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Abstract: The conformations and surface properties of nanoparticles have been modified to improve
the efficiency of drug delivery. However, when nanoparticles flow through the bloodstream, they
interact with various plasma proteins, leading to the formation of protein layers on the nanoparticle
surface, called protein corona. Experiments have shown that protein corona modulates nanoparticle
size, shape, and surface properties and, thus, influence the aggregation of nanoparticles and their
interactions with cell membranes, which can increases or decreases the delivery efficiency. To comple-
ment these experimental findings and understand atomic-level phenomena that cannot be captured
by experiments, molecular dynamics (MD) simulations have been performed for the past decade.
Here, we aim to review the critical role of MD simulations to understand (1) the conformation,
binding site, and strength of plasma proteins that are adsorbed onto nanoparticle surfaces, (2) the
competitive adsorption and desorption of plasma proteins on nanoparticle surfaces, and (3) the
interactions between protein-coated nanoparticles and cell membranes. MD simulations have suc-
cessfully predicted the competitive binding and conformation of protein corona and its effect on the
nanoparticle–nanoparticle and nanoparticle–membrane interactions. In particular, simulations have
uncovered the mechanism regarding the competitive adsorption and desorption of plasma proteins,
which helps to explain the Vroman effect. Overall, these findings indicate that simulations can now
provide predications in excellent agreement with experimental observations as well as atomic-scale
insights into protein corona formation and interactions.

Keywords: protein corona; molecular dynamics simulation; drug delivery; nanomedicine; protein-
nanoparticle interaction; protein-protein interaction

1. Introduction

Nanoparticles have been studied for drug delivery and antitumor therapeutics [1–5].
Experimental and theoretical studies have mostly focused on modulating the size, struc-
ture, and surface properties of nanoparticles, in order to increase the targeting efficiency of
nanoparticles [6–10]. However, when nanoparticles flow through the bloodstream, they
interact with various plasma proteins and, thus, their surfaces are often covered by multiple
protein layers, a process called protein corona [11,12]. The formation of protein corona
influences conformations and surface properties of nanoparticles, which can significantly
increase or decrease the targeting efficiency and cytotoxicity via electrostatic and hydropho-
bic interactions between nanoparticles and cell membranes [11,13–18]. The mechanism of
protein corona formation and the effect of protein corona on nanoparticle properties and
interactions with cell membranes need to be studied at nearly the atomic scale in order to
understand this and complement relevant experiments, as can be done using molecular
dynamics (MD) simulations. Because the system containing multiple plasma proteins
and nanoparticles is too large to simulate using all-atom models, theoretical studies, such
as kinetic mean-field theory (MFT), density functional theory (DFT), and monte carlo
(MC) simulations have been mainly performed until 2000s, but advances on computer
power and force-field development make it possible to perform MD simulations of the
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nanoparticle complexed with plasma proteins for the past decade. Figure 1 shows that
citations for research papers regarding MD simulations under the topic of protein corona
have drastically increased, which will be thoroughly reviewed here, with a focus on plasma
proteins, but not on other molecules, such as peptides and synthetic polymers. Zhdanov’s
review paper is highly recommended for MFT, DFT, and MC simulations of protein corona
on nanoparticles [19]. In this review, we aim to show that MD simulations can successfully
predict the experimentally observed compositions and structures of protein corona and
their interactions with lipid membranes, as. well as help to explain the mechanism of the
Vroman effect regarding the competitive adsorption and desorption of plasma proteins on
the nanoparticle surface.
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Figure 1. The number of citation of research articles under the topic of protein corona studied by molecular dynamics
simulations as of April/2021.

2. Conformation, Binding Site and Strength of Plasma Proteins on the Nanoparticle
2.1. Gold Nanoparticles

Wang et al. simulated bovine serum albumin (BSA) that was adsorbed onto gold
nanorods (AuNRs) and determined the binding site and conformational change of BSA [20].
Ramezani and Rafii-Tabar simulated human serum albumin (HSA) that was adsorbed
onto gold nanoparticles (AuNPs), which showed the unfolding of adsorbed HSA and
determined the key amino acids for the HSA-AuNP binding [21]. Tavanti et al.’s coarse-
grained (CG) simulations showed that, when ubiquitin binds to AuNP, the protein is
reoriented on the AuNP surface to optimize the ubiquitin-AuNP interaction, depending
on the particle size and environment [22]. Shao and Hall’s CG simulations showed that
isotherms of protein adsorption are well described by the Langmuir, Freundlich, Temkin,
and Kiselev models, which suggests a generalized model for the adsorption of proteins onto
nanoparticles [23]. They also found that the HSA-AuNP binding induces the flexibility
and structural changes of HSA, which allosterically influences the binding affinity of
HSA to fatty acids, thyroxin, and metals [24]. Yang et al. simulated beta-lactoglobulin
that was bound to AuNP and determined its binding site and structural change, which
are interpreted by electrostatic interactions [25]. Tollefson et al. simulated cytochrome
c that was bound to a mercaptopropionic acid-functionalized AuNP and determined the
preferred binding orientations of adsorbed proteins (Figure 2) [26].
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Figure 2. Orientations of cytochrome c adsorbed onto the 4 nm-sized mercaptopropionic acid-
functionalized AuNP: (a) K22 and K86 facing the NP, (b) K86 and K87 facing the NP. Reproduced
with permission from [26], American Chemical Society, 2019.

Power et al. calculated the adsorption free energies for amino acids and various plasma
proteins, such as surfactant protein, ubiquitin, hemoglobin, myoglobin, transferrin (TF),
macroglobulin alpha, HSA, alpha-1-antitrypsin, and immunoglobulin A, E, and G (IgA,
IgE, and IgG), which helps to predict their binding affinity to differently sized AuNPs [27].
Lu et al. simulated HSA, IgE, and apolipoprotein (APO) that were bound to graphene and
Au nanosheets, showing that the binding strength and secondary structures of proteins
can be modulated by the number and distribution of hydroxyl groups that were grafted on
the nanosheet surface [28]. Taha and Lee performed DFT, MC, and MD simulations of the
adsorption of cyclo-alanine dipeptide (c(AA)) molecules onto AuNP and compared the
interaction forces of c(AA)-water, c(AA)-c(AA), and AuNP-c(AA), showing that methyl
groups of alanine sidechains strengthen the binding between peptides and Au clusters [29].
Jahan Sajib et al. simulated ovispirin-1 and lysozyme adsorbed onto AuNP, showing that
adsorbed ovispirin and lysozyme, respectively, form a homogeneous single layer and
inhomogeneous multilayers on the AuNP surface, and that the size of AuNP influences
the structural change and binding orientation of adsorbed proteins (Figure 3) [30].
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2.2. Silver Nanoparticles

Kakinen et al. performed both all-atom and CG simulations of a luciferase molecule
that was adsorbed onto the citrated-coated silver nanoparticle (AgNP) and observed its
structural change upon binding to AgNP because of electrostatic interactions between
anionic luciferase residues and cationic AgNP surfaces [31]. Ding et al. found that the
adsorption amount of ubiquitin onto AgNP follows an unusual stretched-exponential
binding kinetics instead of a typical single exponential binding kinetics, in agreement with
the experiments [32]. Li et al. also observed that, when APO adsorbs to the AgNP surface,
their dynamics and structures change, depending on the ion concentration [33]. Wang et al.
performed replica-exchange discrete MD simulations of lysozyme and alpha-lactalbumin
(ALact) interacting with AgNPs, showing different effects of protein adsorption on the
secondary structure and binding strength, consistent with the experimental results [34].
Nayak et al. simulated bovine lactoferrin (BLf) adsorbed onto AgNP and found that the
BLf-AgNP binding is modulated by van der Waals interactions and hydrogen bonds [35].

2.3. Carbon Nanomaterials

Ge et al. simulated bovine fibrinogen (FG), IgG, TF, and BSA adsorbed onto the single-
walled carbon nanotube (SWCNT), showing that contact residue numbers and surface
areas of adsorbed proteins are in the order of FG > IgG > TF > BSA, in agreement with
experiments [36]. In particular, they found that π-π stacking interactions are important for
the binding between proteins and SWCNTs [36]. Sengupta et al. simulated BSA that was
interacting with differently charged carbon nanomaterials, showing the unfolding of BSA
and enhanced conformational entropy [37]. Our group simulated HSA and FG interacting
with SWCNTs covalently functionalized or noncovalently coated with polyethylene glycol
(PEG) chains of different sizes and grafting densities, showing that spherical HSA more
weakly bind to the SWCNT than the linearly-shaped FG do, and that PEG chains can
sterically suppress the adsorption of plasma proteins onto the SWCNT surface [38].

2.4. Polymer-Grafted Nanoparticles

Our group performed CG simulations of HSA interacting with PEG-grafted mem-
branes, showing that the adsorption of HSA onto the membrane surface is sterically
suppressed by grafted PEG chains in an extended brush, but not in a mushroom (Figure 4),
in agreement with experiments showing less adsorption of plasma proteins onto the
nanoparticle or liposome surface that was grafted with PEG in the brush state [39]. Set-
tanni et al. determined the composition of specific amino acids that bind to PEG- and
poly(phosphoester)-coated nanoparticles [40]. They also simulated the adsorption of HSA
onto the nanoparticle that was coated with hydrophilic polymers and analyzed the kinetics
of protein adsorption and its effect on the polymer conformation [41].
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2.5. Others

Lopez and Lobaskin performed CG simulations of HSA, antitrypsin, macroglobulin,
FG, TF, and IgG that were bound to charged and neutral nanoparticles of different sizes,
showing the dependence of the binding affinity on the protein type, particle size and
electrostatics (Figure 5) [42]. In particular, they ranked the binding affinity of those six
plasma proteins, in agreement with the experimental results [42,43].
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Figure 5. Orientations of fibrinogen (FG) adsorbed onto a neutral nanoparticle of radius (a) 5, (b) 20, (c) 50, and (d) 100 nm.
Reproduced with permission from [42], American Institute of Physics, 2015.

Yu and Zhou simulated the adsorption of lysozyme onto differently sized silica-
nanoparticles, showing the effect of particle curvature on the interfacial hydration, orien-
tation, and conformational change of adsorbed proteins [44]. Wei et al. developed a CG
model that can be applied to predict the conformation and adsorption behavior of proteins
that were adsorbed onto nanoparticles with different sizes and surface groups (Figure 6),
in agreement with experimental results [45].

Pharmaceutics 2021, 13, 637 5 of 13 
 

 

2.5. Others 

Lopez and Lobaskin performed CG simulations of HSA, antitrypsin, macroglobulin, 

FG, TF, and IgG that were bound to charged and neutral nanoparticles of different sizes, 

showing the dependence of the binding affinity on the protein type, particle size and elec-

trostatics (Figure 5) [42]. In particular, they ranked the binding affinity of those six plasma 

proteins, in agreement with the experimental results [42,43]. 

 

Figure 5. Orientations of fibrinogen (FG) adsorbed onto a neutral nanoparticle of radius (a) 5, (b) 20, 

(c) 50, and (d) 100 nm. Reproduced with permission from [42], American Institute of Physics, 2015. 

Yu and Zhou simulated the adsorption of lysozyme onto differently sized silica-na-

noparticles, showing the effect of particle curvature on the interfacial hydration, orienta-

tion, and conformational change of adsorbed proteins [44]. Wei et al. developed a CG 

model that can be applied to predict the conformation and adsorption behavior of proteins 

that were adsorbed onto nanoparticles with different sizes and surface groups (Figure 6), 

in agreement with experimental results [45]. 

 

Figure 6. The distance between a protein and a nanoparticle surface, and the radius of gyration of a protein as a function 

of simulation time. Reproduced with permission from [45], WILEY-VCH, 2017. 

Pilkington et al. observed the effect of lysozyme and aLact adsorption on the amy-

loid-polypeptide aggregation, fibril formation, and cytotoxicity [46]. Wang et al. simu-

lated BSA that was bound to L-chiral and D-chiral surfaces, showing that the orientation, 

binding site, and strength depend on the chiral type of surfaces [47]. Tavakol et al. per-

formed all-atom and CG simulations of FG interacting with polystyrene (PS) nanoparti-

cles in the presence of model metabolites of diabetes and hypercholesterolemia, showing 

that the presence of glucose and cholesterol influences the binding site and density of ad-

sorbed FG [48]. Wang et al. simulated the adsorption of HSA and IgE onto polyamidoam-

ine dendrimers and found that the modification of dendrimer surfaces with neutral chains 

suppresses the binding between charged proteins and dendrimer surfaces [49]. Fardanesh 

et al. observed the folded structure of proteins upon binding to the TiO2-nanoparticle clus-

ter [50]. Moya et al. simulated multiple HSA molecules that were bound to the iron-oxide 

nanoparticle surface and calculated the thickness of protein layers on differently sized 

nanoparticles, in agreement with the experimental results [51]. Derakhshankhah et al.’s 

Figure 6. The distance between a protein and a nanoparticle surface, and the radius of gyration of a protein as a function of
simulation time. Reproduced with permission from [45], WILEY-VCH, 2017.

Pilkington et al. observed the effect of lysozyme and aLact adsorption on the amyloid-
polypeptide aggregation, fibril formation, and cytotoxicity [46]. Wang et al. simulated BSA
that was bound to L-chiral and D-chiral surfaces, showing that the orientation, binding site,
and strength depend on the chiral type of surfaces [47]. Tavakol et al. performed all-atom
and CG simulations of FG interacting with polystyrene (PS) nanoparticles in the presence
of model metabolites of diabetes and hypercholesterolemia, showing that the presence
of glucose and cholesterol influences the binding site and density of adsorbed FG [48].
Wang et al. simulated the adsorption of HSA and IgE onto polyamidoamine dendrimers
and found that the modification of dendrimer surfaces with neutral chains suppresses
the binding between charged proteins and dendrimer surfaces [49]. Fardanesh et al. ob-
served the folded structure of proteins upon binding to the TiO2-nanoparticle cluster [50].
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Moya et al. simulated multiple HSA molecules that were bound to the iron-oxide nanoparti-
cle surface and calculated the thickness of protein layers on differently sized nanoparticles,
in agreement with the experimental results [51]. Derakhshankhah et al.’s simulations
showed the non-cooperative binding between FG and zeolite nanoparticles via hydrogen
bonds and electrostatic interactions of D-domain of FG [52]. Xu and Dzubiella calculated
the binding free energies of lysozyme that was adsorbed onto the highly charged dendritic
polyglycerol sulfate and derived the concept of a coverage-dependent binding affinity in
the Langmuir model [53]. Sanchez-Guzman et al. simulated oxyhemoglobin interacting
with silica surfaces at pH 7 and pH 9 under different temperatures of 295 K, 322 K, 353 K,
and 400 K, showing the dependence of the binding strength and structure on temperature
and pH conditions [54]. Qi et al. simulated TF that was bound to various cadmium selenide
(CdSe) surfaces, such as (100) and (002) facets, and found that disulfide moieties of TF
interact with the CdSe (100) surface rather than with the CdSe (002) surface, indicating
the effect of different facets on the binding strength [55]. Hassanian et al. showed that
HSA binds to zinc oxide nanoparticles (ZnO NPs) mainly via electrostatic interactions
between charged groups of HSA and ZnO NP, leading to the structural change of adsorbed
HSA [56]. Our group calculated the binding free energies between differently charged
PS particles and five major plasma proteins, such as HSA, IgG, FG, complement C3 (C3),
and APO, showing that all of the simulated plasma proteins bind to anionic, cationic, and
neutral PS particles, although their binding strengths are higher for charged PS particles
than for neutral PS particles (Figure 7) [57].
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Figure 7. (a) Final snapshot of simulations of the binding between differently charged polystyrene (PS) nanoparticles and
major plasma proteins such as HSA, immunoglobulin G (IgG), FG, complement 3 (C3), and apolipoprotein (APO), (b) calcu-
lations of potentials of mean force (PMF; binding free energies) between HSA and differently charged PS nanoparticles.
Reproduced with permission from [57], WILEY-VCH, 2020.

These MD simulations have predicted the conformational change, binding site, and
strength of plasma proteins that were bound to the nanoparticle surface. However, nanopar-
ticles have diverse structural and surface properties and, hence, these results should be
applied to differently sized, shaped, and functionalized nanoparticles with caution. More
modeling efforts are still ongoing to develop a generalized model to predict the protein-
nanoparticle binding in terms of their size, shape, structure, and surface properties, such as
electrostatics and hydrophobicity.
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3. Competitive Adsorption and Desorption of Plasma Proteins on
Nanoparticle Surfaces

Experimental and theoretical studies have shown that, when plasma proteins adsorb to
the nanoparticle and form protein layers that are composed of hard (inner) and soft (outer)
corona, abundant plasma proteins first bind to the nanoparticle surface, and they they are
then replaced by high-affinity proteins via the adsorption competition between proteins,
called the Vroman effect [58], although this mechanism has not been well interpreted at the
atomic level. To resolve this, Vilaseca et al. developed CG models of HSA, FG, and IgG
as simple shapes, and showed that small (HSA) and large (FG) proteins do not compete
with each other, but rather compete with others (IgG) in a cooperative way, which supports
the Vroman effect [59]. Vilanova et al. also developed CG models for protein-silica NP
and protein–protein interactions, showing that three-body interactions can be applied to
capture the kinetics of the competitive adsorption of plasma proteins, such as HSA, TF, and
FG, which successfully reproduces the experimental observation regarding the replacement
of abundant proteins (HSA and TF) with high-affinity proteins (FG) at the early stage of
corona formation (Figure 8) [60]. In particular, the adsorption kinetics and compositions
of HSA, TF, and FG agree with the experimental results, showing the ability of the CG
model (three-body interaction) to predict the kinetics and composition of protein corona
on nanoparticle surfaces [60].
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Figure 8. Adsorption of FG (green) on silica NPs precoated with HSA (red) first and TF (blue) next. (a) Schematic illustration
of three steps for the adsorption process. (b) Surface coverage of HSA, TF, and FG adsorbed onto silica NPs as a function of
time. (c) Surface coverage of HSA, TF, and FG adsorbed onto silica NPs at high protein concentrations. Reproduced with
permission from [60], American Chemical Society, 2016.

Tavanti et al. performed CG simulations of multiple insulin and FG molecules that
were adsorbed onto 5 nm-sized citrate-capped AuNPs, and showed that 20 insulin and
three FG molecules bind to the AuNP surface, indicating the difference of their binding
affinity [61]. In particular, insulin has the specific binding site, while FG has various bind-
ing sites, depending on the protein concentration and composition [61]. The presence of
FG induces less adsorption of insulin, showing the adsorption competition between insulin
and FG [61]. They also simulated multiple hemoglobin, myoglobin, and trypsin molecules
that were adsorbed to the 15 nm-sized citrate-capped AuNP, showing that the competi-
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tion between proteins influences the final composition of protein corona on AuNP [62].
These CG simulations revealed the competition between simple model proteins and their
adsorption kinetics, although atomic-level mechanisms of protein–protein and protein–NP
interactions have not been well understood. In fact, CG models do not have an ability
to reproduce the structural change of proteins, which may influence protein–protein and
protein–NP interactions. To overcome these limitations of CG models and understand the
atomic-level interactions, our group recently performed all-atom simulations of multiple
plasma proteins, such as HSA, FG, IgG, and C3 randomly adsorbed onto cationic, anionic,
and neutral PS nanoparticles, showing the structural change of adsorbed proteins and
the formation of protein layers on the PS surface via the adsorption competition between
proteins (Figure 9) [57]. In particular, we observed approximately twice higher diffusivities
for proteins that are bound to either the particle surface or the boundary of protein layer
than for those that are bound to both the particle surface and other proteins, indicating
that the mobility of proteins depends on their positions in the protein layer, which helps
to explain the experimental observations regarding the replacement of plasma proteins
at the early stage of corona formation and the weaker binding in the outer protein layer
than in the inner protein layer [57]. These all-atom and CG simulations have captured the
replacement of plasma proteins on the nanoparticle surface and suggested the key factors
controlling this competitive adsorption, which helps to explain the Vroman effect. However,
only five or less proteins have been simulated in the solvent condition that is much simpler
than the bloodstream, and the prediction of adsorption kinetics still needs to be improved,
which will be achieved by developing force fields and multiscale methodologies.
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4. Interactions between the Protein Corona-Particle Complex and Lipid Membrane

Hu et al. performed CG simulations of protein-coated nanoparticles that were interact-
ing with lipid monolayers, showing the effects of particle electrostatics and hydrophobicity
on the adsorption of proteins onto the particle surface [63]. In particular, they found that
protein adsorption influences the translocation of nanoparticles through a pulmonary lung
surfactant (Figure 10) [63]. Ding and Ma’s CG simulations showed the adsorption of HSA
into the nanoparticle surface, which promotes the binding between charged nanoparti-
cles and membranes, but it also suppresses the insertion of hydrophobic nanoparticles
into membranes, indicating that the effect of protein corona depends on the nanoparticle
electrostatics and hydrophobicity [64].
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Figure 10. Calculations of PMFs for the interaction between NP and pulmonary surfactant monolayer
(a,b) and snapshots from simulations of differently charged NPs interacting pulmonary surfactant
proteins (SP-B1-25 and SP-C) and phospholipid monolayer (c,d). Reproduced with permission
from [63], American Chemical Society, 2013.

Although these CG simulations have captured the effect of protein corona on the
nanoparticle–membrane interaction, the results from these are not always easy to interpret
at the atomic scale. To overcome this, all-atom simulations of the protein–nanoparticle
complex and membrane have been performed. Duan et al. performed all-atom simulations
of a BSA-adsorbed graphene interacting with lipid membrane, which showed that the BSA
adsorption induces the increased graphene surface and specific electrostatic interactions
between charged BSA residues and lipid headgroups, leading to the reduced extent of lipid
extraction from membrane and the slower penetration of graphene into membrane [65].
Our group recently performed all-atom simulations of 10 nm-sized PS particles that were
complexed with HSA, IgG, and APO proteins interacting with lipid bilayers and calculated
their binding free energies, showing that the adsorbed proteins sterically weaken the
interactions between nanoparticles and bilayers and, thus, suppress the nanoparticle–
bilayer binding, which agrees well with experiments (Figure 11) [66]. However, this steric
effect of adsorbed proteins occurs for the zwitterionic leaflet of bilayer, but not for the
anionic leaflet of bilayer because of charge interactions between proteins and anionic
lipid headgroups [66]. In particular, we found that proteins form hydrogen bonds with
zwitterionic leaflets and, thus, restrict the lateral mobility of bilayers, as observed in
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experiments, while charge interactions between proteins and anionic leaflets disorder
lipids and, thus, increase the lateral dynamics of bilayers [66].
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5. Conclusions

The experimental and theoretical studies have revealed that protein corona influences
conformations and surface properties of nanoparticles and their interactions with cell
membranes, although those mechanisms have not been well understood at the atomic scale.
As computer power and force-field development have advanced, MD simulations have
provided considerable useful information regarding the formation of protein corona and
its effect on nanoparticle properties and the nanoparticle-membrane binding for the past
decade. In particular, MD simulations have been able to explore the competitive adsorption
and desorption of plasma proteins on differently sized and charged nanoparticles, which
helps to explain the experimental results and the Vroman effect.

Although MD simulations have captured the experimental observations of corona
formation and its interactions with nanoparticles and membranes, there are still differ-
ences in environments and mass transport conditions of experiments and simulations,
which precludes any quantitative comparison between the two. For instance, there are
hundreds of plasma proteins that compete with each other and form protein corona on
nanoparticle surfaces. Additionally, the flowing velocity of bloodstream may modulate
protein–protein and protein–nanoparticle interactions. Cell membranes consist of various
membrane proteins and lipids, and their components and ratios vary in different cells.
Filaments of cytoskeleton influence the membrane shape and mechanical resistance and,
thus, may modulate the protein-membrane interaction. These details should be considered
to predict the adsorption kinetics and final composition of protein corona for drug delivery
applications, which are expected to be resolved in the future by recent efforts in developing
multiscale–simulation methodologies and realistic cell–membrane models. Despite these
limitations, MD simulations have successfully interpreted the Vroman effect and experi-
mental observations at the atomic scale, clearly indicating a promising tool for the rational
design of highly efficient drug delivery systems.
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