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Genetic and non-genetic 
determinants of thymic epithelial 
cell number and function
Daisuke Nagakubo1,2, Brigitte Krauth1 & Thomas Boehm1

The thymus is the site of T cell development in vertebrates. In general, the output of T cells is 
determined by the number of thymic epithelial cells (TECs) and their relative thymopoietic activity. 
Here, we show that the thymopoietic activity of TECs differs dramatically between individual 
mouse strains. Moreover, in males of some strains, TECs perform better on a per cell basis than their 
counterparts in females; in other strains, this situation is reversed. Genetic crosses indicate that TEC 
numbers and thymopoietic capacity are independently controlled. Long-term analysis of functional 
parameters of TECs after castration provides evidence that the number of Foxn1-expressing TECs 
directly correlates with thymopoietic activity. Our study highlights potential complications that can 
arise when comparing parameters of TEC biology across different genetic backgrounds; these could 
affect the interpretation of the outcomes of interventions aimed at modulating thymic activity in 
genetically diverse populations, such as humans.

The thymus is the site of T cell development in all vertebrates1; the thymic rudiment emerges from the pharyngeal 
endoderm in close apposition with neural crest-derived mesenchyme and non-crest mesoderm2, thus represent-
ing the primary lymphoid organ with the longest evolutionary history of spatial and functional conservation3. The 
thymic microenvironment attracts haematopoietic progenitors, specifies them to the T cell lineage, and orches-
trates a complex series of events that culminates in the generation of a diverse population of mature T cells clon-
ally expressing a self-tolerant repertoire of T cell receptors4. It has long been known that lymphopoietic activity in 
the thymus depends on an intact stromal compartment. This is most clearly evident from the observation that an 
alymphoid thymus is observed in mammals carrying mutations that inactivate the Foxn1 gene5, which encodes a 
transcription factor of the forkhead family expressed in the thymic epithelium6. A peculiar feature of the thymus 
is the fact that it grows rapidly during early embryonic and adolescent stages, but then slowly involutes7, so that in 
aged animals only residual thymopoietic areas remain in this tissue8. The phenomenon of thymic involution has 
been associated with a low output of naive T cells and relative immunodeficiency in old age (reviewed in ref. 9). 
It is therefore conceivable that changes over time in the size and functionality of thymic epithelial cells not only 
determine the life history of the thymus but also the immune status of the individual, particularly in old age. With 
respect to the dynamics of the thymic epithelium, previous studies have indicated that the number of epithelial 
cells corresponds to the overall growth pattern of the thymus, with peak thymopoietic activity (expressed as the 
ratio of haematopoietic cells per thymic epithelial cells) at around 4 weeks of age10.

Studies in rodents have indicated that the size of the thymus varies between different strains of rats11 and 
mice12, but comparative studies focusing on their respective thymopoietic activity have not been carried out. 
The question remains as to whether the size of the thymus is associated with an overall larger number of TECs or 
with an increased activity per thymic epithelial cell. Moreover, no systematic analysis of potential strain-specific 
differences in TEC dynamics of male and female mice has yet been carried out. However, this type of information 
is crucial, as strain- and sex-specific differences in TEC number and function directly impact the interpretation 
of phenotypes resulting from perturbations of thymus function. For instance, more than 100 years ago, it was 
noted that castration of male rodents resulted in significant changes in thymus mass13. This observation has since 
been extended in numerous studies (for recent review, see ref. 14) and is even considered as a possible therapeutic 
strategy to reverse age-related thymic involution (for recent review, see ref. 15). Despite the fact that castration 
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causes a rapid increase in thymic cellularity (for instance, see refs 16–18), its long-term effects on this parameter 
have not been studied in great detail. With respect to the effects of castration on the thymic stroma, it was estab-
lished10, 19 that the increase in TEC numbers after castration is due to the expansion of mature mTECs, rather than 
of cTEC-like cells (now known to contain TEC progenitor cells20); although it is conceivable that the proliferative 
burst of TECs is short-lived, long-term follow-up studies have not been carried out. The short-term increase in 
thymus cellularity after sex steroid ablation was linked to an increase in the Ccl25 chemokine19, a key attractant 
for early thymic progenitors21–23, and also to the modulation of expression of Dll424, the crucial Notch ligand 
responsible for T cell specification25–27.

The experiments presented in this report were designed to address some of the unresolved issues in thymus 
biology. Our results provide clear evidence for strain- and sex-specific differences in thymus function; this com-
plex interplay makes it difficult to interpret the outcome of therapeutic interventions aimed at improving thymus 
function in situations of immunodeficiency or during physiological age-related involution.

Results and Discussion
Strain-specific differences.  Previous studies indicated that the weight ratio of thymus to whole body differs 
among different mouse strains and between the sexes12. Here, we focus on two mouse strains, CBA/J and PWK/
PhJ, which were shown to differ both in relative thymus weight and in the male and female ratio of thymus weight 
(http://phenome.jax.org/db/qp?rtn=views/measplot&brieflook=10416&projhint=Deschepper1). We examined 
whether the number of epithelial cells in the thymic microenvironment was correlated with thymus weight; thy-
mus weight is largely determined by the number of haematopoietic cells which outnumber stromal cells by two 
to three orders of magnitude2. We found that the number of thymic epithelial cells (TECs) varies greatly between 
strains. For instance, at 10 weeks of age, the thymus of males of the CBA/J strain is composed of 10.61 ± 1.23 × 104 
(mean ± s.e.m.; n = 6) thymic epithelial cells (TECs), while the thymi of males of the PWK/PhJ strain harbour a 
mere 0.33 ± 0.12 × 104 TECs (mean ± s.e.m.; n = 11) (Fig. 1a), resulting in a 30-fold difference in TEC numbers 
per thymus. In female mice, the difference in TEC numbers is approximately 13-fold (6.58 ± 0.54 × 104 TECs 
[mean ± s.e.m.; n = 7] in CBA/J, and 0.36 ± 0.06 × 104 TECs [mean ± s.e.m.; n = 9] in PWK/PhJ). Of note, the 

Figure 1.  Functional characteristics of thymopoiesis in different mouse strains. (a) Number of thymic epithelial 
cells (TECs) in mice at 10 weeks of age. F1 denotes a hybrid between CBA/J and PWK/PhJ. (b) Number of 
CD45+ thymocytes. (c) Thymopoietic indices, calculated as dimensionless thymocyte/TEC ratios. (d) Non-
linear relationship between thymocyte and TEC numbers; all mice were pooled for this analysis. In (a) to (c), 
means ± s.e.m.
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numbers of TECs also differ between male and female mice of one strain. Whereas male CBA/J mice exhibit 
higher numbers of TECs per thymus than females, the situation is reversed in male PWK/PhJ mice (Fig. 1a).

The numbers of thymocytes in the CBA/J and PWK/PhJ strains also vary, in general agreement with the 
variations in TEC numbers (Fig. 1b). However, when expressed as the numbers of thymocytes per numbers of 
TECs (a measure we refer to here as the thymopoietic index), striking differences between strains and sex become 
evident. In general, the lymphopoietic activity of TECs of the PWK/PhJ strain is several-fold higher than that of 
CBA/J mice; moreover, whereas male CBA/J mice exhibit an overall lower thymopoietic activity than their female 
counterparts, the situation is reversed in PWK/PhJ mice (Fig. 1c). Note that the thymopoietic index represents an 
average value for the epithelial compartment as a whole, and hence does not take into account possible differential 
lymphopoietic activities of different types of TECs. Since our isolation protocol for stromal cells results in com-
plete dissociation of thymic tissue, the observed differences in thymocyte and TEC numbers suggest that thymus 
size is controlled by genetic background and sex.

In order to examine the possible genetic basis of these phenomena, we generated F1 hybrids between CBA/J 
and PWK/PhJ strains. The results shown in Fig. 1a indicate that, compared to the parent strains, F1 males and 
females exhibit intermediate numbers of TECs, suggesting co-dominant contributions of factor(s) regulating the 
size of the TEC compartment. Interestingly, however, the sex-specific differences between male and female mice 
with respect to total TEC numbers phenocopy the PWK/PhJ characteristics; F1 hybrids exhibit a higher number 
of TECs in females than in males; the ratios of the numbers of TECs in females and males are 0.62 for CBA/J, 
1.75 for PWK/PhJ and 1.73 for (CBA/J x PWK/PhJ)F1 hybrids (Fig. 1a). This indicates that the underlying genetic 
determinant(s) of CBA/J regulating these characteristics are recessive when combined with those of PWK/PhJ. 
With respect to thymocyte numbers and thymopoietic indices, F1 hybrid mice again exhibit intermediate val-
ues (Fig. 1b,c). Of note, the male/female ratios of thymopoietic activities again reflect the PWK/PhJ phenotype 
(Fig. 1c). We note that the commonly used C57BL/6 strain exhibits thymopoietic characteristics similar to CBA/J 
mice (Supplementary Fig. 1).

Collectively, these data indicate a non-linear relationship between the number of TECs and the number of 
thymocytes (Fig. 1d), supporting the notion that the strain- and sex-specific qualities rather than the numbers of 
TECs as such are the determining factors of overall thymopoietic activity in the thymus.

Age-related changes.  Having established that both strain and sex determine the magnitude of the thymo-
poietic index, we investigated whether age also affects this parameter. In this regard, it is particularly interesting 
to examine this phenomenon in the PWK/PhJ strain, because of its unusual TEC phenotype. It is well known 
that thymopoietic activity declines with age10, 18, and this phenomenon is also evident in the PWK/PhJ strain. 
Compared to the numbers at two weeks of age, thymic cellularity of PWK/PhJ mice declines by a factor of 2-3 until 
six months of age, with males being disproportionally affected (Fig. 2a); by contrast, the number TECs decreases 
only moderately from adolescence to about 6 months of age (Fig. 2b). As a result, the thymopoietic index declines 
with age (Fig. 2c). A qualitatively similar phenomenon is observed in C57Bl/6 mice (Supplementary Fig. 1; see 
also ref. 28). In a morphometric study on human thymi, it was found that the maximum size of the thymus is 
reached at the age of about one year; hence this suggests that the involution of the epithelial component of the 
thymus is independent of puberty29. Indeed, this corresponds to the finding that within the thymic epithelial com-
partment, the number of Foxn1-expressing cells, the key supporters of thymopoietic activity30, 31, declines shortly 
after birth18, 30. Collectively, the observed age-related changes provide additional support for the notion that the 
quality (for instance, as reflected in the fraction of Foxn1-positive TECs; see below) rather than the quantity of 
TECs is the key factor determining thymopoietic capacity.

Sex-specific differences.  We sought to substantiate this conclusion by exploiting the observation that 
the thymopoietic index differs between males and females (Fig. 1; Supplementary Fig. 1). We were particularly 
interested in the potential role of androgens; to do so, we examined the effects of bilateral orchiectomy on TEC 
numbers and their thymopoietic activity. As shown schematically in Fig. 3a, we castrated male mice at 2 or 6 
months of age and analysed them at about one year of age, that is 10 months (cohort 1) and 6 months (cohort 2)  
after orchiectomy. Untreated males and sham-operated males (which did not differ significantly from each other 
in the parameters investigated here) were used as a combined control group. In our strain of mice (a mixed 
C57Bl/6;FVB background transgenic for Foxn1:eGFP32), 12 month-old control males exhibit about twice as many 
TECs as their female siblings (Fig. 3b). Despite this significant difference in TEC numbers, the thymi of both sexes 
support approximately an equal number of thymocytes (Fig. 3c); this results in a higher thymopoietic index for 
females than males (Fig. 3d), comparable to what is seen in CBA/J (Fig. 1) and C57BL/6 (Supplementary Fig. 1) 
mice. In the male control group, 59.2 ± 1.7% (mean ± s.e.m.) of TECs are eGFP+ (Foxn1-expressing) cells, associ-
ated with a thymopoietic index of 510 ± 76 (mean ± s.e.m.), whereas in female mice, 56.5 ± 1.8% (mean ± s.e.m.) 
of TECs are eGFP+ and associated with a thymopoietic index of 744 ± 124 (mean ± s.e.m.) (Fig. 3b,d). This sug-
gests that each percent of eGFP+ TECs contributes to the thymopoietic index 8.6 points in males, and 13.2 points 
in females, amounting to a decrease of about one third in thymopoietic capacity in the presence of androgens.

Interestingly, males castrated at 2 months of age and analysed about 10 months later have approximately the 
same number of TECs as females of the same age, suggesting that in this strain of mice, androgens are required 
to sustain the larger TEC compartment: by contrast, males castrated at 6 months of age and analysed about 6 
months later exhibit intermediate numbers of TECs, indicating that TEC numbers decline rather slowly following 
androgen withdrawal (Fig. 3b). This observation is in line with results from a recent study of C57BL/6 mice which 
reported lower numbers of TECs in castrated males than in their untreated counterparts28. Remarkably, the num-
bers of thymocytes in castrated males are higher than those of male controls and females (Fig. 3c), resulting in 
thymopoietic capacities that even exceed those of females (Fig. 3d). Thus, although androgen withdrawal reduces 
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the number of TECs, the sudden change in the hormonal milieu is conducive to the generation of thymopoieti-
cally more active TECs.

Next, we studied the possible mechanism for this observation. We found that the higher thymopoietic capac-
ity of TECs in castrated males is associated with a higher percentage of eGFP-positive Foxn1-expressing TECs 
(Fig. 3e). Interestingly, an increase in Foxn1 expression levels was previously observed as early as 8 days after 
castration, although at that time point the number of Foxn1-positive cells had not yet changed18. It thus appears 
that the acute withdrawal of androgens results in rapid18 and sustained changes (Fig. 3d,f) in the composition and 
functional capacity of the thymic microenvironment.

As is evident from Fig. 3f, a linear relationship exists between the magnitude of the thymopoietic index and 
the percentage of eGFP+ (Foxn1-expressing) TECs, indicating that androgens affect the efficiency with which 
eGFP+ TECs support T cell development; i.e., eGFP+ TECs in castrated mice behave as if they were female eGFP+ 
TECs. Androgen withdrawal thus converts “male-type” eGFP+ TECs into their more active “female-type” coun-
terparts, in addition to changing the overall composition of TECs with features of “younger” age10, 18, 30, represent-
ing a cellular correlate of the rejuvenation effect associated with of castration14.

More generally, the present observations provide another example for the notion that Foxn1 expression is 
required for thymopoietic activity30, 31. It also suggests that even a seemingly minor increase in the fraction of 
Foxn1-positive TECs can have a profound effect on the number of developing thymocytes in the thymus.

Conclusions
In conclusion, our study has illustrated a complex interplay between genetic and non-genetic factors regulating 
thymopoietic activity as physiologically relevant key aspects of the thymic microenvironment. Our results set the 
stage for the identification of the genetic factors underlying this striking strain-specific difference in thymopoietic 
phenotype. The present findings reinforce the notion that subtle changes in Foxn1 expression can have dramatic 
effects on thymus function. Hence, future work will be aimed at examining the mechanisms that impact the 
expression of the key Foxn1 transcription factor gene with the aim of achieving a rejuvenation effect without the 
deleterious consequences associated with androgen withdrawal or blockade.

From a practical perspective, our results illustrate the complications arising when comparing parameters 
of TEC biology across different genetic backgrounds. Thus, caution should be exercised when interpreting the 
outcomes of pharmacological or other interventions aimed at modulating thymic activity in genetically diverse 
populations such as humans.

Figure 2.  Time-dependent changes in thymopoietic characteristics in PWK/PhJ mice. (a) Number of CD45+ 
thymocytes. (b) Number of thymic epithelial cells (TECs). (c) Thymopoietic indices, calculated as thymocyte/
TEC ratios. Means ± s.e.m.
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Methods
Mice.  PWK/PhJ mice (wild-derived, inbred strain) were obtained from Jackson Laboratories (stock number 
003715). The strain is descended by sib mating from a single pair of mice of the subspecies Mus musculus muscu-
lus caught in 1974 in Lhotka, Czech Republic33. CBA/J mice (stock number 000656) were obtained from Jackson 
Laboratories. C57BL/6 mice are maintained in the Max Planck Institute of Immunobiology and Epigenetics. 
Foxn1:eGFP transgenic mice were described earlier32. Mice were kept in the animal facility of the Max Planck 
Institute of Immunobiology and Epigenetics under specific pathogen-free conditions. All animal experiments 
were performed in accordance with the relevant guidelines and regulations, approved by the review committee 
of the Max Planck Institute of Immunobiology and Epigenetics and the Regierungspräsidium Freiburg, Germany 
(licence AZ 35-9185.81/G-12/85).

Flow cytometry.  To generate single cell suspensions for TEC staining, thymi were finely minced with scis-
sors, and then digested with a cocktail of collagenase type 4 (200 µg/mL), neutral protease (200 µg/mL) and 
DNaseI (500ng/mL) in RPMI 1640 + 2% FCS for up to 90 minutes at 37 °C with gentle agitation. Digestion was 
routinely carried out in a final volume of 1 ml per thymic lobe. Care was taken to keep the small tissue fragments 

Figure 3.  Long-term consequences of orchiectomy. (a) Two cohorts of male Foxn1:eGFP transgenic mice 
were castrated at either 2 or 6 months of age; their thymopoietic parameters were examined at approximately 
12 months of age (the means and s.e.m. of analysis time points are indicated) and compared to those of a male 
control group (combined cohorts of untreated and sham-operated males, which did not differ in the parameters 
studied here), and of female mice. (b) Number of thymic epithelial cells (TECs). (c) Number of CD45+ 
thymocytes. (d) Thymopoietic indices, calculated as thymocyte/TEC ratios. (e) Fraction of eGFP+ cells as a 
measure of Foxn1-expression in the thymic epithelium. The total numbers (mean values) of eGFP+ TECs is as 
follows. Males: 7,200 cells; cohort 1: 3,200 cells; cohort 2: 5,000 cells; females: 3,000 cells. (f) Linear relationship 
between the thymopoietic indices and the fraction of eGFP+ TECs. Means ± s.e.m.
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afloat during the early phases of the digestion process to facilitate penetration of enzymes into the tissue; in some 
instances, the digestion is carried out in two sequential steps, removing the liberated cells from the superna-
tant after half the incubation time and adding fresh digestion buffer. Following digestion, EDTA was added to a 
final concentration of 2 mM, which facilitates the disaggregation of any remaining small cell clusters of epithelial 
cells presumably owing to the disruption of E-cadherin complexes. In this way, the entire thymic tissue could 
be dissociated into a single cell suspension, avoiding isolation/quantification artefacts associated with possible 
strain-dependent differences in the composition of the thymic microenvironment. Cells were then washed with 
RPMI 1640 + 2% FCS, and re-suspended in PBS supplemented with 0.5% BSA for staining. Cell surface staining 
(see Supplementary Table 1 for antibodies) was performed at 4 °C in PBS supplemented with 0.5% BSA and 0.02% 
NaN3. Thymic epithelial cells have the surface phenotype CD45−/EpCAM+; thymocytes are CD45+/EpCAM−. 
Note that the enzymatic cocktail required to liberate thymic epithelial cells destroys the extracellular domains of 
CD4 and CD8 surface markers (but not that of the CD45 molecule); hence, when analysis of thymocyte subsets is 
required, thymocyte suspensions must be prepared in parallel by mechanical liberation, best achieved by gently 
pressing thymic lobes through 40 µm sieves. For quantitative analysis, consideration must be given to the fact that 
left and right thymic lobes are of different size (the left lobe being invariably smaller).

For the calculation of the thymopoietic index, the number of CD45+/EpCAM− cells was divided by the num-
ber of CD45−/EpCAM+; the index is equivalent to the inverse of the fraction of CD45−/EpCAM+ cells in the flow 
cytometric profile (for instance, a fraction of 0.1% of CD45−/EpCAM+ cells in a preparation is equivalent to a 
thymopoietic index of 1,000).

The fraction of Foxn1-expressing cells was determined by eGFP-fluorescence emanating from the Foxn1:eGFP 
transgene32, which faithfully recapitulates the acute levels of Foxn1 expression18.

Orchiectomy.  This procedure was carried out essentially as described in ref. 34. Sham-operated males under-
went all steps except that after mobilization of the testicles, they were repositioned to their original location. For 
the parameters examined here, no differences were observed for untreated males and sham-operated males; hence 
the results of these groups were pooled for subsequent analysis.

Statistical analysis.  t-tests (two-tailed) were used to determine the significance levels of the differences 
between the means of two independent samples, considering equal or unequal variances as determined by the 
F-test. For multiple tests, the conservative Bonferroni correction was applied.
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