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Abstract

Background: The sheep is an important model organism for many types of medically relevant research, but
molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene
sequences.

Results: Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly
available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation
sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and
sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and
identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based
on these data revealed substantially different expression profiles in standard versus delayed bone healing in an
ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed
healing and between the time points of the standard and delayed healing groups. We used the sheep sequences
to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had
been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified,
some of which showed striking differences between the standard and delayed healing groups. Gene Ontology
(GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix,
cartilage development, contractile fiber, and chemokine activity.

Conclusions: Our results provide a first atlas of gene expression profiles and differentially expressed genes in
standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in
gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987
ovine genes, including 12,431 genes for which no sequence information was previously available. This information
will provide a basis for future molecular research involving the sheep as a model organism.

Background
The sheep is an established model organism for medi-
cally relevant research in cardiology [1,2], reproductive
medicine [3], respiratory medicine [4,5] and many other
fields. The sheep is particularly important in the field of
orthopedics, because the dimensions of ovine long
bones allow the use of implants designed for application
in humans, and the bone mineral composition as well as

the metabolic and remodeling rates are similar to those
in humans [6-10].
Although bone usually heals spontaneously, failures in

bone healing remain an important medical and research
challenge. Bone healing is a highly complex regenerative
process that is directed by a series of cytokines and
growth factors and leads to restoration of skeletal integ-
rity. Despite advances in the field of orthopedic
research, our understanding of the molecular mechan-
isms involved in standard and impaired healing is still
limited, and delayed unions and non-unions are still
major clinical problems.
A tibial osteotomy healing model in sheep is well

established in our laboratory, and its biological and
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mechanical characteristics have been previously pub-
lished [11-17]. The model has been used to simulate
standard healing by means of the application of a rigid
external fixator following osteotomy as well as delayed
healing by application of a rotationally unstable external
fixator.
To date, molecular research in the sheep has been

hampered by the paucity of information about the sheep
genome and gene sequences. Therefore, a systematic
comparison of the expression characteristics of the tran-
scriptome between a standard and impaired healing
osteotomy has not yet been performed. Massively paral-
lel DNA sequencing platforms, widely referred to as
“next-generation sequencing” (NGS), are changing the
playing field in biomedical research by enabling the
comprehensive and relatively inexpensive analysis of
genomes and transcriptomes [18-22]. NGS technologies
have opened the door to genome scale experiments in
organisms that lack comprehensive genome or tran-
scriptome information, making it possible to assemble
novel transcripts and identify differential regulation in a
single experiment [23,24].
We have previously used EST sequencing to investi-

gate genes differentially expressed in the course of stan-
dard bone healing in sheep [25]. In this study, we
compare the gene expression profiles of standard and
delayed bone healing in the sheep by means of next-
generation sequencing and computational analysis of the
sheep transcriptome to identify transcripts of 13,987
ovine genes, for 12,431 of which no mRNA sequence
was previously available. We identified characteristic
clusters of gene expression including several with strik-
ing differences between standard and delayed healing,
some of which have known roles in the extracellular
matrix and skeletal development.

Results
Sheep osteotomy model
A total of 63 female Merino mix sheep (2.5 years old)
with a mean weight of 72 kg (± 10 kg) received a
standardized mid-shaft tibial osteotomy (3 mm gap) sta-
bilized with a monolateral external fixator. Group I (n =
31) received a rigid external fixator, which has been pre-
viously shown to support standard healing [15,16].
Group II (n = 32) was treated with a mechanically criti-
cal external fixator, which allowed free rotation through
a highly stiff stainless-steel tube set in two tapered roller
bearings, thereby producing a distinct delayed healing
[17] (Figure 1A). The standard healing group stabilized
with the rigid external fixator showed uneventful healing
with complete bony bridging by day 42 or 63. In con-
trast, the delayed healing group stabilized with the rota-
tionally unstable external fixator did not reach union by
day 63 (Figure 1B). Calcified histology at day 14 and 21

revealed newly formed bone in the periosteal callus that
was covered by a layer of osteoid seam in the control
group. Furthermore, in regions of intramembranous
bone formation periosteally, mineralization of deposited
osteoid was visible (Figure 1C). In contrast, in the
delayed healing group, an increased amount of osteoid
covering the newly formed bone and less mineralization
of deposited osteoid was found at day 14 (Figure 1D).

Massively parallel sequencing
To date, the use of the sheep to investigate the genetic
correlates of bone healing has been limited owing to the
lack of ovine genome and transcriptome sequences. The
purpose of the current project was therefore to generate
an initial sheep transcriptome using next-generation
technologies and to perform an exploratory analysis of
differential gene expression between standard and
delayed healing in the sheep.
We developed a bioinformatics workflow (Figure 2)

that would take advantage of ovine sequences where
possible and otherwise use homologous sequences from
mouse and cow for mapping short reads. We analyzed
one flowcell with eight lanes of samples at different time
points of standard and delayed healing. Pooled samples
were obtained from 5-6 animals each at four different
time points (7, 11, 14, 21 days). Each sample was run in
a single lane of the flowcell, resulting in 18-27 million
76 bp reads per lane corresponding to 9-14 million
unique reads per lane with a total of 177 million reads
including 69 million unique reads (Table 1).

De novo transcriptome assembly
Prior to de novo assembly the reads from all lanes of the
flowcell were pooled and duplicate reads were removed
to generate a list with each different sequence repre-
sented only once. The best mean read score for a single
unique read was preserved. The list of unique reads was
then trimmed by removing base calls from the 3’ end of
the read with Phred (quality) score [26] of 2 or less.
A total of 4,599 ovine mRNA genbank entries (corre-
sponding to 1,556 genes) and 325,596 ovine ESTs were
downloaded from the NCBI database using the E-Utils
[27]. NCBI reference sequences containing one or more
ambiguous bases (’N’) were removed from further analy-
sis, such that 4,363 mRNA and 294,896 EST sequence
files were available for the assembly. De novo assembly
using the mRNAs, the ESTs, and the uniquified and
trimmed reads was then performed using Velvet [28].
Velvet output a total of 830,469 contigs with an average
length of 134 bp. Oases is a de novo transcriptome
assembler designed to produce extended contigs from
short read sequencing technologies in the absence of
any genomic assembly. It clusters the contigs from a
preliminary assembly by Velvet into small groups called
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loci and uses a de Bruijn graph-based algorithm to con-
struct transcript isoforms [29]. The contigs produced by
Velvet were postprocessed using Oases yielding 85,555
loci (gene predictions) comprising a total of 117,594
extended contigs with an average length of 1,374 bp.
56,298 loci exceeded the minimum length threshold of
150 bp and were included in further analysis (Table 2).
For each of the 56,298 loci, the contig with the highest
Oases confidence score was chosen for further analysis.
The average length of these contigs was 956 bp.
BLAST was used to identify the gene models by com-

paring the contig sequences to available sheep, cow, and
mouse mRNA sequences. The resulting hits (limited to
only the one best matching sequence per query
sequence) were filtered for matches with significant
E-value according to the species being compared and
percentage of identical matches meeting the require-
ments shown in Table 3. In comparison to Ovis aries,
more reference sequences are available for Bos taurus
including various splice variants. Therefore, a higher
identity cut-off was used to identify cow ortholog tran-
script models. 22,117 contigs were annotated to a gene
symbol using this pipeline. The average length of the
annotated contigs was 1,662 bp, and the longest single
annotated contig was 21,746 bp long and annotated to
dystonin (DST). There were 34,181 contigs which could

not be assigned to any mouse, cow or sheep transcript,
and these were excluded from further analysis.

Read mapping
The de novo transcriptome was then combined with all
available 4,599 ovine mRNA sequence files as well as all
43,102 bovine mRNA sequence files from NCBI for
mapping of the short reads with Bowtie [30]. The Bow-
tie mapping algorithm was used to map short reads
with a seed length of 18 and a maximum of three
allowed mismatches in the seed. In each lane each read
was mapped to a single gene. On average, about 75% of
the short reads could be mapped (Table 4). The use of
Bos taurus transcripts for the mapping substantially
increased the number of mappable reads (Figure 3).

Evaluation of differential gene expression
Each of the lanes corresponded to a pooled sample of
5-6 animals at one time point. As one lane per condi-
tion was available, differential expression between condi-
tions was evaluated using the Audic-Claverie method
[31,32] in order to enable exploratory analysis. The raw
counts of the reads mapped as described above were
used for the Audic-Claverie analysis. In addition, RPKM
analysis was used to estimate the fold change. Gene
expression was compared between the time point 7 days

Figure 1 Sheep Bone Healing Model. A Standard bone healing was investigated in a 3 mm tibial osteotomy model stabilized with a medially
mounted rigid external fixator (left). Delayed healing was investigated in a 3 mm tibial osteotomy model stabilized with a medially mounted
rotationally unstable (right) external fixator (caudo-lateral view). B Cranio-caudal radiographs of the rigid (left) and unstable (right) fixator group 63
days post-operation. Images modified from Schell et al. 2008 [17]. C Photomicrographs of representative histological sections of the periosteal bony
callus at 14 days from standard healing. Newly formed bone in the periosteal callus covered by a layer of osteoid seam (asterisks, left image) and
region of intramembranous bone formation (right image) with mineralization of deposited osteoid (asterisks). D Photomicrographs of
representative histological sections of the periosteal bony callus at 14 days from delayed healing. Increased amount of osteoid (asterisks) covering
the newly formed bone (left image) and less mineralization of deposited osteoid (right image). (C, D) Movat Pentachrome staining (left column),
Safranin-Orange/von Kossa staining (right column). MdB: mineralized bone. The scale bars in lower right hand corners are equal to 100 μm.
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and those at 11, 14, and 21 days for both standard and
delayed healing. In addition, each of the individual time
points was compared between the standard and the
delayed healing groups. A gene was considered to be
differentially expressed if the Audic-Claverie p-value was

< 10 -15 and the fold change of the normalized (RPKM)
expression values was at least 2 in either direction (see
also Additional file 1: Supplemental Figure S2). There
were 5 genes differentially expressed between standard
and delayed healing at day 7, 173 at day 11, 59 at day

Figure 2 Bioinformatics workflow. The figure summarizes computational procedures for assembly, annotation, and mapping of the NGS reads.
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14, and 109 at day 21. Within the time course of stan-
dard healing, there were 177 genes differentially
expressed between day 11 and 7, 265 between day 14
and 7, and 318 between day 21 and 7. Within the time
course of delayed healing, there were 136 genes differen-
tially expressed between day 11 and 7, 139 between day
14 and 7, and 259 between day 21 and 7. This corre-
sponded to a total of 884 distinct genes showing differ-
ential expression in at least one comparison. Q-PCR

analysis of the pooled samples for 26 selected genes
confirmed the analysis of the RPKM values (Additional
file 1: Supplemental Tables S1-S4 and Figure S3).

Clustering and GO analysis
Hierarchical clustering was performed to identify groups
of genes with similar expression profiles. A total of 13
clusters were identified by visual inspection. Figure 4
shows the expression profile for standard and delayed
healing groups. The heat plot on the left displays the
expression patterns for all genes. Separate plots are
shown for each cluster with the average and standard
deviations of the RPKM expression values. There were
clusters with relatively minor differences between the
standard and delayed healing groups, and several others
with marked differences between the groups. Model-
based gene set (MGSA) Gene Ontology analysis [33]
was performed for each of the clusters, and up to three
GO terms with a marginal probability of at least 50%
and the highest number of annotated genes are shown
(Figure 4). Additionally, MGSA was performed for the
entire set of 884 differentially expressed genes (Table 5).
The GO terms include terms such as extracellular

matrix and chemokine activity with well known roles in
skeletal biology and bone healing. 24 of the differentially
expressed genes were annotated to striated muscle
contraction, and 45 to contractile fiber. The role of
a-smooth muscle actin fibroblasts in the contraction of
skin wounds is well known; smooth-muscle actin
expressing connective tissue cells have also been shown
to take part in fracture healing [34], and our results
could be a reflection of this phenomenon. Therefore, we
investigated all differentially expressed genes annotated
to contractile fiber (n = 45). Most of these genes are
localized in clusters E and G (Figure 4) and were more
highly expressed in standard healing at day 11 and 14,
and more highly expressed in the delayed healing group
at day 21, consistent with a delay in the regulation of
these genes (Figure 5A). Several of the genes annotated
to striated muscle contraction and contractile fiber
overlap with genes annotated to calcium ion binding
(n = 59). These genes were also significantly more
highly expressed in standard healing at day 11 and day 14
(Figure 5B) where clear signs of mineralization were
shown by histology (Figure 1C). In contrast, differentially

Table 1 Read counts

lane reads unique reads

1 22,145,090 11,682,018

2 23,356,043 12,420,275

3 27,617,415 14,663,522

4 20,234,612 10,168,941

5 24,793,840 12,944,693

6 18,894,344 9,796,924

7 18,788,777 10,383,698

8 21,722,529 12,302,346

all 177,552,650 69,019,744

Lanes 1, 3, 5, and 7 correspond to standard bone healing on days 7, 11, 14,
and 21, and lanes 2, 4, 6, and 8 to delayed healing on days 7, 11, 14, and 21.

Table 2 Results of the de novo assembly using Velvet
and Oases

Source Description number

Velvet Contigs 830,469

Average contig length (bp) 134

Oases Extended contigs 117,594

loci 85,555

loci > 150 bp 56,298

loci (quality filtered + annotated) 22,117

Number of unique mappable sheep genes 13,546

Average annotated contig length (bp) 1,662

NCBI ovine genbank mRNA entries 4,599

ovine genes with known mRNA sequence 1,556

ovine EST entries 325,596

bovine genbank mRNA entries 43,102

bovine genes with known mRNA sequence 16,052

Assembly Total sheep genes with known mRNA sequence 13,987

Following all quality control and filtering steps, there were a total of 24,325
mappable genes. For 21,865 of these genes, positive counts were detected in
all 8 lanes, and these genes were used for the further analysis of differential
expression. A gene with known mRNA sequence refers to a gene with a gene
symbol for which at least one mRNA sequence was found. Note that mRNA
sequence entries assigned to hypothetical genes were not included, and that
multiple sequence entries were found for some genes. A unique mappable
sheep gene refers to a set of one or more Oases loci that could be mapped to
a unique gene symbol via BLASTing to sheep, cow, or mouse sequences. The
total number of sheep genes with known RNA sequence is derived from the
union of de novo assembled genes and previously sequenced genes, 1,115 of
which overlapped.

Table 3 Threshold settings used for homolog mapping
using Blastx/n

identical matches expect value

Blastx (mouse) ≥ 80% ≤ 1-20

Blastn (sheep) ≥ 90% ≤ 1-50

Blastn (cow) ≥ 97% ≤ 1-50

Only Blast matches fulfilling both conditions were considered as true
orthologs.
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Table 4 Read counts for the 8 lanes as mapped with Bowtie

Sheep (%) Cow (%)

lane reads mapped reads % annot unannot de novo annot unannot

1 22,145,090 17,127,532 77.3 11.8 0.1 51.2 35.4 1.5

2 23,356,043 17,964,339 76.9 11.5 0.1 51.4 35.5 1.5

3 27,617,415 17,964,339 76.3 10.8 0.4 48.7 38.6 1.5

4 20,234,612 14,980,730 74.0 10.5 0.1 47.6 40.4 1.3

5 24,793,840 18,367,757 74.1 12.1 0.2 48.4 37.6 1.7

6 18,894,344 13,810,552 73.1 11.0 0.1 48.6 38.7 1.5

7 18,788,777 13,599,338 73.1 12.1 0.2 49.6 36.7 1.4

8 21,722,529 14,276,174 65.7 11.8 0.2 48.2 38.2 1.5

The sections entitled Sheep (Ovis aries) and Cow (Bos taurus) indicate the percentage of the corresponding target sequences for the mapped reads for each of
the eight lanes. See also Figure 3.

Figure 3 Composite reference transcriptome assembly and assignment of short read sequences. A De novo transcriptome assembly was
performed with Velvet and Oases on the basis of mRNA sequence entries from GenBank for sheep and cow as well as the de novo assembled
contigs from this study. All sequences were used as targets to map the short reads. The pie chart shows the relative proportions of the
sequence entries from each of the sources used for the mapping (OAR = Ovis aries, BTA = Bos taurus). B The distribution of the targets that
were matched by bowtie for short read mapping are shown. Most reads mapped to the de novo transcriptome assembly, but it was possible to
map a substantial number of additional reads by use of the Ovis aries and Bos taurus mRNA sequences. Table 4 displays the exact counts for
each lane.
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expressed genes that were annotated to cartilage develop-
ment (n = 10) showed a characteristic upregulation in the
latter two time points of delayed healing (Figure 5C).
These genes are a subgroup of genes that are annotated
to the GO term skeletal system development, which was
significant in the MGSA analysis of cluster F (Figure 4).

Especially during the early phase of bone healing, fun-
damental processes such as inflammation are strongly
influenced by the mechanical conditions under which
bone healing takes place [35,36]. In our experiment,
genes annotated to response to wounding (n = 84) were
consistently more highly expressed in the standard

Figure 4 Gene Clustering. Cluster of the 884 genes significant in at least one experimental condition between time points using Audic-Claverie
testing (p-value < 10 -15) and a fold change of at least 2. The normalized (mean 0, standard deviation 1) RPKM values were calculated separately
for standard and delayed healing. We could identify 13 clusters by visual inspection of the heatmap, where blue indicates low and red high
expression. For each cluster the normalized relative expression with mean and standard deviation per day and condition were plotted (center)
and a maximum of three most significant Gene Ontology terms (right) are shown. The Gene Ontology analysis was performed using the
Ontologizer with MGSA (see methods).
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healing group (Figure 5D). This term is a parent term of
inflammatory response (cluster I) and related to defense
response (cluster K and L). In agreement with the biolo-
gical observation that the inflammatory phase of bone
healing takes place in the first few days [37] most genes
annotated to these terms showed the highest expression
at day 7 both in standard and in delayed healing. In a
similar fashion genes annotated to cell division (n = 29)
showed the highest expression levels at day 7 (cluster
L). These genes were consistently more highly expressed
in the delayed healing group at the later time points
(Figure 5E). Genes involved in complement activation
were significantly overrepresented in all 884 differen-
tially expressed genes (Table 5) and were from day 11
on significantly more highly expressed in the standard
healing group (Figure 5F).

Discussion
Most bony injuries heal without problems, but there are
several conditions under which enhancement of the
repair process would be of great benefit to ensure the
rapid restoration of skeletal function. Animal models are
essential for investigating the different molecular pro-
cesses underlying bone healing. Several studies have
identified molecular differences between standard heal-
ing fractures and experimentally induced delayed healing
or non-unions [38-40], but these studies have been per-
formed in small-animal models. Currently, investigative
tools are still limited for analyses in large-animal models
such as sheep and relatively little research has been per-
formed into sheep genetics. However, the sheep model
is critical for medical applications because the size of
the bone, the loading, and the time to healing are com-
parable to human fracture healing [6].
A virtual sheep genome has been constructed by map-

ping ovine contigs obtained by 454 sequencing onto
bovine sequences that had been rearranged in sheep
order [41-44]. At present, however, only low coverage

genomic data is available. The sequences presented in
this work will represent a valuable and complementary
resource to current efforts to sequence the sheep
genome.
In previous studies, we have focused on investigating

the expression of specific genes during mechanically
induced delayed healing in the sheep osteotomy model
compared to standard healing [12,13]. The present study
is the first conducting a systematic comparison of the
expression characteristics of the transcriptome between
a standard and impaired healing osteotomy in a large-
animal model. A limitation of our study is the fact that
only a single pooled sample could be investigated for
each condition. The Audic-Claverie test allows an esti-
mation of the statistical significance of observed differ-
ences in the counts of genes that are interpreted as
differential expression, but may tend to overestimate sig-
nificance. For this reason, we applied a stringent P-value
cutoff (a gene was considered differentially expressed
with a Benjamini-Hochberg corrected P-value of
p < 10 -15 and a fold-change of at least 2-fold). With
this proviso, our study has identified a large number of
differentially expressed genes corresponding to biologi-
cal categories that are thought to be most relevant for
bone healing. For instance, transcriptome-wide analyses
revealed that about 9% (81/884) of the genes found to
be differentially expressed during bone healing are anno-
tated to extracellular matrix. Some of these ECM genes
are typically found in cartilage. Semi-rigid fixation asso-
ciated with delayed healing results in a larger cartilage
component of the callus, which persisted longer [11]. In
agreement with this observation, our study showed
higher expression of genes related to cartilage formation
after mechanically critical fixation with higher instability
of the bone fragments. Cytokines play important roles
during bone healing and were shown to be significantly
overrepresented in the MGSA analysis. We additionally
identified a large set of genes annotated to striated mus-
cle contraction and contractile fiber that displayed a
characteristic shift in delayed bone healing. Genes from
these categories have not previously been known to be
differentially expressed in bone healing. More research
will be required to identify the cell types within the frac-
ture callus that express these genes and to elucidate
their functional role. The fact that many genes whose
proteins are involved in binding calcium ions are differ-
entially expressed provides leads as to the molecular
correlates of the differential mineralization observed in
delayed bone healing.

Conclusions
RNA-Seq is an approach to expression profiling based
on next-generation sequencing technologies, whereby a
sample of RNA is converted to a library of cDNA

Table 5 Model-based gene set analysis

ID Name Marginal Count

GO:0031012 extracellular matrix 0.984 81/299

GO:0006941 striated muscle contraction 0.913 24/54

GO:0043292 contractile fiber 0.847 45/113

GO:0006096 glycolysis 0.680 13/48

GO:0051384 response to glucocorticoid stimulus 0.635 20/79

GO:0008009 chemokine activity 0.583 9/33

GO:0006956 complement activation 0.502 14/34

GO:0042246 tissue regeneration 0.481 9/28

The 884 differentially expressed genes were analyzed as the study set in
comparison to a total of 15,343 mapped ovine genes for which a human
gene symbol was identified. The column ‘marginal’ indicates the marginal
probability of a term being in the ‘active’ state, and the column ‘count’ shows
the counts of genes in the study (x) and population (y) sets as x/y.
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Figure 5 Differentially expression of genes annotated to selected GO-terms. A contractile fiber (GO:0043292), B calcium ion binding
(GO:0005509), C cartilage development (GO:0051216), D response to wounding (GO:0009611), E cell division (GO:0051301), and F complement
activation (GO:0006956). The normalized RPKM values of all significantly differentially expressed genes annotated to the indicated GO terms from
standard healing were divided by the corresponding RPKM values from delayed healing. Positive values indicate higher expression levels in
standard healing, negative values higher expression levels in delayed healing. A t-test against the null-hypothesis that there is no difference
between the healing groups was performed (*p < 0.05, **p < 0.01).
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fragments attached to adaptors. Individual molecules,
with or without amplification, are then sequenced in a
high throughput fashion [45]. For model organisms such
as the sheep for which relatively few gene sequences
have been previously published, RNA-seq allows com-
bined identification of previously unsequenced
transcripts together with transcriptome analysis. Prior to
this study, partial or complete mRNA sequences corre-
sponding to 1,556 ovine genes were publicly available.
In the course of this project, partial or complete tran-
script sequences were generated for 13,987 ovine genes,
corresponding to a nearly nine-fold increase in the num-
ber of sheep genes with publicly available sequence
information. A FASTA file with sequences of the longest
available transcript for each of the 13,987 ovine genes is
available as Additional File 2. The short reads have been
deposited in NCBI’s short read archive.

Methods
Surgical procedure
All animal experiments were conducted following
national regulations for the care and use of laboratory
animals and approved by the local legal representative
(Landesamt für Gesundheit und Soziales Berlin: G0127/
07, G0172/04). Surgery was performed as described pre-
viously [12,17]. The newly generated tissues were har-
vested at days 7, 11, 14 and 21 after surgery. For all
time points the sample size was n = 6 for both groups,
except for day 21 (group I, n = 5; group II, n = 6). In
the 7 day groups, the tissue formed in the gap was har-
vested under general anesthesia and the animals were
sacrificed 14 days after osteotomy, for comparative ana-
lysis of healing after hematoma harvesting which will be
reported in another study. In the other groups, tissue
harvesting occurred after euthanasia and involved
removal of newly formed tissue at the osteotomy site
(within the gap and along the periosteal/endosteal sur-
faces of the bone fragments). Tissue was placed in an
RNA stabilization reagent (RNAlater; Qiagen, Hilden,
Germany) for storage at -80°C.

RNA extraction
Total RNA was isolated from the tissues using the
RNeasy Maxi Kit (Qiagen) according to the manufac-
turer’s instructions. The concentration of each RNA
sample was determined spectrophotometrically and
the integrity of all RNA samples was monitored on
agarose gels.

Histology
For histological examination, the callus regions of the
explanted tibiae from additional animals of the standard
and delayed healing groups euthanized at the day 14
(n = 4 each) were sectioned into 3 mm slices in the

frontal plane. For calcified histology, histological slices
were dehydrated with alcohol and xylol, embedded in
methylmetacrylate (Technovit 9100 NEU, Heraeus Kul-
zer, Germany), cut into 6 μm-thick sections and stained
with Movat Pentachrome and Safranin Orange/von
Kossa.

Library preparation and Massively parallel sequencing
In each experimental group total RNA of all samples per
time point was pooled prior to library preparation. All
libraries were prepared using the mRNA-Seq sample
prep Kit (Illumina, San Diego, CA USA) according to
the manufacturer’s instruction. Clusters were generated
with Illumina’s v4 Single Read Cluster Generation Kit.
Each library was loaded onto one lane of the flow cell at
7 pM concentration. The flow cell was then sequenced
on a Genome Analyzer IIx (Illumina) for 76 cycles with
v4 sequencing kits following the standard protocol and
using SCS v2.6 software.

Expression profiling and Analysis of Differential
Expression
The mapped read counts for each gene were normal-
ized for RNA length and for the total read number in
the lane according to reads per kilobase of exon model
per million mapped reads (RPKM), which facilitates
comparison of transcript levels between samples [45].
The Audic-Claverie method was used to estimate dif-
ferential expression between standard and delayed
bone healing at the same time point as well as for the
comparison of different time points within each group.
The Audic-Claverie method, which was originally
developed for SAGE data, is based on the assumption
that the counts of each gene in each of two libraries
under comparison follow the same unknown Poisson
distribution, and thus allows an estimation of differen-
tial expression based on single measurements for two
conditions [31]. Fold changes were calculated after
quantile normalization of the RPKM values (Additional
file 1: Supplemental Figure S1).

Gene Ontology Analysis
Gene Ontology [46] annotations for the 21,865 sheep
gene models were obtained by mapping the gene sym-
bols for the sheep gene models to human gene symbols
(n = 15,343) using bioMart [47]. GO annotations were
available for 13,785 of these genes. Model-based gene
set analysis (MGSA) was used to perform Gene Ontol-
ogy analysis. MGSA analyzes all GO terms at once by
embedding them in a Bayesian network, in which gene
response is modeled as a function of the activation of
the GO terms and probabilistic inference is used to
identify the active categories [33]. Analysis was per-
formed using the Ontologizer [48].
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Clustering
For each gene determined to be differentially expressed,
normalized RPKM values were transformed to a mean
of zero and a standard deviation of one separately for
the standard and delayed healing groups (four time
points each). The normalized values were then com-
bined into vectors of 8 values per gene. Hierarchical
clustering was performed to group genes according to
similarity in pattern of gene expression [49].

Short read sequences
The data from the experiments described in this work
are available from the NCBI Sequence Read Archive at
http://www.ncbi.nlm.nih.gov/sra under the accession
number SRA020182.

Quantitative PCR (Q-PCR)
After transcription of 1 μg RNA into cDNA (RevertAid H
minus cDNA Synthesis Kit, Fermentas) quantitative RT-
PCR was performed in MicroAmp optical 384-well plates
on ABI Prism 7900 Sequence Detection System in a total
volume of 12 μl in each well containing 6 μl of Power
SYBR Green PCR Master Mix (Applied Biosystems), 5 μl
cDNA (in a 1:50 dilution) and 1 μl primers (0.2 μmol
each). For some RNA samples with lower concentrations,
higher volumes were reverse transcribed, and the cDNA
dilutions were adapted accordingly prior to Q-PCR analy-
sis. For validation of the target genes obtained from
RNA-seq equal amounts of cDNA were pooled for each
group and time point. Primer pairs were designed to
span exon-exon junctions. Primer sequences can be
obtained upon request. All samples were run in tripli-
cates in separate tubes to permit the quantification of the
target genes’ mRNA expression relative to the mean
expression of GTPB1, HDAC6 and SNRPN, i.e. three sta-
bly and highly expressed genes obtained from the RNA-
seq data. Q-PCR result data was exported from the SDS
2.3 software (Applied Biosystems) and further analyzed
as described previously [50].

Additional material

Additional file 1: Supplementary Information. A PDF file with
Supplementary Figures S1 - S3 and Supplementary Table S1 - S4.

Additional file 2: Ovis aries composite transcriptome. A FASTA file
containing the sequence of the longest transcript of each of the 13,987
ovine gene models.
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