should be allowed to experiment with the code and propose
useful modifications.

• Flexibility and compatibility. Each software modules should
be accessible and extendable to grant two valuable
properties: first, the modularity of Horizon allows to

FIGURE 1 | The Horizon framework is available at: https://github.com/
ADVRHumanoids/horizon.
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integrate it in other pipelines avoiding code duplication.
Second, each module can be extended with custommethods
for personalized optimization routines. Horizon promotes
compatibility with other frameworks requiring minimal
inputs, as the toolbox is self-contained. The only
requirements are standard inputs such as XML files (e.g.,
URDF) to simplify the integration with other projects.

• Comprehensive pipeline. The framework should encompass
the trajectory generation problem as a whole, without
relying on supplementary packages. The user should be
able to generate a complete robot motion starting from a
simple description of the model used. Horizon is generic
enough to include all the necessary tools to prototype a
dynamic manoeuvre, optimize a robot structure or produce
a walking gait without losing the advantages of a robotics
oriented software.

Before delving into the details of proposed framework in
Section 4, this paper offers a background on optimal control
and non linear programming (NLP) in Section 3. To better
present the capabilities of Horizon, a case study and several
applications are explored in Section 5. Finally, Section 6
discusses pro and cons of Horizon and proposes future
perspectives of development.

2 RELATED WORKS

Recently, more and more behaviours of legged robots
demonstrated unprecedented agility and dexterity: among
many approaches to achieve these motions, Horizon joins the
increasingly large category of trajectory optimization
frameworks. This branch has become widespread among the
legged robotics community to specify dynamically feasible
motions for articulated robots, on one side for the ever-rising
complexity of the tasks and the advancements, on the other for
the advent of libraries that can solve non-linear problem very
efficiently. Trajectory optimization proved to be a powerful tool
to design dynamic motions for linear or nonlinear dynamical
systems, especially considering the physical constraints induced
by the nature of the manoeuvre, the environment and the
hardware itself. Many framework gathered interest within this
research topic. While sharing similar underlying strategies to
solve non-linear problems numerically, an increasing selection of
different framework are available to tackle the problem of
designing agile motions, exploiting fully the capabilities of the
robot and discovering feasible motions. Several packages have
been developed to provide an integrated pipeline involving
modeling, planning, and even simulation tools for complex
robotic systems. Similarly to Horizon, the project Tropic (Fevre
et al., 2020) leverages the open-source CasADi (Andersson et al.,
2019) software, which simplify the construction of optimal
control problems. However, it is specific for the generation of
bipedal gaits, i.e. joint coordination that minimizes a given cost
function along a periodic orbit, resulting in a cyclical walking.
Analogous to Tropic, FROST (Hereid and Ames, 2017) is a
trajectory optimization toolbox focusing on dynamic

locomotion developed in MATLAB. Horizon differs from
these specialized frameworks as it is meant to synthesize
generic manoeuvres that are non cyclic in nature, and the
periodicity can be always injected by imposing appropriate
constraints to the problem. Other less-specialized open-source
robotic toolboxes, similarly to Horizon, are capable of a more
diversified range of motions. Crocoddyl (Mastalli et al., 2020) is a
framework for optimal control. While being a powerful tool, its
Differential Dynamic Programming (DDP) formulation
currently doesn’t handle constraints. Even though some
workarounds exist (such as barrier functions), this may be
limiting, especially considering that many common constraints
in legged robot applications are expressed as inequalities, such as
friction cones, kinematic constraints (joint position, velocity,
acceleration) and dynamic constraints. OCS2 is a toolbox
tailored to switched systems (Farshidian et al., 2017): similarly
to Horizon, it facilitates optimal control for robotic tasks, both
offline and in a receding-horizon fashion. Furthermore, it also
provides an extensive library for model predictive control (MPC).
Its core formulation is based on a time-triggered sequence of
optimal controls that assumes a fixed sequence of switching
modes, such as a predefined gait pattern. Another viable
candidate is The Control Toolbox (Giftthaler et al., 2018a), a
highly efficient open source C++ library for robotic applications
that encompasses modeling, control, trajectory optimization and
MPC: in fact, while it can be used for rapid prototyping, its strong
focus on efficiency also allows for online operation. However, it is
currently only scarcely maintained according to the authors.
Among these robot-oriented libraries it is worth mentioning
the open-source project TOWR (Winkler et al., 2018), which
focus on trajectory generation for legged robots. A powerful
software suite that contains a pipeline for trajectory
optimization is DRAKE (Tedrake, 2019), on top of a collection
of tools for the analysis and the control of robots. DRAKE,
similarly to Horizon, exploits automatic differentiation to
compute gradients, unlike FROST that uses symbolic
computation to construct the NLP solver. Shifting to more
general-purpose projects, a relevant candidate is ACADO
(Houska et al., 2011), a software environment providing tools
for automatic control and dynamic optimization. Other notable
toolboxes can be found in literature, but many are commercial,
such as GPops (Patterson and Rao, 2014), ForcesPro (Zanelli
et al., 2017), MUSCOD-II (Kuhl et al., 2001), DIRCOL (von
Stryk, 1999) or Psopt (Becerra, 2010). However, being general-
purpose, these packages often lack suitable interfaces for robotics
applications (i.e. no robot model construction) and have a low
degree of flexibility when constructing the optimal problem (i.e.
only one type of transcription is provided).

Table 1 summarizes the main features of a selection of
toolboxes compared to Horizon. Each of the above-mentioned
packages have proven effective for a specific class of optimal
problems. In choosing the most suitable toolbox, there exists two
relevant properties to take into account: task and approach
specialization. The first indicates how general-purpose the
package is, i.e. a formulation generic enough to support a broad
spectrum of applications versus a structure specialized for one
specific task only. The second points to the degree of flexibility
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with respect to the underlying algorithms, i.e. a structure tailored to a
specificmethod aiming at performance versus a modular design that
favours adaptability. Horizon stands in the middle ground: while it is
not general-purpose, as it is strongly tailored to robotics, it is not overly
specific for one single task, such as periodic gait generation, and it can
be used to generate any kind of motion. On the other side, its
modularity allows to choose from a vast range of algorithms and
mix them together to better suit a desired goal. Several robotics
applications demonstrated the capabilities of CasADi as an effective
tool to plan dynamic and contact-richmotions, such as inMercy et al.
(2016), Belli et al. (2021), Hoffman et al. (2021), Nguyen and Nguyen
(2021). The aim of this project is creating a robotics-oriented open-
source software environment leveraging CasADi strengths that unify
the tools to develop these applications in an intuitive way.

3 BACKGROUND

Before delving into the description of the framework, we offer an
overview of the relevant topics used in the building blocks of Horizon.

3.1 Robot and System Dynamics
Horizon is specifically tailored to robotics: while its core functionalities
can be exploited for different applications, the entire framework is
designed to facilitate the design of optimal problems for robotic
platforms. We therefore consider a generic floating-base robotic
system and its generalized coordinates q ∈ SE(3) × Rnj :

q �
p
ρ
θ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (1)

where nj denotes the number of joints composing the robot, p ∈ R3

the linear position of the floating-base, ρ ∈ SO(3) the orientation of
the floating-base represented as a unit quaternion, and θ ∈ Rnj

finally represents the vector of joint positions. Given this
parametrization, the number of parameters that are needed to
describe a configuration is nq = 7 + nj. We denote the
generalized velocities ν ∈ Rnv as:

ν �
_p
ω
_θ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (2)

with nv = nj + 6 number of total degrees of freedom in the robot
model, _p ∈ R3 and ω ∈ R3 the linear and angular velocity of the

floating base, and _θ ∈ Rnj the vector of joint velocities. The general
equation of motion of robot control systems is the following:

Sτ � M q( ) _ν + h q, ν( ) − JTc q( )f c − JTm q( )λ (3)
with τ ∈ Rna the vector of actuated joint torques, M ∈ Rnv×nv the
inertia matrix, h ∈ Rnv the non-linear bias terms accounting for
gravity, Coriolis and centrifugal torques, Jc ∈ Rnc×nv the contacts
Jacobian and f c ∈ Rnc the vector of contact forces, and finally
Jm ∈ Rnm×nv is a constraint Jacobian with λ ∈ Rnm representing
constraint forces to take into account further effects that may be
present in the model, for example closed linkages. The selection
matrix S ∈ Rnv×na is used to map actuated torques to the full
vector of efforts in (Eq. 3). Note that usually, the inequality na <
nv holds, and na = nj is the common case for fully-actuated
floating-base robots. Furthermore, if point-contacts are assumed,
then nc = 3 · c where c is the number of contact points. Assuming
the following state space representation

x � q
ν

[ ], (4)

the following state dynamics equation holds, i.e.

_x � _q
_ν

[ ]. (5)

In the above equation, _q is given by the so-called quaternion
propagation as in Graf (2008)3:

_ρ � 1
2
ω, 0[ ]◦ρ. (6)

Note that in (Eq. 60 the symbol ◦ is used to denote the quaternion
product.

3.2 Optimal Control
Trajectory optimization using NLP formulation is a powerful tool
for planning locally optimal trajectories of nonlinear dynamical
systems. Given 1) a set of differential equations, which determines
the evolution in time of the non-linear system of interest,2) initial
conditions x0 ∈ Rn, and3) a vector of static parameters p ∈ Rnp ,
trajectory optimization aims to design a finite-time input

TABLE 1 | Comparison between state-of-art libraries for trajectory optimization and optimal control.

Name Transcription Method NLP-Solver Language Scope

Horizon dms, dc CasADi solvers, ILQR, GN-SQP Python generic
DRAKE dms, dc IPOPT, custom solvers C++ generic
Crocoddyl dms DDP C++ generic
OCS2 dms DDP, SQP C++ generic
Control Toolbox dms IPOPT, SNOPT, ILQR C++ generic
FROST dc IPOPT, SNOPT, Fmincon2 MATLAB gait generation
TROPIC dc CasADi solvers C++ gait generation
TOWR dc IPOPT, SNOPT C++ locomotion

2www.mathworks.com.
3Notice that if we consider the _ω expressed in the local frame of the floating base,
Eq. 6 changes to _ρ � ρ◦[12ω, 0].
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trajectory, u(t) ∈ Rm ∀t ∈ [t0, tf], which minimizes some cost
function over the resulting input and state trajectories x(t) ∈ Rn,
and satisfies a set of constraints. The resulting problem can be
formulated as an objective function:

J � ∫tf

t0

ℓ x, u; p, t( ) dt + ℓf xf; p, tf( ), (7)

where the terms ℓ and ℓf are the intermediate and final costs
respectively, subject to the dynamics of the system:

_x � f x, u; p, t( ) (8)
and a set of arbitrary bounds and constraints:

ϕmin ≤ ϕ x, u; p, t( )≤ ϕmax. (9)
As it is well-known, an optimal problem usually has

multiple local solutions as opposed to a single global
minimum. In this scenario, any solution [xp(t), up(t)] is
only guaranteed to be locally minimizing, whereas any valid
solution must satisfy all constraints up to a user-defined
tolerance.

Besides the very special case where the dynamic system is
linear and the cost is described exclusively by quadratic functions,
that can be solved exactly using the infinite-horizon linear
quadratic problem, a continuous problem (infinite
dimensional) must be reduced into a tractable form that can
be solved numerically, as described in Section 3.4.

3.3 NLP Formulation With CasADi
The backbone of the optimization module is CasADi, an open-
source software for nonlinear optimization and algorithmic
differentiation Andersson et al. (2019). It provides a set of
building blocks to set up and solve efficiently optimal control
problems. The key feature of CasADi is its symbolic framework
and a state-of-the-art implementation of algorithmic
differentiation (AD). As introduced in 3.2, computation of
derivatives through numerical differentiation necessarily
introduces round-off errors or truncation errors and can
become expensive, especially for large problems with a large
number of independent variables. In CasADi, objective
functions and constraints are defined using symbolic
expressions. However, instead of being treated as computer
algebra systems (using tree structures), these expressions are
stored as directed acyclic graph (DAG) representing
mathematical operations: single value or matrix operations,
depending on the expression type used in CasADi. Symbolic
manipulation guarantees exactness of the solution, but is usually
computationally expensive. Automatic differentiation (AD),
instead, efficiently computes a derivative calculation by
splitting it into a sequence of atomic operations using the
chain rule, but applied to floating point numerical values
rather than to symbolic expressions, without constructing
long symbolic expressions for derivatives. Finally, CasADi
exploits efficiently the natural structure of trajectory
optimization problems leveraging the graph coloring

approach of Gebremedhin et al. (2005) to generate a sparsity
pattern that heavily reduces computation times. CasADi is
chosen for its ease-of-use, both in Python and C++, its
flexible symbolic framework and its compatibility with a
number of state-of-the-art solvers, such as SNOPT (Gill
et al., 2005), KNITRO (Byrd et al., 2006), IPOPT (Wächter
and Biegler, 2006), OSQP (Stellato et al., 2020) and QPOASES
(Ferreau et al., 2014). Furthermore, as demonstrated in Fevre
et al. (2020), CasADi proves to be efficient, both in time and
memory, when solving high-dimensional optimal control
problems.

3.4 Transcription Methods
In optimal control literature, there are many strategies that can be
employed to find a solution. Numerical methods are divided into
two broad categories: direct and indirect methods. Planning
optimal trajectories of robotic systems mainly relies on the
former for transcribing the optimal control problem into a
NLP. Direct methods involve the discretization of state and
control in accordance to a desired formulation, which defines
how to convert the optimization problem into a concrete program
that can be managed by solvers.

In literature, the most successful variants for transcription are
the simultaneous methods: multiple shooting (Bock and Plitt,
1984) and direct collocation (Hargraves and Paris, 1987). It is
worth noticing that single shooting methods exist, but for
complex problem dealing with non-linear systems they are
very inefficient. The shortcoming of these method is its
inherent high sensitivity to errors. In fact, small changes
introduced early in the trajectory can propagate into drastic
error near the end. Simultaneous methods (multiple-phase
form) lead to a discretization of the time domain as a grid of
N nodes:

ti � t0 < t1 </< tN � tf (10)
This implies the parametrization of the trajectory into a vector

w of optimization variables along the N nodes.
Parametrizing the optimal problem requires strategies for a

correct transcription: the trajectory is divided into a finite number
of segments, connected by junction nodes, and some gap
constraints are required to enforce dynamic feasibility by
linking each segment. Each node corresponds to a set of
variables that can be used to define costs and constraint
functions: in other words, the time domain is divided into
unconstrained portions and constrained points. Indeed, this
strategy leads to one drawback: feasibility conditions may be
violated between the grid points, as constraints are enforced only
on the nodes and not along the intervals. Then, the problem of
finding a continuous optimal trajectory is transcribed into the
tractable problem of finding a set of decision variables:

min
w

∑N−1

k�0
ℓk wk( ) + ℓf wk( ) (11)

subject to systemdynamics (12a)
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continuity constraints (12b)
ϕmin
k ≤ ϕk wk( )≤ ϕmax

k (12c)
where the optimization variableswk, the system dynamics and the
additional constraints depend on the chosen transcription and
the problem specifics. The NLP is then solved according to a
desired technique among the wide range of numerical
approaches. This section presents the two transcriptions
methods implemented in the Horizon library.

3.4.1 Multiple Shooting
The multiple shooting method satisfies the constraints (12a) and
(12b) by integrating the dynamics of the system over each interval
[tk, tk+1] simultaneously, and solving an Initial Value Problem
(IVP) to propagate the trajectory between nodes, given the next
state xk+1 and the current input uk, as depicted in Figure 2A.
Hence, shooting independent trajectories from each initial point
and setting a continuity constraint for each pair. The
optimization variables wk involved in (Eq. 11) are the state
and the input of the system at each node k ∈ [0, . . . , N]:

wk � xk; uk[ ] (13)
The ODE solution is computed numerically on each interval

[tk, tk+1] given the system dynamics (8).

xk+1 � xk + ∫tk+1

tk

f x; u; p( )dt (14)

At the price of increasing the size of the problem (more
variables corresponding to each shooting segment, hence more

constraint and cost function), the solution is more stable. The
fragmentation of the trajectory causes also the drawback of the
initialization: relying on many starting points, multiple shooting
methods require a good initial guess for each one, otherwise they
suffer from poor conditioning. Jacobian sparsity is a direct
consequence of this formulation: variables in one node only
affect constraints close to that node. These Jacobian forms can
be consumed by highly efficient state-of-the-art solvers to
accelerate the optimization.

3.4.2 Direct Collocation
Direct collocation approximates state and control using piece-
wise continuous polynomials. The integration to simulate the
evolution of the system between nodes is converted to an
algebraic equation dependent on a few parameters. Doing so,
the computation time of the integration is ruled out. To shape the
polynomial to follow the system dynamics, an auxiliary set of
constraint is set to impose dynamics on intermediate points,
called collocation points.

Sparsity is guaranteed by the formulation of the transcription:
the robot dynamics must be satisfied solely at the collocation
points, resulting in a sparse Jacobian matrix that can be handled
by state-of-the-art NLP solvers. The direct collocation method,
similarly to multiple shooting, discretize the trajectory as in (Eq.
10), and, as a result, the control inputs and the state variables.
Moreover, it adds to each interval [tk, tk+1] a set of d
supplementary nodes: the trajectory is approximated as a
Lagrange polynomial parametrized through the d way-points,
called collocation points, as shown in Figure 2B. A Lagrange
polynomial has the advantage that its value at each collocation

FIGURE 2 | Time history of the contact forces at each foot of the robot. Notice how the forces, being a control input, are constant over each interval.
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point is exactly the value of the collocation point. Hence, the
optimization variables wk involved in (Eq. 11) are the state xk and
the input uk at each node k ∈ [0, . . . , N], plus the states xc at every
collocation node c ∈ [1, . . . , d] for each interval:

wk � xk; x
1
c ; . . . ; x

d
c ; uk[ ] (15)

The direct collocation method satisfies the constraints (12b)
by guaranteeing continuity over the whole trajectory, while the
constraint (12a) is imposed by evaluating the time derivative of
the collocation polynomial at all collocation points and
constraining it to the dynamic of the system at that way-point:

pc tk+1( ) � xn+1
_xc � f xc, uc( ) (16)

where tc can be normalized at each interval. The term xc and uc
corresponds to the state trajectory evaluated at time tc. Notice that
the input u is piece-wise constant over each interval [tk, tk+1]. By
forcing the derivative of the polynomial at each collocation point
to be equal to the system dynamics, the resulting function in each
interval approximates the real system behaviour, rather than
integrating an initial state to compute the exact dynamics as
in Section 3.4.1. Indeed, inserting additional collocation points
reduce the approximation error and at the cost of increasing the
dimension of the problem: each new collocation point amounts to
add a new variable and the corresponding dynamic constraint.

4 FRAMEWORK DESCRIPTION

Horizon is a direct optimal control open-source toolbox tailored
to robotics that assembles the steps required for efficient
trajectory optimization in a flexible and modular pipeline. It is
conceived as a ready-to-use tool that simplifies the prototyping of
robot motions. In fact, it offers the possibility to be used as a self-
contained black-box tool, divided into independent modules.
Namely, robot model parsing, problem definition and NLP
transcription, state-of-the-art solver interfaces and trajectory
manipulation for a correct deployment on the robot. Its
module-oriented design facilitate the coupling with existing
frameworks and allows for customization, as each module is
extendable with user-written routines. This section provides a
detailed description of each module and how they combine in a

organic framework capable of designing highly dynamic
manoeuvres and, more in general, optimal trajectories for any
robotic platform. A schematic representation of Horizon’s main
components and their interaction is given in Figure 3.

4.1 NLP transcription
Among the spectrum of viable ways to define an algorithm that
can be solved numerically, most of the optimization problems in
the category of dynamic motion planning are solved using either
direct collocation or multiple shooting. Horizon implements
these two simultaneous methods: this implies that input and
state trajectories are parametrized as decision variables over a
number of intervals, and the system dynamics are enforced
through the chosen method, either multiple shooting or direct
collocation. The modular scheme of Horizon allows the user to
use a custom transcription instead of relying on the default ones.
Multiple shooting constraints uses a default integrator (RK-4),
but it can be easily switched to any other integrator.

4.2 Integrators
Horizon includes a collection of numerical integrators, offering
a trade-off between simulation speed and accuracy. The
possibility to select a desired integrator is useful, since the
solution is highly dependent on the integrator details, as
discussed in Appendix.

In particular, Horizon provides the following integrators
implementations, all supporting both fixed and variable time:

• Forward Euler (FE): this method is based on a truncated
Taylor series expansion. An error is induced at every time-
step due to the truncation of the Taylor series, this is
referred to as the Local Truncation Error (LTE) of the
method. For the forward Euler method, the LTE is
O(dt2). Hence, the method is referred to as a first order
technique.

• Runge-Kutta: the FEmethod has rather poor convergence to
the solution, the rate of convergence scaling linearly with dt.
The Runge-Kutta methods are a class of methods which
judiciously uses the information on the slope at more than
one point to extrapolate the solution to the future time step.
The classical second order accurate Runge-Kutta method
(RK2), where the LTE is O(dt3). In a similar fashion Runge-
Kutta methods of higher order can be developed. One of the

FIGURE 3 | Frame sequence of Spot
®
while performing a leaping motion. The quadruped robot jumps using the hind legs to provide thrust, and finally lands on the

front legs at a specified position.
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most widely used methods is the fourth order Runge-Kutta
(RK4) technique. The LTE of this method is O(dt5).

• Leap-Frog: a time-reversible second order accurate method
that guarantees conservation of energy. See Appendix for a
detailed description of the method.

4.3 Node Duration Optimization
The classical approach to the discretization of the system
partitions the time domain into a fixed grid. However, in
many applications it would be ideal to let the solver decide the
duration of some portion of the trajectory: for instance, if the
robot is performing a jumping motion, the flight time should
be flexible. Another example is any motion for which it is not
known a priori the total duration. Yet another example is
contact timing in a desired gait, which can be optimized
jointly with contact location and contact forces. An
additional reason to adopt a variable dt is to reduce the
number of shooting nodes, by letting the solver to choose
the discretization time. In fact, under some circumstances
(usually quasi-static motions), a large dt does not generate
dynamically inconsistent outcomes, while in other cases
(agile and fast actions), a small dt is essential. Most of the
dynamic motions planned are a mix of the two scenarios:
while the number of nodes keeps constant, if the sample times
are made themselves decision variables, the solver is able to
stretch or shrink the time intervals between the nodes.
However, the flexibility of the time grid comes with a the
considerable drawback of an increased number of decision
variables, that could lead to higher computation times or bad
conditioning of the problem.

4.4 NLP Solvers
The NLP formulation of a motion planning problem with
complicated dynamics produces hard, non-convex problem,
due to the combination of geometric (e.g. environment
constraints), kinematic (position, velocity and acceleration
bounds) and dynamic constraints. However, thanks to the
uncoupled formulation of simultaneous methods, changes in
the inputs only affects the state at a given node, while future
states are unaffected. This leads to a structure of the problem
that is inherently sparse, making it suitable for large-scale
nonlinear solver such as IPOPT. According to the authors’
experience, and given the wide variety of NLP problems that
come out of an Optimal Control Problem (OCP), it is very
likely that a one-size-fits-all solver does not exist. On the
contrary, a specific solver can be more prone to finding a
suitable solution to the task at hand. For this reason, Horizon
makes a number of different solvers available to the user, and
allows to easily switch between them. More specifically,
Horizon includes the following NLP solvers:

1) A custom implementation of a sparse, Gauss-Newton
Sequential Quadratic Programming (GN-SQP) algorithm;

2) A custom implementation of a multiple-shooting Iterative
Linear-Quadratic Regulator (ILQR);

3) IPOPT, and state-of-the-art solvers, that are made available by
CasADi’s nlpsol interface.

In particular, IPOPT is a large scale nonlinear solver, based on
a primal-dual interior point method. This state-of-the-art solver
is used off-the-shelf, as it is known to perform adequately on a
wide range of problems. The choice to implement two other
custom solvers is aimed at covering some structural limitations of
interior-point methods, and also with the purpose to exploit the
specific structure of an OCP. Table 2 highlights the differences
with reference to a few relevant properties, such as 1) the ability to
exploit a good initial guess through warm-starting, 2) linear
computational complexity w.r.t. the horizon length, and 3) the
ability to deal with inequality constraints (bounds).

4.4.1 GN-SQP
Sequential Quadratic Programming (SQP) is a well-known and
effective method for non-linear constrained optimization. It
consists in generating steps by solving quadratic sub-problems.
SQP methods show their strength when solving problems with
significant non-linearities in the constraints.

Given a generic NLP in the form:

min
x

ℓ x( )
subject to c x( ) � 0,

b x( )≥ 0,
(17)

and its Lagrangian:

L x, λ, μ( ) � ℓ x( ) − λTc x( ) − μTb x( ), (18)
the SQP method computes a new iteration for the Newton step,
namely δxk, by solving a local QP sub-problem in the form:

min
δxk

ℓ xk( ) + ∇ℓ xk( )Tδxk + 1
2
δxTk∇

2
x,xL xk, λk, μk( )δxk

subject to ∇c xk( )Tδxk + c xk( ) � 0,
∇b xk( )Tδxk + b xk( )≥ 0.

(19)

In the particular case of a NLP with a least-squares objective
function, i.e.

ℓ x( ) � 1
2
h x( )‖ ‖22 (20)

it is convenient to adopt the so-called Gauss-Newton (GN)
approximation of the Hessian of the Lagrangian:

∇2
x,xL xk, λk, μk( ) � J xk( )TJ xk( ), (21)

with J(x) � zh(x)
zx . The GN approximation has the advantage of

always leading to a convex sub-problem; it also does not depend
explicitly upon the Lagrangian multipliers, and is cheaper to
compute w.r.t. the full Hessian.

Horizon implements a sparse GN-SQP method which is
written in C++, and exploits Eigen3 and CasADi for linear

TABLE 2 | Comparison between solvers provided by the Horizon package.

Solver Warm-Starting Guaranteed O(N) Bound Support

IPOPT No No Yes
GN-SQP Yes No Yes
ILQR Yes Yes No
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algebra and derivative computation. On the back-end, the OSQP
solver is employed for the solution of each sub-problem in (Eq.
19). The implemented globalization strategy is based on a line-
search procedure acting on a suitable merit function.

4.4.2 Iterative LQR
Modern libraries for sparse linear system solving (such as those
provided by the HSL and SuiteSparse projects, and others)
typically manage to exploit the structure of a generic NLP
program, so that its complexity is heuristically found to be
way lower than the O(N3) baseline. Optimal control problems,
however, are known to exhibit a peculiar structure due to their
Markovian nature, and this reflects to a specific sparsity pattern
that can be exploited by a tailored solver, known as the Iterative
Linear-Quadratic Regulator (ILQR)4 solvers. The core of such a
family of solvers is the well-known Riccati backward recursion,
which exploits the Bellman’s principle of optimality to reduce the
NLP single-iteration complexity from O(N3), which corresponds
to a dense algebra implementation to O(N), where N is the
horizon length. The Horizon package provides a custom
implementation of ILQR that is fully integrated into Horizon’s
API. It is written in C++ for efficiency, and exploits CasADi for
automatic differentiation (including C code generation of
derivatives), and the well-known Eigen3 library for linear algebra.

We base our implementation upon the work of Giftthaler et al.
(2018b) in order to support both single-shooting and multiple-
shooting formulation. Differently from other available packages,
our implementation supports exact equality constraints, both in
the form of state-input constraints, as well as pure state
constraints, while still enjoying linear complexity in the
horizon’s length. Globalization strategies are based on either a
filter method, or a classical merit-based line search (see Wächter
and Biegler (2005); Nocedal and Wright, (2006)), depending on
the user’s choice.

4.5 Mesh Refinement
The solution vector is a discrete trajectory defined at each node,
that, in turns, corresponds to a fixed time instant. Depending on
the formulation of the problem, the nodes can be uniformly
distributed, if the step size dt is constant, or positioned unevenly if
dt is set as an independent optimization variable. In both
scenarios, a common requirement is the manipulation of the
optimal solution in order to retrieve a post-processed trajectory
with a sampling rate that is 1) constant and 2) adequate to
represent the frequency content of the solution.

The number of nodes corresponds to a given frequency in the
time domain of the optimal solution. However, between the
optimal solution found and the trajectory sent to the robot
there is a layer of re-sampling: as a matter of fact, in a
trajectory optimization problem should be used the least
possible number of nodes to reduce the problem complexity,
while the reference trajectory sent to the robot is usually sampled
at high frequencies. If the direct collocation strategy is used, re-

sampling the solution is trivial, since both the control and the
state are exact polynomials that can be re-sampled to any
frequency. On the other hand, if the multiple shooting strategy
is opted for, no analytic description of the trajectory is given. A
naive approach, such as polynomial interpolation, may not follow
the dynamics of the system in between the nodes. Thus, a
different approach is preferred: at each interval [ni, ni+1], the
same ODE integrator used to transcribe the problem is employed
to integrate the system with initial value xi subjected to the
constant input ui. This procedure yields a re-sampled
trajectory at a given frequency that meets the system dynamics
condition. However, due to the time gridding imposed by the
NLP transcription, the constraint functions act only on the nodes
(i.e. at certain time instants), while the interval between each
couple of node is unconstrained: the optimal solution is only
feasible on the nodes, and extracting new samples by integrating
the previous state with a constant input may lead to constraint
violations along the trajectory. This may render the re-sampled
solution unfeasible: for example, by introducing parasite torques
on the floating base, as shown in Figure 4.

Horizon offers a tool to reduce these re-sampling errors and
without considerably changing the original optimal trajectory, as
shown in Figure 5.

Algorithm 1. Mesh refinement.

The aim of the mesh refiner is to reduce re-sampling error by
decrease the grid spacing of the discretization to avoid constraint
violations. This could be achieved by increasing the number of
nodes over the whole time horizon, but it would lead to a very
high number of variables and constraints and make the problem
intractable. The mesh refiner, on the contrary, acts locally by
adding nodes only where it is required. The pseudo-code is given
in Algorithm 1: first, it searches for the k values of the re-sampled
trajectory xpres that exceed a desired feasibility threshold. Then, it
injects k supplementary nodes in the original problem P[N] in
order to locally increase the node density. The resulting problem
has N + k nodes. Indeed, all the variables, the constraint and the
cost functions specified in the original problem must be updated
according to the new discretization of the time horizon. The
feasibility threshold is relative to the optimal solution, which
depends on the formulation of the problem: in the case of a
floating-base robot, the first violation to check is the dynamic
feasibility, as the torque of the virtual joints should indeed be zero.
Differently, the violations induced by the re-sampling in a fixed-
base robot may involve torque or acceleration limits imposed by

4ILQR is also known as Differential Dynamic Programming (DDP), when second-
order derivatives of the system dynamics are allowed.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8990259

Ruscelli et al. Horizon

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


the hardware specification. More generally, the feasibility
threshold depends on the type of the optimization problem at
hands. For instance, the graph in Figure 4 refers to the violation
of the dynamic feasibility constraint in the case study presented in
Section 5. The aim of the new optimization problem is not to find
a novel solution, but to search for the solution closest to the
original one that satisfies the constraints over a finer time grid.
Hence, some simplifications can be made to the problem
formulation to reduce the problem complexity and start the
optimization as close to the desired solution as possible:

• if the step size dtwas specified as an optimization variable, it
is converted to a parameter using the previous dt values.

• P[N + k] is initialized with the optimal solution values of
the original problem P[N]: on the N nodes coinciding with

P[N], each variable’s initial guess is set to the
corresponding value in the optimal solution xp. Similarly,
the k injected nodes in between the original N nodes are
initialized with the values of the re-sampled trajectory xpres.

• suitable bounds are assigned to variables and constraint
functions on the k injected nodes: in particular, for the jth
injected node in [ni, ni+1], each bound at nj is set to the
corresponding value at ni.

Finally, a set of auxiliary cost functions is set, i.e. the proximal cost
functions: these terms are required to steer the optimization towards the
original solution. For instance, the state proximal cost functions ‖xres −
x‖2 or the input minimization ‖ures‖2. Depending on the nature of the
problem, customproximal terms can be added to themesh refiner. The
mesh refining process is repeated until a feasible solution xpfeas is found.

FIGURE 4 | Effort on the floating base. Above: re-sampling the original trajectory (which satisfies the dynamic constraint at each node) at a higher frequency (1 KHz)
produces high efforts (colored lines) on the virtual joints of the robot, due to the divergence in between nodes. Bottom: the mesh-refinement restores up to the threshold
(red horizontal lines) the dynamic feasibility, reducing the efforts on the floating base. The red dots represent the nodes of the original problem, whereas the blue
segments are the new nodes injected by the refiner. The blue vertical lines highlight a portion of the trajectory where supplementary nodes were injected, detailed in
the last plot.

FIGURE 5 | Optimal joints trajectory of the robot before and after the mesh refinement. The optimal solution of the original problem, in blue, coincides with the re-
sampled trajectory after themesh refinement, in orange. As it can be noticed, the samples of the original trajectory have a variable time step, while the re-sampled one has
a constant frequency of 1 KHz.
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4.6 Utilities
Horizon comes with a collection of secondary utilities to simplify
the problem construction and analysis. In the context of motion
generation and prototyping, a tool to save and load the optimized
trajectory can be useful. The Horizon MatStorer is in charge of
managing the obtained solution, saving it along with the relevant
parameters of the problem. This allows to up-cycle the solution to
warm-up a similar problem. The code below shows how to use
such a tool.

Furthermore, it is useful for analysis and inspection if coupled
with the Horizon Plotter and Replayer modules. The first tool
streamlines data plotting of state and input variables, constraints
and the relative bounds, while the second relies on the ROS tool
RViz5 to visualize the obtained trajectory. A code snippet that
achieves the desired behavior is the following:

Finally, Horizon makes available a re-sampling tool that
evaluates a trajectory at a desired frequency, which is a
necessary step towards robot deployment. This is especially
useful when dealing with problems that also optimize over the
time step dt, as described in Section 4.3. Since the optimal
solution of such problems has an irregular time discretization,
a re-sampling layer is required to obtain a trajectory with a fixed
frequency. The code below shows a simple usage of the re-
sampling module:

4.7 Model Acquisition
The first module of Horizon is devoted to the parsing of the robot
model in a form that is compatible to the underlying symbolic
framework. It leverages Pinocchio, which provides the robot
kinematics and dynamics exploiting state-of-the-art Rigid Body
Algorithms for articulated systems. The parser module guarantees
ease-of-use and compatibility, as it supports the Universal Robot
Description Format (URDF)6, commonly used for the description of
the robot model. Given the URDF file as input, it exposes useful
algorithms related to kinematics and dynamics, such as the
Articulated Body Algorithm (ABA) and the Recursive Newton-

Euler Algorithm (RNEA) (Featherstone, 2014), as well as forward
kinematics, computation of Jacobians, and others.

The dynamics and the analytical derivatives of the model
discussed in Section 3.1 are provided by the parser in a symbolic
form, so that they can be injected into the optimization:
throughout the problem definition, kinematics and dynamics
information can be retrieved as symbolic variables that can be
used in constraints and objective functions. This is achieved
through the full scalar templatization of the Pinocchio library:
the Horizon parser implements it using the types of CasADi, that,
as presented in Section 3.3, is the backbone of the framework’s
symbolic layer. The following lines of code shows how to initialize
the model from the URDF file:

4.8 Problem Formulation
As described in 3.2, the trajectory optimization problem is
transcribed into an NLP problem with a fixed number of
nodes and intervals. As a result, each function is parametrized
as a vector of decision variables, one for each node of the
trajectory. This is true for state and input vectors, constraints
and cost functions. To provide an intuitive interface, the design
choice of Horizon is to keep separated the notion of optimization
variable from its implementation at each node: the user is simply
returned a handle to the abstract variable, which can be used to
define generic constraint and cost functions and select the nodes
on which they are active. An underlying layer is in charge of
expanding each variable, constraint and cost function over the
corresponding nodes. Indeed, if necessary, the user can easily
access the value at each node. Horizon provides several methods
to structure the problem by adding different types of constraints,
such as control and state bounds, intermediate and terminal
constraints. Additionally, being a toolkit specifically tailored to
robotics, Horizon implements floating-base constraints, such as
under-actuation and friction cones, as well as a set of geometric
constraints to build environment obstacles and intuitive methods
to constrain end-effector position, velocity and acceleration. The
set list to generate a minimal working problem reads as follows.

1. Trajectory discretization: define a number of intervals and set it
to the optimization problem. The optimization horizon is
divided into N segments. The variables and functions defined
later in the problem will be parametrized accordingly: the state
trajectory is divided into N + 1 nodes to include the final state,
while the input is defined as a piece-wise constant function over
theN intervals. The optimal problem is then initialized as follow:

2. Variables definition: create the decision variables of the
optimization problem and specify their properties along the

5http://wiki.ros.org/rviz.
6http://wiki.ros.org/urdf.
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trajectory, such as their bounds and initial guess at each node.
Horizon offers the three types of possible definitions:
• independent variable: the abstract variable is expanded as a
vector of independent variables on each node. Some
relevant methods are shown in the code snippet below:

• single variable: only one decision variable enters the
optimization problem, with the same value on each node.
The code to instantiate it is the following:

3. Parameter definition: create a parameter with the same syntax
of a variable. A parameter is a symbolic variable that does not
enter the optimization problem and can be set to a desired value at
any time, even after the building of the problem. This is particularly
useful when imposing reference trajectories in a receding horizon
formulation, as they change at each iteration. The syntax to create a
parameter is similar to the above-mentioned variables:

4. Dynamics injection: the problem requires the dynamics of the
system, formulated as differential-algebraic system of equation
(DAE). Inserting the dynamics and the step size (which can be
fixed or an optimization variable) is mandatory:

5. Function definition: assemble functions as constraints or costs.
Similarly to a decision variables, each function can be added to a
desired set of nodes. The constraints can be bounded. Each cost
function is a component of the objective function to be
minimized. The relevant methods to create constraint and
cost functions is shown below. Notice how it is possible to
define a constraint function (and its bounds) over a portion
of the whole trajectory by specifying the desired nodes:

6. Problem transcription: select the transcriptionmethod that will
be added as a set of constraints along the trajectory. Two
methods are available: direct collocation and multiple

shooting. As introduced in Section 3.4, the multiple
shooting method requires an integrator that can be selected
from those listed in Subsection 4.2 or manually implemented:

7. Problem building and solving: Horizon sets up the problem. It
expands the variables on each node and generate the
corresponding derivative matrices for the solver selected. A
variety of solvers can be chosen to solve the problem. Horizon
exposes all the solvers supported by CasADi and provides two
custom solvers, ILQR and GN-SQP:

Indeed, the optimized trajectory is a combined result of the
formulation of bounds, constraints and cost functions: the desired
behaviour can be steered by the formulation of the problem. The
performance index is a measure of the “quality” of the trajectory. A
high (or low) value of the performance index corresponds to the
closeness of the trajectory to the desired behaviour. Refining the
resultingmotion is a part of trajectory prototyping that can be tackled
by adding new elements to the cost function, tune the weights of each
component of the objective function or provide the solver with an
initial guess that is close to the expected local minimum.

5 CASE STUDY

This section provides an in-depth exploration of the capabilities
of the framework by presenting a case study. The goal of this case
study is to produce a vertical jump with a 120 deg twist using the
robot Spot®.

5.1 Problem Formulation
Given a URDF description of the robot Spot®, the model is
imported in a symbolic form. Horizon returns an handle to
model instance, which is used throughout the problem. Spot®
is a four-legged robot, for a total of nj = 12 degree of freedom
(DoF) distributed evenly on the four limbs. Each leg is equipped
with three actuators, granting two DoF at the level of the hip (roll
and pitch) and one at the knee level. The robot has nc = 4 contact
points, corresponding to the tip of each leg c � [clf, crf, clh, crh].
The initial step is choosing a suitable number of nodes to
discretize the time window. This choice implies a trade-off
between the resolution of the time grid and the dimension of
the problem. For this particular problem, we split it into 50
portions, which corresponds to N = 51 nodes. As introduced in
3.2, the state of the system is divided intoN decision variables, one
for each node, while the input is defined for the N − 1 edges
connecting the nodes. The aim of the optimization is to find a
feasible motion that corresponds to the robot jumping vertically:
the optimization ought to find joint acceleration and torques that satisfy
this manoeuvre, as well as the forces exerted at each end-effector.
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Among themany possible design choices, we opt for the formulation in
(Eq. 4), where x ∈ Rnq+nv is the state vector of joint position and
velocity combined, whereas the input is chosen as:

u �
_ν
f c
dt

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (22)

where _ν ∈ Rnv represents the generalized accelerations, f c ∈ R3·nc
are the Cartesian forces at each contact and dt ∈ R is the time step
between each node.

Specifying the dt of the problem as a variable is particularly
useful when there are phases of the motion that needs to be
stretched or shrunk to guarantee feasibility. A jumping motion is
imposed framing it between one take-off and one landing node
that are fixed. If the dt is kept constant, choosing a fixed number
of nodes also fix the duration of the jumpingmotion, constraining
in turn the forces and the overall motion of the robot, hence
reducing the freedom of the system. By selecting the dt as an
independent variable, the optimizer can adapt the time length of
the flight phase, for instance, on the height of the jump or the
maximum torque available. The solver will choose a suitable
duration of each node so as to output a feasible trajectory. In fact,
the subsequent phase consists of adding lower and upper bounds
to guarantee plausible solutions (e.g. acceleration or torques) that
can be deployed on real hardware. For each state and input
variable lower and upper bounds are added on each node.
Furthermore, on the first node the joint position is set to the
initial robot configuration while the velocity is bound to zero:

q0 � qinit initial position
ν0 � 0 initial velocity

qkmin ≤ q
k ≤ qkmax position bounds ∀k ∈ 1, N − 1[ ]

νkmin ≤ ν
k ≤ νkmax velocity bounds ∀k ∈ 1, N − 1[ ]

_νkmin ≤ _νk ≤ _νkmax acceleration bounds ∀k ∈ 1, N − 1[ ]
f kc,min ≤ f

k
c ≤ f

k
c,max contact force bounds ∀k ∈ 1, N − 1[ ]

(23)
Additionally, an interval for the variable dt is fixed, in order to

avoid trivial solutions that could collapse the trajectory.

dtkmin ≤ dt
k ≤ dtkmax ∀k ∈ 1, N[ ] (24)

When prototyping a new robot motion, the initial guesses
cannot be easily provided to the solver, unless a library of
primitives is available. However, as soon as a rudimental
solution is found, it can be used as a valuable initial guess to
refine the same trajectory or a family of similar motions (see
Section 4.5). The following step is selecting a transcription
method. Horizon offers two built-in strategies, multiple
shooting and direct collocation, presented in Section 3.4. For
this problem, we decide upon the multiple shooting method using
the default Runge-Kutta integrator. Once specified, Horizon
formalize it by creating the integrator and a set of constraints
on each node to guarantee continuity.

The next phase consists of imposing the necessary constraints
to achieve a desired result. The first constraint impose the under-
actuation of the system, as Spot® is a floating base robot with four
contacts on the real and the front legs. The equations of motion

are provided by the model instanced by the Horizon parser using
the RNEA algorithm. Given the vector of Cartesian forces at each
contact f c � [f lfc , f rfc , f lhc , f

rh
c ], a symbolic representation of the

inverse dynamics torques τ ∈ Rnv can be retrieved from the
general form of (Eq. 3), which we report here for convenience:

τ � M q( ) _ν + h q, ν( ) − J⊤c f c. (25)
Note that in (Eq. 25) the vector τ represents the efforts acting on

all the degrees of freedom of the robot, including the floating base.
Therefore, to enforce under-actuation, the first six elements of such a
torque vector are constrained to zero, whereas the joint torques τj are
bound inside the motor limits on every node:

τkf b � 0 ∀k ∈ 0, N[ ] (26)
τkj min ≤ τ

k
j ≤ τ

k
j max ∀k ∈ 0, N[ ] (27)

5.2 Shaping the Robot Motion
Up until now, the structure of the optimization problem for a
quadruped robot is very generic. This section present how
Horizon can be used to prototype a jumping motion in a
simple and intuitive way. The first constraint imposes a
terminal velocity: at the end of the motion, the robot should
be standing still. This rule amounts to add a single constraint at
the last node forcing the joint velocity to be zero:

νN � 0 (28)
To impose a jumping behaviour, a portion of the trajectory

is designated for the desired action: a take-off node Nto = 20
and a landing node Nla = 40 are selected, corresponding to the
flight phase. Outside this range of nodes, the Cartesian
velocities at each contact _pc � [ _plfc , _prfc , _plhc , _p

rh
c ] ∈ R3 are

constrained to be zero:

pk
c � 0 ∀k ∈ 0, Nto[ ] ∪ Nla,N[ ] (29)

Similarly, at the same nodes the friction cones constraints are
imposed: the contact force fc is required to lie inside the linearized
Coulomb friction cone directed by the surface normal nS :

f c,i · nS > 0,
‖f tc‖∞ ≤ μi f c · nc( ) ∀k ∈ 0, Nto[ ] ∪ Nla,N[ ] (30)

which imposes unilaterality and non-slippage of the contact ci. In
the above equation, f tc,i � f c,i − (nc,i · f c,i) · f c,i denotes the
tangential component of fc,i, and μi the static friction
coefficient. On the other hand, inside the flight phase the
Cartesian forces are constrained to be zero.

f c � 0 ∀k ∈ Nto,Nla[ ] (31)
To obtain the twisting motion during the jump, it is enough to

constrain the robot postural and the floating base at the last node.
Specifically, the orientation of the floating base ρ is set to the
desired one, while the remaining elements, i.e. the floating base p
and the joint θ positions, are constrained to the initial
configuration:
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ρN � ρdes
pN � p0

θN � θ0
(32)

where ρdes is the quaternion corresponding to a rotation of 120 deg.
Thanks to (29), the quadruped cannot move the its contacts
while touching the ground: therefore, this last condition
translates into a jumping motion that orient the robot’s
heading at a desired angle while keeping the same joint
configuration as the initial one. Given the above-mentioned
constraints, the objective function shapes the behaviour of the
robot. In particular, two regularization terms are introduced,
both for the velocity ν and the contact forces fc. The final
optimization problem is constructed by Horizon as follows:

min
x ·( ),u ·( )

∑N−1

k�0
‖νk‖2 + ‖f kc‖2( )

subject to :
• state and input bounds 23( )
• step size bounds 24( )
• torque and under − actuation bounds 26( )
• final velocity constraint 28( )
• contact consistency constraint 29( )
• flight constraints 30( )

(33)

The solver module relies on a collection of state-of-the-art
solvers. For this case study, the large scale non-linear solver
IPOPT was selected.

FIGURE 6 | Pictorial comparison between the multiple shooting (A) and collocation (B) transcription methods. The red dots represent the state vector at each
node: the continuity condition in multiple shooting constrains the integrated dynamics (yellow square) over one interval to be equal to the state vector at the next node,
while in direct collocation the system dynamics are approximated using a polynomial, setting its derivative (dotted black line) at a given set of intermediate nodes (green
square) equal to the system dynamics (yellow line) evaluated at the same points.

FIGURE 7 | Time history of the contact position at each end-effector of the robot. Notice how the time grid is not evenly spaced: during the jumping motion the
optimal step size dt decreases.
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5.3 Resampling
The optimal solution is a vector of state values (i.e. the discretized
optimal state trajectory) and a vector of input values, constant over
each intervals between the node. The frequency of the trajectory
depends on the step size dt of the problem: in this case study, the
step size is a decision variable itself. Thus, a resampling layer is required
to obtain a trajectory with a desired fixed frequency that can be sent as
a reference to the robot. For this problem, we decided to re-sample the
trajectory with a frequency of 1 Khz. Once the re-sampled trajectory is
computed by theHorizon re-sampler, themodule presented in Section
4.5 is devoted to refine the trajectory: as shown in Figure 4, the
unfeasible re-sampled trajectory (due to the parasite torques on the
floating base) is corrected by locally injecting a set of supplementary
nodes that reduce the undesired torques without changing the joint
trajectory of the robot, as shown in Figure 5. These results correspond
to four iteration of themesh-refining process described inAlgorithm1.

5.4 Results
A simple description of the problem produces a complicated
and dynamic manoeuvre of the robot Spot®: the quadruped
successfully jumps while changing its orientation. Figure 6
shows the time histories of the contact forces at each foot,
which are simultaneously zero during the flight phase. As it
can be noticed, the solver select the optimal step size dt over
the horizon, which decreases during the jump. Figure 7
depicts the trajectory of the feet w.r.t. the world, which is
constant over the stance phases. It is worth noticing how the
solver exploits the flight phase to change the position of the
feet in order to achieve the desired orientation of the robot at
the landing. Using a machine equipped with on a AMD Ryzen
7 1700X Eight-Core CPU running at 3.4 GHz, the problem
solves in 57 s with 388 iterations. The duration of the final
trajectory is 2 s. The selected optimizer is IPOPT, using the

FIGURE 8 | Interaction between the main components of the Horizon framework, as described with a pseudo-UML representation. The core component is the
Problem component, acting as a manager for optimization variables, parameter, costs and constraints. Variables can be combined thanks to CasADi’s symbolic engine
to produce expressions for costs, and constraints. In the robotics domain, dynamics, costs, and constraints can contain expressions related to kinematics and
dynamics, as allowed by the ModelParser component. A TranscriptionMethod component augments the Problem with variables and constraints implementing a
transcription strategy. Finally, a Solver component translates the abstract representation of Problem into an actual NLP, which is solved to produce a numerical result.

FIGURE 9 | Frame sequence of Spot
®
jumping vertically while performing a 120 deg twist. Red arrows represent contact forces, constrained to zero during the

flight phase.
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default linear solver ma27. As mentioned in Section 4.8,
initializing the problem with a adequate guess, the
computation time drops considerably. Running the
problem a second time using the first result as initial
guess, the solver takes only 2.5 s to solve the problem. It is
worth noticing that the time elapsed is mainly due to the
heavy constrained formulation: if the bounds are relaxed and
the constraint reshaped (i.e. the friction cones conditions are
removed, the dt fixed), the time drops to 1.4 s, corresponding
to 11 iterations of the solver. It is interesting to notice that the

same relaxed problem is solved by GN-SQP in 7.2 s, while
ILQR uses 4.2 s. A video of the resulting motion can be found
in the accompanying video, which also contains a set of clips
to better demonstrate the effectiveness of the framework.

5.5 Other Applications
Horizon was validated on a variety of applications involving
different robotics platforms. A list containing a brief description
of our main achievements is given below.

FIGURE 10 | Frame sequence of Spot
®
walking in a receding horizon fashion.

FIGURE 11 | Frame sequence of the quadruped robot Centauro while performing a 90 deg in-place turn within two full gait cycles. The green arrows represent the
contact forces at each foot.

FIGURE 12 | Frame sequence of the robot Kangaroo side-jumping. The red arrows represent the contact forces at each foot. Note that contact wrenches are
parametrized in terms of four pure forces applied to the corners of each foot’s support area.
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• Spot® was used for a wide range of demonstrations, such as
jumping, leaping (Figure 8, twisting (Figure 9) and raising
on the hind legs. All these optimization problem follow the
same structure: a contact schedule describes the manoeuvre
in terms of contact phases, where either forces or contact
velocities are constrained to zero. A final constraint fixes
the last pose of the robot, similarly to the case study of
Section 5. Horizon was also used for receding horizon
applications, such as the generation of an endless walking
motion (Figure 10). For this problem, besides the periodic
contact schedule, a constant velocity reference is set as a
cost function for the base link of the robot. Finally, a so-
called clearance constraint imposes for each foot a fixed
swing trajectory on the z-axis. The resulting problem was
solved online with our ILQR solver.

• A crawling gait was successfully generated for the
quadrupedal robot Centauro (Kashiri et al., 2019), both in
simulation and on the real robot. Similarly to the previous
applications, the optimal problem consists of a contact
schedule and a final pose constraint. In particular, a
forward and a turn-in-place crawl were generated via the
ILQR solver, both exhibiting a comparatively large stride
length as a consequence of the imposed gait pattern and final
pose. A sequence of frames of the latter is shown in Figure 11.

• A set of jumping motions was generated for the robot
Kangaroo from PAL Robotics7, as displayed in
Figure 12. Furthermore, a side-to-side swing motion was
obtained: by imposing a reference trajectory of the zero
moment point (computed with the full robot dynamics), the
biped shifts its weight from one foot to the other.

• The same swinging trajectory was obtained for the robot
TALOS (Stasse et al., 2017), the full-size humanoid robot
from PAL robotics.

• Dynamic trajectories were generated for a 2-DoF prototype
robotic leg. Horizon proved to be useful for the initial design of
a leg intended for agile motions. Given a set of tasks, the
proposed framework was used to analyze the relevant
parameters (such as maximum current, torque and angular
velocity) in order to carry out the sizing of the motors.

• An industrial 7-DOF manipulator was used for a task-
oriented optimization that minimizes the energy
consumption while complying with the velocity limits

that guarantee safety. Additionally, it includes in the
optimization the position of the base link of the robot,
demonstrating howHorizon can be successfully used for co-
design applications and cell optimization, too.

• An optimal rappelling motion for a roped bipedal template
was generated, mimicking the manoeuvres of aerial
construction workers. In particular, the rope-assisted robot
can extend/contract the rope and use the feet to jump from a
vertical wall to which is connected trough the anchor-point of
the rope. The rappelling motion consists in a controlled
descent, obtained imposing a contact schedule and a final
pose of the robot at the desired height after the vertical drop.

Clips for each application are gathered in the accompanying
videos and at https://www.youtube.com/playlist?list=
PL7c1ZKncPan72ef2Sof8Ky_TrlSK9qYYP. We finally invite
the interested reader to further explore Horizon by visiting the
repository at https://github.com/ADVRHumanoids/horizon.

6 CONCLUSION AND FUTURE WORK

Trajectory optimization involving fast manoeuvres, physical
interactions and geometric constraints using complex robot
dynamics is a challenging field that has been tackled from
many directions. Horizon aims at simplifying this process of
generating and prototyping agile motions of robotic platforms
without losing the performance that state-of-the-art
algorithms can offer. To do so, it provides a flexible and
intuitive pipeline that includes model description, NLP
transcription and solvers. Its strength relies on the
orchestration of advanced open-source tools, such as
Pinocchio, CasADi, and ROS, to offer a reliable and fast
computation to the user. To ensure compatibility with most
applications, it supports standard description formats, and it is
heavily customizable at almost all layers. Experimental results
have demonstrated how, given a simple set of code instruction
that translates into a NLP problem, complex motions (such as
leaps, walking and rappelling) can be successfully generated by
the optimization and manipulated for fast deployment.
Horizon was tested on a vast selection of robots, spanning
from simple template models such as the roped bipedal robot,
or the cart-pole model, to full-dynamic models of quadrupedal
robot of different complexity such as Spot®and Centauro, and
humanoid robots such as TALOS and Kangaroo. Additionally,

FIGURE 13 |Comparison between the total energy of the system using the Leap-Frog and the Euler integrator. Using the Leap-Frog the energy is conserved, while
the Euler method accumulates inaccuracies that incorrectly increase the energy of the system.

7https://pal-robotics.com/robots/kangaroo/.
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it was effectively used on prototype robotic legs and arms
within co-design and cell optimization scenarios.

Nevertheless, Horizon currently lacks a well-developed
control layer to close the loop on real hardware. Future work
will extend the pipeline with a motion control layer that will open
the path forMPC applications and robust robot deployment. Two
other main research directions will be targeted: the first objective
is providing the user with a set of tools for warm-starting the
optimization problem, delving into the problem of motion
memory as inspired by e.g. Mansard et al. (2018), where
valuable initial guesses are stored in the form of a library of
motions that can speed-up the optimization. The second line of
research will explore path planning and environment
interactions: adding a context for the robot to navigate,
avoiding obstacles and breaking-establishing contacts with the
surroundings towards some goal location. Furthermore, bigger
variety of robots and skills will be tested to generate a database of
off-the-shelf robot routines that can be integrated into
desired applications. Finally, on the computational side, a
range of enhancements is planned to offer a better support
to code generation, as well as deployment to embedded devices.
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APPENDIX: LEAPFROG INTEGRATOR
APPLICATION

Any ODE in n unknowns can be written in the general first-order
form:

_x � f x, u( ) (34)
where x and f are n-component vectors. The so-called Leap-Frog
is a second order accurate method which computes xk+1 as:

xk+1 � xk−1 + 2dtf xk, uk( ) (35)
Any self-starting scheme is required in order initialize the

method by establishing the value of x at k = −1, e.g. by using Euler:

x−1 � x0 + dtf x0,−u0( ) (36)
The Leap-Frog integrator is time-reversible and this property

gives it some very important advantages as it guarantees
conservation of energy and angular momentum for ODEs

with periodic solutions Shampine (2009). Therefore,
in situations where we are interested in long-term small
changes in the properties of a nearly periodic orbit, and where
even small systematic errors would mask the true solution, time-
reversible integrators such as the Leap-Frog scheme are essential.
As an example we consider a scenario where a simple template
robot consisting in a box and two point-feet, is hanged by a rope
and left free to swing from an initial angle. Assuming the rope
mass to be negligible, we can approximate the period of the CoM
oscillatory motion as:

TCoM ≈ 2π
������
L/9.81

√
≈ 2.0 s (37)

where L ≈ 1.0 m is the distance of the CoM from the fixed point
hanging the system. Thanks to the application of the Leap-Frog
integrator, the total energy of the system remains practically
unchanged during the whole control horizon. Using a different
integrator than the Leap-Frog makes the problem diverge, as
shown in Figure 13.
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