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Abstract

Green material selection is a crucial step for the material industry to comprehensively

improve material properties and promote sustainable development. However, because of

the subjectivity and conflicting evaluation criteria in its process, green material selection, as

a multi-criteria decision making (MCDM) problem, has been a widespread concern to the

relevant experts. Thus, this study proposes a hybrid MCDM approach that combines deci-

sion making and evaluation laboratory (DEMATEL), analytical network process (ANP), grey

relational analysis (GRA) and technique for order performance by similarity to ideal solution

(TOPSIS) to select the optimal green material for sustainability based on the product’s

needs. A nonlinear programming model with constraints was proposed to obtain the inte-

grated closeness index. Subsequently, an empirical application of rubbish bins was used to

illustrate the proposed method. In addition, a sensitivity analysis and a comparison with

existing methods were employed to validate the accuracy and stability of the obtained final

results. We found that this method provides a more accurate and effective decision support

tool for alternative evaluation or strategy selection.

Introduction

While rapid urbanization and industrialization exacerbate the rate of resource shortages and

environmental pollution worldwide, the promotion of sustainability has been increasing and

gaining public momentum [1–3]. In the summit of the Group of Twenty (G20), sustainability

in the global economy was one of the most crucial issues that have become highly appreciated.

Subsequently, collective action plans regarding the sustainable development agenda in 2030

were formulated by the G20 leaders. Moreover, a large body of literature and research studies

on sustainability, particularly involving material selection, have been generated by the relevant

experts in recent years [4–7].

Green material selection, also called sustainable material selection, plays a significant role

throughout the design-manufacturing process, which seeks to guarantee product performance

and reduce the entire life-cycle impact to the environment and human health. Thus, it has

been the subject of many studies [8–10]. Akadiri et al. [11] presented a novel model for
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building material selection via the fuzzy extended analytical hierarchy process (AHP) tech-

niques. Maniya and Bhatt [12] applied the preference selection index method to seek a proper

material that meets the design engineers’ requirements. Chatterjee et al. [13] explored a new

integrated multi-criteria decision making (MCDM) method that combines the complex pro-

portional assessment method and the evaluation of mixed data method to select the optimal

material alternative. However, when selecting the suitable green material for design products,

various criteria or attributes, e.g., cost, physical property and environmental performance,

should be considered simultaneously rather than only considering a single criterion for design

engineers. Obviously, each material has distinctive performance for different properties, and

no one can satisfy all the relevant properties. Therefore, green material selection should be

viewed as a complex MCDM problem. To address this problem, a systematic and reasonable

method is required.

Up to now, there are two types of methods to solve MCDM problem: synthetical assessment

approaches[14–24], e.g., multi-attribute utility theory, technique for order performance by

similarity to ideal solution (TOPSIS) and approaches based on the theory of life cycle assess-

ment [25]. In addition, some integrated methods have been successfully applied to overcome

the shortcomings of single one [26–29], e.g., AHP and TOPSIS, AHP and vlse kriterijumska

optimizacija kompromisno resenje (VIKOR). However, this existing decision analysis

approaches still have some problems to be solved in the decision model [30]. Therefore, to

obtain the optimal material more reasonably and reduce subjectivity, it is essential to promote

and optimize the assessment process.

This study proposes a hybrid MCDM approach combining DANP and G-TOPSIS that inte-

grated GRA with TOPSIS to select optimal green material for sustainability based on product’s

needs. Among them, DEMATEL is used to analyze the interrelationship and influence of each

criterion, and ANP is employed to calculate the final weights of criteria and evaluate each alter-

native to select the optimal green material via G-TOPSIS. An empirical application of rubbish

bins is used to illustrate this hybrid MCDM method. In addition, a sensitivity analysis and

comparison with existing methods are employed to validate the accuracy and stability of the

obtained final results. In comparison with existing studies, this work has the following three

distinctive contributions: 1) Establish a suitable hierarchy structure of each criterion, consider-

ing the economic, environment and physical properties. 2) Propose a hybrid MCDM approach

that combines DANP and G-TOPSIS to obtain the weight of each criterion and select the opti-

mal green material logically and effectively. 3) To reduce/avoid subjectivity and irrationality, a

nonlinear programming is applied to make G-TOPSIS more reasonable.

The remainder of this paper is organized as follows. Section 2 describes the literature

review. The hybrid MCDM method is proposed in Section 3. In Section 4, the proposed

method is presented and applied to the case of rubbish bins. Analysis and discussion of the

results are presented in Section 5. In last section, the conclusions are presented.

Literature review

Material selection has great importance in the design and development of products, and it is

also critical for the success and competitiveness of the producers. Improper selection of mate-

rials may result in damage or failure of an assembly and significantly decreases the perfor-

mance of products, thus negatively affecting productivity, profitability and reputation of an

organization [31–32]. In the literature, many investigations and studies have been conducted

in various contexts to select material alternative based on different requirements/backgrounds

which include eco-innovation, green manufacturing, market demand and so on, for real engi-

neering processes [16, 33–36]. Note that sustainability as a philosophy has been gradually
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entering design and manufacturing industries for products to combat climate change under

umbrella terms [37–39]. It is essential to carry out the study of material selection under the

background of sustainable development [40–41].

The selection of material alternatives is a multi-objective problem subject to compound

constraints which can be viewed as a complex MCDM problem [23]. The objectives and crite-

ria in the material selection process are often in conflicts and it involves trade-offs amongst

decisive criteria. To ease out the material selection procedure and make the right decision, a

systematic and efficient approach is required. Nowadays, a lot of mathematical techniques

have been developed and applied in material selection field. For example, Anojkumar et al.
[42] developed a hybrid MCDM method by combing four MCDM methods for solving pipes

material selection difficulty in sugar industry to choose the best pipe material. Liu et al. [31]

presented an interval 2-tuple linguistic VIKOR (ITL-VIKOR) method for solving the material

selection problem under uncertain and incomplete information environment. Huang et al.
[43] presented a new MCDM model and uncertainty analysis method for the environmentally

conscious material selection problem. TOPSIS method is employed and uncertainty analyses

were performed for model flexibility and efficiency by addressing the materials selection chal-

lenge. Liu et al. [44] proposed a hybrid decision making approach integrating induced aggre-

gation operators into VIKOR in an MCDM problem regarding the selection of materials and

the results are compared for different types of standardized distance aggregation operators.

Table 1 presents the commonly used approaches in material alternatives evaluation and

selection.

The literature review demonstrates that the majority of researchers concentrated on mate-

rial selection methods applying MCDM approaches. Although the existing methods provide

many useful tools for material selection. However, most of them still ignore some aspects, e.g.,

physical properties is rarely considered which plays an significant role in the assessment pro-

cess for green material alternatives; TOPSIS method as a commonly used tool is not suitable to

assess all kinds of material alternatives due to its measurement scale is distance. Therefore, this

study proposes a hybrid MCDM approach combining DANP and G-TOPSIS that integrated

GRA with TOPSIS to select optimal green material for sustainability based on product’s needs

and formulate a new hierarchical structure including economic, environment, and physical

properties.

Solution methodology

A hybrid MCDM approach that combines DANP and G-TOPSIS is proposed to select the

optimal green material alternative for certain product. DANP is applied to analyze the influ-

ences and interrelationships among each criterion and obtain the final weights of each crite-

rion. The optimal alternative will be evaluated via G-TOPSIS. The specific procedures and

processes of both phases are summarized in the following sub-sections.

DANP

ANP, as an extension of AHP, was proposed by Saaty to address the interdependence and feed-

back among each criterion and alternative in the practical problem [61, 62]. However, the nor-

malization method of supermatrix is not appropriate because each cluster, which originates

from the allocation of each criterion in a column, has the same weight in the traditional pro-

cess. There are varying degrees of impact among the clusters of criteria in the practical prob-

lem [29, 63]. Thus, DEMATEL is applied to improve the normalization process in ANP,

namely DANP. It has been successfully employed in various fields, e.g., vendor selection and

material selection [6, 64–65]. The procedure can be summarized as shown in Appendix A.
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G-TOPSIS

TOPSIS is an MCDM method proposed by Hwang and Yoon in 1981 [66]. The operating prin-

cipium is that the optimal solution must satisfy certain conditions, i.e., the shortest distance

from the positive-ideal solution and the longest distance from the negative-ideal solution [67,

68]. It has been commonly applied in various fields, e.g., weapon selection, material selection,

and alternative evaluation [69–72]. However, some problems cannot be resolved by TOPSIS in

several special cases, e.g., when the distances of the alternatives to positive-ideal and negative-

ideal solutions is equal. Thus, G-TOPSIS, which integrates GRA with TOPSIS, is proposed to

obtain the final rank of each alternative and select the optimal green material for certain prod-

uct. Additionally, to avoid the subjectivity and irrationality, a nonlinear programming model

with constraints is proposed to obtain the integrated closeness index based on the similarity

closeness index from GRA and the distance closeness index from TOPSIS. The procedure can

be summarized as follows:

Table 1. Applications of MADM methods for material selection in different areas.

Type Method Author(s) Problem

MCDM approaches AHP Desai et al. [45] Material selection in product design

TOPSIS Rahman et al. [46] A decision support system for optimal roofing material

selection

VIKOR Prasenjit et al. [9] Material selection application

GRA Zhao et al. [41] Commercially available materials selection in sustainable

design

Hybrid MCDM approaches AHP and TOPSIS Kumar and Singal [34] Penstock material selection in small hydropower plants

Rao et al. [16] Material selection for a given engineering design

Anojkumar et al. [47] Material selection in sugar industry

ANP and TOPSIS Onut et al. [48] Selection of the suitable material handling equipment

TOPSIS and DOE Tansel Ic [49] Robot selection problem

TOPSIS and VIKOR Shanian and Savadogo

[50]

Selection of mass produced non-heat-treatable cylindrical

cover material.

DANP and VIKOR Hsu et al. [51] The best vendor selection for conducting the recycled

material

Liu et al. [52] Material selection with target-based criteria

Finite element analysis and

ELECTRE

Shanian et al. [53] Materials selection of gas turbine components

MCDM approaches with

uncertain theory

Fuzzy TOPSIS Maity and Chakraborty

[54]

Grinding wheel abrasive material selection

Mayyas et al. [55] Eco-material selection

Fuzzy ANP and PROMETHEE Tuzkaya et al. [56] Material handling equipment selection problem

Fuzzy AHP and VIKOR Anojkumar et al. [42] Pipe material selection in sugar industry

Interval 2-tuple linguistic VIKOR Liu et al. [31] Material selection for an engineering design

Fuzzy VIKOR Girubha et al. [57] Material selection of an automotive component

Fuzzy extended AHP Akadiri et al. [11] Sustainable materials selection for building projects

Fuzzy AHP and TOPSIS Anojkumar et al. [42] Pipe material selection in sugar industry

Aly et al. [58] Best design concept and material selection process

Rathod et al. [59] Phase change material selection

Fuzzy AHP, VIKOR and

TOPSIS

Anojkumar et al. [60] Material selection in sugar industry

https://doi.org/10.1371/journal.pone.0177578.t001
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Step 1: Construct a decision matrix for the selection of the optimal material. The decision

matrix X = [xij]n×m can be presented as Eq (1).

X ¼

B1 � � � Bj � � � Bm

A1

..

.

Ai

..

.

An

x11 � � � x1j � � � x1m

..

. . .
. ..

. . .
. ..

.

xi1 � � � xij � � � xim

..

. . .
. ..

. . .
. ..

.

xn1 � � � xnj � � � xnm

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð1Þ

where xij is a crisp value that indicates the performance rating of each alternative Ai (i = 1,

2, . . ., n) with respect to each criterion Bj (j = 1, 2, . . .,m).

Step 2: Obtain the normalized decision matrix Z combined with the weight vector of criteria ω
that is obtained via DANP.

For the benefit criteria, the normalized value yij could be calculated as

yij ¼
xij

max
i
xij
; ði ¼ 1; 2; � � � ; n; j ¼ 1; 2; . . . ;mÞ ð2Þ

For the cost criteria, the normalized value yij could be calculated as

yij ¼
min
i
xij

xij
; ði ¼ 1; 2; � � � ; n; j ¼ 1; 2; . . . ;mÞ ð3Þ

Z ¼ oTY ¼

B1 � � � Bj � � � Bm

A1

..

.

Ai

..

.

An

o0
1
y11 � � � o0jy1j � � � o0my1m

..

. . .
. ..

. . .
. ..

.

o0
1
yi1 � � � o0jyij � � � o0myim

..

. . .
. ..

. . .
. ..

.

o0
1
yn1 � � � o0jynj � � � o0mynm

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð4Þ

Step 3: Establish the positive-ideal and negative-ideal solutions. Based on the operating prin-

cipium of TOPSIS, the positive-ideal and negative-ideal solutions play a significant role in

the arithmetic process and can be obtained as Eqs (5) and (6).

Zþj ¼ max
1�i�n

fzijg
n
i¼1

� �
j 2 Jþ;min

1�i�n
fzijg

n
i¼1

� ��
�
�
�

�
�
�
�j 2 J�

� �

¼ ðzþ
1
; zþ

2
; . . . ; zþmÞ ð5Þ
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Z�j ¼ min
1�i�n

fzijg
n
i¼1

� �
j 2 Jþ;max

1�i�n
fzijg

n
i¼1

� ��
�
�
�

�
�
�
�j 2 J�

� �

¼ ðz�
1
; z�

2
; . . . ; z�mÞ ð6Þ

where J+ represents the index set for which the greater the better, and J- represents the

index set for which the smaller the better.

Step 4: Calculate the grey correlation coefficient between the ith alternative and positive-ideal

alternative regarding the jth criterion. The procedure is presented as follows:

rþij ¼
min
i

min
j
jzþj � zijj þ r max

i
max
j
jzþj � zijj

jzþj � zijj þ r max
i

max
j
jzþj � zijj

ð7Þ

where ρ2[0, 1] indicates the resolution factor. As a general rule, ρ = 0.5 [22].

The grey correlation coefficient matrix regarding each alternative and positive-ideal solu-

tion is shown in Eq (8).

Rþ ¼

B1 � � � Bj � � � Bm

A1

..

.

Ai

..

.

An

rþ
11
� � � rþ

1j � � � r
þ
1m

..

. . .
. ..

. . .
. ..

.

rþi1 � � � rþij � � � r
þ
im

..

. . .
. ..

. . .
. ..

.

rþn1 � � � rþnj � � � r
þ
nm

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð8Þ

The grey correlation degree between the ith alternative and the positive-ideal solution can

be obtained according to Eq (9).

Rþi ¼
1

m

Xm

j¼1

rþij ; ði ¼ 1; 2; � � � ; nÞ ð9Þ

Step 5: Obtain the grey correlation coefficient between the ith alternative and negative-ideal

solution regarding the jth index in the same way of Step 4.

r�ij ¼
min
i

min
j
jz�j � zijj þ r max

i
max
j
jz�j � zijj

jz�j � zijj þ r max
i

max
j
jz�j � zijj

ð10Þ

The grey correlation coefficient matrix regarding each alternative and negative-ideal
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solution is shown in Eq (11).

R� ¼

B1 � � � Bj � � � Bm

A1

..

.

Ai

..

.

An

r�
11
� � � r�

1j � � � r
�
1m

..

. . .
. ..

. . .
. ..

.

r�i1 � � � r�ij � � � r
�
im

..

. . .
. ..

. . .
. ..

.

r�n1 � � � r�nj � � � r
�
nm

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð11Þ

The grey association degree between the ith alternative and the negative-ideal can be

obtained according to Eq (12).

R�i ¼
1

m

Xm

j¼1

r�ij ; ði ¼ 1; 2; � � � ; nÞ ð12Þ

Step 6: Obtain the separation measures. The separation of each alternative from the positive-

ideal solution Dþi is calculated as

Dþi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j¼1

½zij � z
þ

j �
2

v
u
u
t ; ði ¼ 1; 2; � � � ; nÞ ð13Þ

Similarly, the separation of each alternative from the negative-ideal solution D�i is calcu-

lated as

D�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j¼1

½zij � z
�

j �
2

v
u
u
t ; ði ¼ 1; 2; � � � ; nÞ ð14Þ

Step 7: Apply the dimensionless method to Rþi , R�i ,Dþi and D�i .

M̂ i ¼
Mi

max
1�i�n

Mi
; ði ¼ 1; 2; � � � ; nÞ ð15Þ

whereMi represents Rþi , R�i , Dþi and D�i .

Step 8: Calculate the similarity closeness index and the distance closeness index. For GRA

approach, Rþi represents the grey correlation degree between the ith alternative and the pos-

itive-ideal solution. The larger the value Ri, the more similar the alternative i to the positive-

ideal alternative, the better the alternative. Similarly, for TOPSIS approach, the larger the

value Di, the larger the separation of alternative i from the negative-ideal alternative, the
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better the alternative.

Ri ¼
R̂þi

R̂þi þ R̂ �i
; ði ¼ 1; 2; � � � ; nÞ ð16Þ

Di ¼
D̂�i

D̂þi þ D̂�i
; ði ¼ 1; 2; � � � ; nÞ ð17Þ

Step 9: Construct the integrated closeness index. To avoid subjectivity and irrationality, non-

linear programming is applied to calculate the integrated closeness index CSi based on the

similarity closeness index and the distance closeness index. Assuming that these two indices

have the same weight, the nonlinear programming model with constraints can be struc-

tured as follows:

min
Xn

i¼1

½ðxiÞ
2
þ ðdiÞ

2
�

xi ¼ CSi � Ri
di ¼ CSi � Di
s:t:minðRi;DiÞ � CSi � maxðRi;DiÞ

0 < CSi < 1

; ði ¼ 1; 2; � � � ; nÞ

8
>>>>>>>>>><

>>>>>>>>>>:

Subsequently, a complex method and a penalty function method can be employed to

address this nonlinear programming model [73–74]. Note that the larger the value CSi, the

better the alternative.

A hybrid MCDM method

To select the optimal alternative more objectively and rationally, this work proposes a novel

hybrid MCDM approach that combines DANP and G-TOPSIS. This method applies the quan-

titative analysis and weight allocation features of DANP and the comprehensive optimization

ability of G-TOPSIS to avoid some of the shortcomings and deficiencies of each method alone.

A detailed flowchart is shown in Fig 1.

Phase 1: Obtain the weights of each criterion for optimal green material selection via DANP.

The integrated DEMATEL and ANP process presented in Section 2.1 is applied to get the

weights of each criterion while accounting for dependence and feedback. A hierarchical struc-

ture regarding the evaluation criteria is built, as shown in Fig 2. According to the classification

of each criterion, DEMATEL is applied to analyze the interrelationship and influence of each

criterion, and ANP is employed to calculate the weights of criteria.

Phase 2: Determine the final rank and select the optimal green material for certain product

by G-TOPSIS.

The final rank of each alternative and optimal green material can be calculated via G-TOP-

SIS combining GRA and TOPSIS. Additionally, to avoid subjectivity and irrationality in the

integration process, a nonlinear programming model with constraints is proposed to obtain

the integrated closeness index CSi based on the similarity closeness index Ri from GRA and the

distance closeness index Di from TOPSIS. Note that CSi falls between 0 and 1. The larger the

value of CSi, the better the performance of the material alternatives.
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Verification of the empirical case

An empirical case of rubbish bins is provided to demonstrate this integrated method, i.e.,

DANP and G-TOPSIS. In the following sections, the background, the hierarchical structure of

criteria and the optimization processes will be discussed respectively.

Fig 1. The flowchart of proposed novel hybrid method.

https://doi.org/10.1371/journal.pone.0177578.g001
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Background and data collection

As a common tool for daily life, the utilization and production of rubbish bins continue to

increase; material selection is also an MCDM problem that must be treated with caution for

sustainability. Currently, several commonly used material for rubbish bins are aluminum (Al),

ABS plastic (ABS) and polyurethane (PU). In addition, production and recycling are closely

related. While selecting a suitable material for production, it is necessary to choose corre-

sponding product recovery and disposal strategies, i.e., recycling and remanufacturing (REM),

recycling and incineration (INC), and recycling and landfill (LND). Thus, there are five mate-

rial alternatives, i.e., Al-REM, ABS-INC, ABS-LND, PU-INC and PU-LND.

Raw data and related information can be gathered via experts from various fields, e.g.,

scholars of college and supervisors of enterprise, through questionnaire surveys. In this

research, six experts, including two scholars who specialize in material selection, two supervi-

sors from related companies with a good reputation, and two customers who have used these

products for over three years, were interviewed to obtain the direct-relation matrix of each cri-

terion and the decision matrix for the selection of optimal material. This investigation was

conducted in August 2016. According to the statistical data from the six questionnaires, the

inconsistent rate is 4.6% [75]. Thus, it can be summarized that the credibility is 95.40%, and

additional questionnaires will not impact the optimization results.

Hierarchical criteria of material selection

This large number of materials, coupled with the complex relationships between the different

selection parameters, often make the selection of a materials for a given component a difficult

task. The establishment of hierarchical criteria is a crucial step in green material selection, and

it has great influence upon the accuracy and reliability of material alternatives evaluation. In

selecting materials, designers and engineers have to take into account a large number of

Fig 2. Causal influence diagrams for the dimensions and criteria.

https://doi.org/10.1371/journal.pone.0177578.g002
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criteria. These criteria for material include social (e.g. operational life, esthetics, health and

safety), technical (e.g., maintainability, resistance to decay, life expectancy), environmental

(e.g., energy saving, potential for recycling and reuse, raw material extraction) and economic

(initial cost, maintenance cost, disposal cost) [6, 76–78]. Physical properties have been applied

in material selection, which plays an significant role in the assessment process for green mate-

rial alternatives for real engineering processes [79–80]. However, there are rarely hierarchical

structures that combining the physical properties with other important attributes, i.e., eco-

nomic and environment, in the previous studies. In addition, there are no relatively accurate

index weights for physical properties in the evaluation process of material selection.

Therefore, to discover and inherit more suitable sustainable properties/criteria, we reviewed

the existing literature and interviewed experienced experts from colleges/enterprises. Thus, the

hierarchical structure of criteria for their green material selection was built, as tabulated in

Table 2. The structure includes three levels, i.e., goal, cluster and criterion. The goal level (G) is

green material selection (G1). The cluster level (E) involves economic (E1), environment (E2),

and physical (E3) properties. Economic properties include initial cost (C1), maintenance cost

(C2), disposal cost (C3), and tax contribution (C4). Environment properties include energy sav-

ing (C5), potential for recycling and reuse (C6), raw material extraction (C7), usage of water

(C8), and CO2 emission (C9). Physical properties include density (C10), rigidity (C11), tensile

strength (C12), elongation at break (C13), and tensile modulus (C14). The attributes of each

criterion are shown in Table 2. Note that rigidity (C11) and tensile modulus (C14) are fixed

index (the closer the attribute value is to a fixed value ti, the better the attribute). The fixed

value ti is determined by the type of the product. To simplify the optimization process, we con-

vert fixed index into cost index by calculating the evaluation value, i.e., the absolute value of

Table 2. Hierarchical structure of criteria for material selection.

Goal level Cluster level Criterion level Definitions Attributes References

Green material

selection (G1)

Economic (E1) Initial cost (C1) The cost which is to be spent the material

manufacturing

Cost [5, 29, 51, 75, 78,

81–84]

Maintenance cost (C2) The cost which is to be spent for the

maintenance in its effective lifetime

Cost

Disposal cost (C3) The cost which is to be spent for end of life

disposal of the material

Cost

Tax contribution (C4) Tax involved and contributed by the material Benefit

Environment (E2) Energy saving (C5) Net energy saved by the material Benefit [5, 29, 75, 82–87]

Potential for recycling

and reuse (C6)

Recycling and reuse capability of the material Benefit

Raw material extraction

(C7)

Limited extraction of the raw material for the

manufacturing of the final material

Benefit

Usage of water (C8) Usage of water involved in the life cycle of the

material

Cost

CO2 emission (C9) CO2 emission of the material in its useful life

time

Cost

Physical property

(E3)

Density (C10) The estimated measure of content per functional

and lexical units in total

Benefit

Rigidity (C11) The capacity to resist a hard object pressed into

its surface of local materials

Cost

Tensile strength (C12) The ability to resist permanent deformation and

destruction

Benefit

Elongation at break (C13) The ratio of the original length and the

displacement value when pull-off

Benefit

Tensile modulus (C14) Elastic when stretched for materials Cost

https://doi.org/10.1371/journal.pone.0177578.t002
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the difference between the initial value with the fixed value. The smaller the evaluation value,

the better the criterion.

Weighting of criteria via DANP method

The calculation procedure is structured by combining DEMATEL with ANP (in Section 2.1

and Appendix A). As shown in Appendix A, the direct-relation matrix could be formulated

from the responses of six experts (Due to space limitations, the averaged direct-relation matrix

for criteria and dimensions are only given here as shown in Tables 3 and 4).

Based on the calculation steps of DANP, the final weight of each criterion can be acquired

as follows: a) the normalized initial direct-relation matrix can be calculated using Eqs (18)

and (19); b) the total direct-relation matrix is obtained through Eq (20); c) each row sum vec-

tor r and column sum vector s of the total direct-relation matrix T are separately produced,

as shown in Eqs (21) and (22), and the results are shown in Tables 5 and 6; d) the causal

influence diagram is established based on the ri + ci and ri—ci values respectively. The causal

influence diagrams of criteria and the dimensions are shown in Fig 2; e) the unweighted

supermatrix can be developed through Eqs (23)–(28); f) the weighted supermatrix can be

obtained according to Eqs (29)–(31); and g) the result of limiting the weighted supermatrix

is shown in Table 6.

Rank the material alternatives via G-TOPSIS method

The calculation procedure is structured by combining GRA with TOPSIS (in Section 2.2). By

reviewing the related literature [5, 26] and investigations by experts, a decision matrix for five

material alternatives, i.e., Al-REM, ABS-INC, ABS-LND, PU-INC and PU-LND, is constructed,

Table 3. The averaged direct-relation matrix for criteria.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

C1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

C2 2 0 1 2 1 1 1 1 1 1 1 1 1 1

C3 2 2 0 2 1 1 2 1 1 1 1 1 1 1

C4 2 1 1 0 1 1 1 1 1 1 1 3 1 1

C5 3 4 3 4 0 1 3 1 1 1 1 1 3 1

C6 4 3 3 3 2 0 4 2 2 1 1 2 1 1

C7 3 3 2 3 1 1 0 1 1 2 3 3 1 1

C8 4 4 3 3 2 1 3 0 2 1 1 2 4 1

C9 3 3 1 4 2 1 2 1 0 1 1 2 1 1

C10 3 3 2 3 2 3 3 1 2 0 2 1 2 1

C11 2 3 1 1 1 3 2 2 2 2 0 3 1 2

C12 3 2 2 2 1 2 2 1 2 1 1 0 4 1

C13 3 3 1 1 1 2 3 2 1 1 1 4 0 3

C14 3 3 1 3 1 2 2 1 2 1 1 3 2 0

https://doi.org/10.1371/journal.pone.0177578.t003

Table 4. The averaged direct-relation matrix for the dimensions.

E1 E2 E3

E1 0 1 2

E2 3 0 2

E3 2 1 0

https://doi.org/10.1371/journal.pone.0177578.t004
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as shown in Table 7. Note that the value of ti is 55 for the rigidity (C11) and the value of ti is 10

for the tensile modulus (C14).

The ranking of five material alternatives can be calculated via G-TOPSIS method, as

described in Section 2.2. The steps can be divided into the following five parts: a) from Steps 1 to

2, the normalized decision matrix Z combined with the weight vector of criteria ω is obtained;

b) the positive-ideal and negative-ideal solutions can be calculated using Step 3; c) the grey cor-

relation coefficient between the ith alternative and the positive-ideal alternative regarding the jth
criterion is obtained via Step 4, and similarly, the grey correlation coefficient between the ith
alternative and the negative-ideal solution regarding the jth index can be calculated using Step 5;

d) the similarity closeness index and the distance closeness index are acquired according to

Steps 6–8; and e) the integrated closeness index is gained using a nonlinear programming model

with constraints as shown in Step 9, and the final rank can be obtained, with the ranking pre-

sented in Table 8.

Table 5. Sum of the influences given and received regarding criteria.

Criteria ri ci ri + ci ri − ci

1 Initial cost (C1) 0.9052 2.4182 3.3234 -1.5131

2 Maintenance cost (C2) 1.0104 2.2290 3.2393 -1.2186

3 Disposal cost (C3) 1.4522 1.1325 2.5847 0.3197

4 Tax contribution (C4) 1.0920 2.0752 3.1672 -0.9832

5 Energy saving (C5) 1.7247 1.1342 2.8588 0.5905

6 Potential for recycling and reuse (C6) 1.8758 1.3185 3.1944 0.5573

7 Raw material extraction (C7) 1.6316 1.8584 3.4900 -0.2268

8 Usage of water (C8) 1.9976 1.0878 3.0854 0.9097

9 CO2 emission (C9) 1.4857 1.2593 2.7450 0.2264

10 Density (C10) 1.8480 1.0359 2.8839 0.8121

11 Rigidity (C11) 1.7071 1.1092 2.8163 0.5979

12 Tensile strength (C12) 1.5968 1.8124 3.4093 -0.2156

13 Elongation at break (C13) 1.7483 1.5130 3.2613 0.2353

14 Tensile modulus (C14) 1.6407 1.0929 2.7336 0.5478

https://doi.org/10.1371/journal.pone.0177578.t005

Table 6. Sum of the influences given and received regarding the dimensions.

Criteria ri ci ri + ci ri − ci

1 Economic (E1) 2.0000 2.9286 4.9286 -0.9286

2 Environment (E2) 3.0000 1.5000 4.5000 1.5000

3 Physical property (E3) 2.0000 2.5714 4.5714 -0.5714

https://doi.org/10.1371/journal.pone.0177578.t006

Table 7. A decision matrix for five material alternatives.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

/g.cc-1
C11

/HBS

C12

/MPa

C13

/%

C14

/GPa

Al-REM 2 3 3 3 3 3 4 3 3 2.72 50 169 8 25.0

ABS-INC 2 3 2 3 2 3 3 2 2 1.34 100 90 2 7.9

ABS-LND 3 2 3 2 2 4 2 4 3 1.34 100 90 2 7.9

PU-INC 3 3 2 3 4 2 3 4 3 1.15 60 27 10 4.5

PU-LND 4 4 2 4 4 3 3 3 4 1.15 60 27 10 4.5

Weight 0.052 0.061 0.067 0.052 0.086 0.112 0.054 0.092 0.083 0.053 0.076 0.069 0.074 0.069

https://doi.org/10.1371/journal.pone.0177578.t007
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Analysis and discussion

Comparison to existing methods

To prove the feasibility and validity of the proposed method, GRA, TOPSIS and VIKOR [9,

88] were applied to compare their outcomes. Note that the same weights of criteria were

applied in the calculation process of the four methods. The analysis is conducted on the basis

of the same illustrative example. Based on Table 8, the integrated closeness indices of the four

methods, i.e., GRA, TOPSIS, VIKOR and G-TOPSIS, can be figured in Fig 3.

From Fig 3, it can be summarized that the final ranks of material alternatives via the four

methods are basically consistent. Thus, this proposed method, i.e., DANP and G-TOPSIS, is a

reasonable and effective method to evaluate the performance of material alternatives and select

the optimal green material. Subsequently, based on the results of the four methods, the first

material alternative, that is Al-REM, is the optimal green material to produce rubbish bins. In

addition, the ranks of the five material alternatives are different using the four methods. The

causes of this phenomenon are summarized as follows: 1) the degree of information utilization

is different in different information aggregation methods, and a large amount of information

can be easily lost in the aggregation process; 2) the operating principium of TOPSIS is based

on the distance from the positive-ideal solution and the negative-ideal solution; however, it

does not consider the degree of similarity to the ideal solution; and 3) similarly. GRA only

Table 8. Ranking of five material alternatives.

Ri Rank Di Rank CSi Rank

Al-REM 0.6228 1 0.7036 1 0.6632 1

ABS-INC 0.3965 5 0.3914 5 0.3940 5

ABS-LND 0.4762 4 0.4871 3 0.4816 3

PU-INC 0.4901 3 0.4609 4 0.4755 4

PU-LND 0.5472 2 0.5097 2 0.5285 2

https://doi.org/10.1371/journal.pone.0177578.t008

Fig 3. The closeness indices of the four methods.

https://doi.org/10.1371/journal.pone.0177578.g003
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takes into account the degree of similarity to the ideal solution, thereby easily resulting in

information loss. Therefore, we propose a hybrid MCDM approach combining DANP and

G-TOPSIS to obtain the weight of each criterion and select the optimal green material logically

and effectively. In addition, nonlinear programming is applied to make G-TOPSIS more

reasonable.

Sensitivity analysis

To monitor the robustness of the evaluation and selection for green materials, a sensitivity

analysis that contains 19 experiments is conducted according to the weight change of each

criterion. Table 9 presents the details of the experiment. For each condition, the integrated

closeness indices of each material alternative are calculated. From Table 9, in the first 14 exper-

iments, weights of each criterion are set as higher respectively, whereas the other criteria are

set to be same. In experiment 15, the weights of criteria (C1–C8) = 0.125, whereas the other cri-

teria weights are equal to zero. In experiment 16, the weights of criteria (C9–C14) = 0.167,

whereas the other criteria weights are equal to zero. In experiment 17, the weights of all criteria

of economic (C1–C4) = 0.25, whereas the other criteria weights are equal to zero. In experi-

ment 18, the weights of all criteria of environment (C5–C9) = 0.2, whereas the other criteria

weights are equal to zero. In experiment 19, the weights of all criteria of physical property

(C10–C14) = 0.2, whereas the other criteria weights are equal to zero.

As shown in Table 9, the changes in the final ranks of the five material alternatives when

the weights of the criteria are changed can be figured in Fig 4. According to Table 9 and Fig

4, the following conclusions can be obtained as follows: 1) out of the 19 experiments, alterna-

tive 1, that is Al-REM, has the highest score in the 11 experiments, i.e., experiment numbers

(2, 3, 7–12, 14, 16, 19); hence, the ranking of the solutions of the five material alternatives is

relatively sensitive to the criteria weights; and 2) the final ranking of the alternatives changes

Table 9. The 19 experiments of sensitivity analysis.

Expt. No. Weights The integrated closeness index (CSi) Rank

Alternative 1 Alternative 2 Alternative 3 Alternative 4 Alternative 5

1 ωC1 = 0.35, ωC2-C14 = 0.05 0.4679 0.3306 0.5272 0.5417 0.6377 5>4>3>1>2

2 ωC2 = 0.35, ωC1, C3-C14 = 0.05 0.6359 0.4896 0.3642 0.5363 0.6324 1>5>4>2>3

3 ωC3 = 0.35, ωC1-C2, C4-C14 = 0.05 0.7026 0.3411 0.5444 0.4006 0.4406 1>3>5>4>2

4 ωC4 = 0.35, ωC1-C3, C5-C14 = 0.05 0.5824 0.4429 0.3640 0.4894 0.6321 5>1>4>2>3

5 ωC5 = 0.35, ωC1-C4, C6-C14 = 0.05 0.5888 0.3315 0.3705 0.6101 0.6386 5>4>1>3>2

6 ωC6 = 0.35, ωC1-C5, C7-C14 = 0.05 0.5832 0.4436 0.5883 0.3746 0.5204 3>1>5>2>4

7 ωC7 = 0.35, ωC1-C6, C8-C14 = 0.05 0.7093 0.4327 0.3547 0.4790 0.5092 1>5>4>2>3

8 ωC8 = 0.35, ωC1-C7, C9-C14 = 0.05 0.6440 0.3332 0.5959 0.6120 0.5745 1>4>3>5>2

9 ωC9 = 0.35, ωC1-C8, C10-C14 = 0.05 0.6420 0.3315 0.5281 0.5426 0.6386 1>5>4>3>2

10 ωC10 = 0.35, ωC1-C9, C11-C14 = 0.05 0.7144 0.3302 0.3652 0.3549 0.3846 1>5>3>4>2

11 ωC11 = 0.35, ωC1-C10, C12-C14 = 0.05 0.7241 0.6152 0.6331 0.3236 0.3446 1>3>2>5>4

12 ωC12 = 0.35, ωC1-C11, C13-C14 = 0.05 0.7198 0.5451 0.5668 0.3353 0.3599 1>3>2>5>4

13 ωC13 = 0.35, ωC1-C12, C4-C14 = 0.05 0.6571 0.3089 0.3365 0.6489 0.6687 5>1>4>3>2

14 ωC14 = 0.35, ωC1-C13 = 0.05 0.7278 0.2997 0.3254 0.5751 0.5928 1>5>4>3>2

15 ωC1-C8 = 0.125, ωC9-C14 = 0 0.5311 0.3799 0.4606 0.5238 0.6139 5>1>4>3>2

16 ωC1-C8 = 0, ωC9-C14 = 0.167 0.7027 0.4133 0.4361 0.4239 0.4373 1>5>3>4>2

17 ωC1-C4 = 0.25, ωC5-C14 = 0 0.4613 0.3988 0.4116 0.4803 0.6039 5>4>1>3>2

18 ωC5-C9 = 0.2, ωC1-C4, C10-C14 = 0 0.6014 0.3746 0.5273 0.5691 0.6283 5>1>4>3>2

19 ωC1-C9 = 0, ωC10-C14 = 0.2 0.7117 0.4254 0.4254 0.4128 0.4128 1>3 = 2>5 = 4

https://doi.org/10.1371/journal.pone.0177578.t009
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greatly with the weight vary of each criterion. Therefore, obtaining the weight of each crite-

rion reasonably and scientifically plays a significant role in the selection of the optimal green

material.

Discussion

By comparing the results from the three methods and the sensitivity analysis (as shown in Figs

3 and 4), it can be confirmed that this hybrid MCDM method is effective for the selection of

the optimal choice from the material/design alternatives. Additionally, to illustrate that this

method is better than the traditional methods, the significance of the present study can be

summarized as follows:

From Table 6 and Fig 2. it can be seen that each cluster has feedback and dependence. In

other words, the status of each cluster is different. In this paper, the degree that cluster 1 is

affected by the other clusters (4.9286) is higher than the degrees for the others (4.5000, 4.5714).

Thus, cluster 1 should occupy a greater proportion in the operation process. However, in the

traditional method, e.g., AHP and ANP, it is assumed that each cluster has the same weight.

The final weights of each cluster are either higher or lower than the realistic values. Therefore,

this paper combines DEMATEL to improve the normalization of ANP in the unweighted

supermatrix, and the results confirmed that it can be used to obtain the final weights of each

cluster more reasonably. In addition, as shown in Table 8 and Fig 3, the final ranks from differ-

ent methods are unstable, e.g., PU-INC is better than ABS-LND via DANP-GRA, in contrast,

Fig 4. Sensitivity analysis.

https://doi.org/10.1371/journal.pone.0177578.g004
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ABS-LND is better than PU-INC via DANP-TOPSIS. The reason for this difference is that

each single method has its limitations, which will impact the final rank (the detailed limitation

is summarized in the sub-section G-TOPSIS). Therefore, G-TOPSIS is proposed to rank the

material alternatives effectively. To avoid subjectivity and irrationality, a nonlinear program-

ming model with constraints is proposed to obtain the integrated closeness index based on

the similarity closeness index from GRA and the distance closeness index from TOPSIS. In

addition, a comparison and a sensitivity analysis are employed to confirm the accuracy and

effectiveness.

The practical implication could be summarized from our study as follows: 1) by DANP, it

can be seen that potential for recycling and reuse (C6) (0.112), usage of water (C8) (0.092),

and energy saving (C5) (0.086) are found to have a large impact on the green material selec-

tion since these criteria carry relatively larger weights. Thus, their reasonable control can

greatly contribute to a better design for engineers/designers. In addition, the results of the

sensitivity analysis illustrate the importance of establishing a qualified group of experts/

designers in the design evaluation. 2) The selection of the optimal material alternative is

essential for the sustainable development of products. The main contribution of this work is

the definition and development of an effective evaluation framework to guide managers to

assess green material alternatives. To the best of our knowledge, no studies exist on devising

a hybrid MCDM method that integrates DANP and G-TOPSIS to solve a green material

selection problem for sustainable development. The results confirm that this method over-

comes the one-sidedness of DANP-TOPSIS and DANP-GRA and makes the evaluation

results more objective and realistic. In addition, the results of comparing with VIKOR con-

firmed that the final rank of this proposed approach is credible. Clearly, this study provides a

more accurate, effective and systematic decision support tool for green material selection. In

addition, this study can be useful for researchers to better understand the green material

selection problem theoretically, as well as to organizations in designing/developing a better

green design evaluation system.

Conclusion

Sustainable development is a difficult and restrained task for all walks of life, e.g., the

manufacturing industry and the environmental protection agency. It has also been a great

concern to countries, especially developing countries. In addition, previous research studies

have proposed many solutions and optimization methods, with determining how to select

the optimal material being one of the key problems. In this paper, we proposed a hybrid

MCDM approach that combines DANP and G-TOPSIS to evaluate the material alternatives

and select the optimal material for sustainability. This method not only handles the complex

interactions and interdependences among dimensions and criteria, but also provides a visi-

ble causal relationship diagram to obtain the weights of each criterion for material selection.

In addition, it combines GRA and TOPSIS in view of the lack of a single MCDM method,

and a nonlinear programming model with constraints is proposed to obtain the integrated

closeness index to avoid subjectivity and irrationality during the integration process. An

empirical application of rubbish bins was used to illustrate the proposed method. A sensitiv-

ity analysis and a comparison with existing methods were employed to validate the stability

of the final results. The results of the research in this paper show the following:

1. the proposed approach combining DANP and G-TOPSIS is a reasonable and effective tool

for green material selection based on the results of an empirical case, a comparison of meth-

ods, and a sensitivity analysis;
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2. a suitable hierarchical structure of each criterion considering the economic, environment

and physical properties was built for material selection, and

3. the weights of each criterion are obtained via DANP and a causal influence diagram for

dimensions and criteria is built.

As future work, our studies will focus on three direction: 1) on the basis of this study, we

will integrate other significant impact criteria, e.g., social, technical and interior environment

characteristics factors in the hierarchical structure, and formulate a more complete index sys-

tem; 2) this hybrid method could be applied to other fields. For example, green performance

assessment and design alternative selection, and a computer-assisted design support system

will be designed and applied in the assessment process; 3) by noting that the raw data from the

experts have uncertain and imprecise features, uncertainty theory must be integrated in

MCDM methods for further development [89–90].

Appendix A

Step 1: Calculate the direct-relation matrix. The degree of direct impact that criterion i exerts

on criterion j, which is denoted by dij, can be formulated by several experts/engineers in

this field based on assumed scales, i.e., "no influence (0)", "very low influence (1)", "low

influence (2)", "high influence (3)" and "very high influence (4)". Subsequently, A direct-

relation matrix A = [aij]n×n is produced through the mean of each same criterion in the vari-

ous matrices of the experts/engineers.

Step 2: Establish the initial direct-relation matrix. The initial direct-relation matrix D = [dij]n×n
can be derived through normalizing the matrix A as shown in Eqs (18) and (19).

D ¼ s� A ð18Þ

s ¼ min
1

maxi
Xn

j¼1

jaijj
;

1

maxj
Xn

i¼1

jaijj

2

6
6
6
6
4

3

7
7
7
7
5

ð19Þ

Step 3: Derive the total direct-relation matrix. Along the powers of D, e.g., D2, D3, . . ., Dα, the

indirect impact of each criterion is decreasing continuously. As α approaches infinity, then

Dα = [0]n×n, where 0� dij<1, 0< Sidij� 1 and 0< Sjdij� 1; at least one column sum Sidij
or one row sum Sjdij is equal to 1. Therefore, the total direct-relation matrix T = [tij] n×n can

be obtained through Eq (20).

T ¼ D1 þ D2 þ . . .þ Da ¼ DðI � DÞðI � DÞ� 1
¼ DðI � DÞ� 1

ð20Þ

where limα!1Dα = [0]n×n.

Step 4: Analyze the results. Each row sum vector r and column sum vector s of total direct-

relation matrix T are separately produced, as shown in Eqs (21) and (22), where ri denotes

the sum of total influences of criterion i on the other criteria. Similarly, cj denotes the sum

of total influences that criterion j has received from the other criteria. Additionally, (ri + ci)
and (ri—ci) should be calculated to analyze the results. (ri + ci), as an index, can indicate the

degree of the central role that criterion i plays in this problem when i = j. Regarding (ri—ci),
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if it’s it is positive, criterion i affects other criteria; in contrast, criterion i is impacted by

other criteria [32, 36].

r ¼ ðriÞn�1
¼

Xn

j¼1

tij

" #

n�1

ð21Þ

c ¼ ðcjÞn�1
¼ ðcjÞ

0

1�n ¼
Xn

i¼1

tij

" #0

1�n

ð22Þ

Step 5: Establish a causal-relation diagram. By mapping the data set of (ri + ci, ri—ci), a causal-

relation diagram can be structured to provide an effective method to determine how the

preferred values in each dimension/cluster and criterion can be improved.

Step 6: Calculate the unweighted supermatrix. Two different total direct-relation matrices

are then obtained from DEMATEL, i.e., TC ¼ ½tijC�n�n which pertains to n criteria and

TD ¼ ½tijD�m�m which is devoted tom dimensions/clusters from TC as shown in Eq (23).

TC ¼

D1 � � � Dj � � � Dm
c11 . . . c1n1

cj1 . . . cjnj cm1 . . . cmnm

D1

c11

..

.

c1n1

..

.

Dj

ci1

..

.

cini
..
.

Dm
cm1

..

.

cmnm

T11
C � � � T1j

C � � � T1m
C

..

. . .
. ..

. . .
. ..

.

Ti1C � � � TijC � � � TimC

. .
. ..

. . .
. ..

.

Tm1
C � � � TmjC � � � TmmC

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð23Þ

In addition, a new matrix Td
C will be established by normalizing the total direct-relation
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matrix TC, as shown in Eqs (24) and (25).

Td

C ¼

D1 � � � Dj � � � Dm
c11 . . . c1n1

cj1 . . . cjnj cm1 . . . cmnm

D1

c11

..

.

c1n1

..

.

Dj

ci1

..

.

cini
..
.

Dm

cm1

..

.

cmnm

Td11
C � � � Td1j

C � � � Td1m
C

..

. . .
. ..

. . .
. ..

.

Tdi1
C � � � Tdij

C � � � Tdim
C

. .
. ..

. . .
. ..

.

Tdm1
C � � � Tdmj

C � � � Tdmm
C

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð24Þ

An explanation for the normalization Td11
C is explained in detail which is shown as Eqs (25)

and (26). Similarly, other Tdij
C values can be obtained in the same manner.

Td11

C ¼ ½t
d11

cij �m1�m1
¼

t11
c11
=d11
c1 � � � t11

c1j=d
11
c1 � � � t11

c1m1
=d11
c1

..

. . .
. ..

. . .
. ..

.

t11
ci1=d

11
ci � � � t11

cij=d
11
ci � � � t11

cim1
=d11
ci

..

. . .
. ..

. . .
. ..

.

t11
cm11

=d11
cm1

� � � t11
cm1 j
=d11
cm1

� � � t11
cm1m1

=d11
cm1

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð25Þ

d11

ci ¼
Xm1

j¼1

t11

ij ; i ¼ 1; 2; . . . ;m1 ð26Þ

Let the total direct-relation matrix match and fill into the interdependence clusters. An

unweighted supermatrixW can be obtained based on transposing the normalized total
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direct-relation matrix Td
C, as shown in Eq (27).

W ¼ ðTd

CÞ
0
¼

D1 � � � Dj � � � Dm
c11 . . . c1n1

cj1 . . . cjnj cm1 . . . cmnm

D1

c11

..

.

c1n1

..

.

Dj

ci1

..

.

cini
..
.

Dm

cm1

..

.

cmnm

W11 � � � Wi1 � � � Wn1

..

. . .
. ..

. . .
. ..

.

W1j � � � Wij � � � Wnj

. .
. ..

. . .
. ..

.

W1n � � � Win � � � Wnn

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð27Þ

An explanation for theW11 is explained in detail which is shown as Eq (28). Similarly, other

Wij values can be obtained in the same manner.

W11 ¼

c11 � � � c1i � � � c1m1

c11

..

.

c1j

..

.

c1m1

td11
c11

� � � td11
ci1 � � � td11

cm11

..

. . .
. ..

. . .
. ..

.

td11
c1j � � � td11

cij � � � td11
cm1 j

..

. . .
. ..

. . .
. ..

.

td11
c1m1

� � � td11
cim1

� � � td11
cm1m1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð28Þ

Step 7: Calculate the weighted supermatrix. Each column will be summed for normalization as

Eq (29).

TD ¼

t11
D � � � t1jD � � � t1nD

..

. . .
. ..

. . .
. ..

.

ti1D � � � tijD � � � tinD

..

. . .
. ..

. . .
. ..

.

tn1D � � � tnjD � � � tnnD

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð29Þ

A new matrix Td
D can be established by normalizing the total direct-relation matrix TD, as
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shown in Eq (30).

Td

D ¼ ½t
dij
D � ¼

t11
D =d1 � � � t1jD=d1 � � � t1nD =d1

..

. . .
. ..

. . .
. ..

.

ti1D=di � � � tijD=di � � � tinD=di

..

. . .
. ..

. . .
. ..

.

tn1D =dn � � � t
nj
D=dn � � � tnnD =dn

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð30Þ

To obtain the weighted supermatrix, the normalized total direct-relation matrix Td
D must be

multiplied as shown in Eq (31).

Wd ¼ Td

D �W ¼

td11
D �W

11 � � � tdi1D �W
i1 � � � tdn1D �W

n1

..

. . .
. ..

. . .
. ..

.

td1j
D �W1j � � � tdijD �Wij � � � tdnjD �Wnj

..

. . .
. ..

. . .
. ..

.

td1n
D �W

1n � � � tdinD �W
in � � � tdnnD �W

nn

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

ð31Þ

Step 8: Limit the weighted supermatrix. Limit the weighted supermatrix by raising it to a suffi-

ciently large power k until the supermatrix converges and becomes a long-term stable

supermatrix to obtain the global priority vector ω.
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36. Castro-Lacouture D, Sefair JA, Flórez L, Medaglia AL. Optimization model for the selection of materials

using a LEED-based green building rating system in Colombia. Building and Environment, 2009; 44(6):

1162–1170.

37. Kuo TC, Hsu CW, Li JY. Developing a green supplier selection model by using the DANP with VIKOR.

Sustainability, 2015; 7(2): 1661–1689.

38. Bissoli-Dalvi M, Nico-Rodrigues EA, de Alvarez CE, Fuica GES, Montarroyos DCG. The sustainability

of the materials under the approach of ISMAS. Construction and Building Materials, 2016; 106: 357–

363.

39. Mayyas A, Qattawi A, Omar M, Shan D. Design for sustainability in automotive industry: A comprehen-

sive review. Renewable and Sustainable Energy Reviews, 2012; 16(4): 1845–1862.

40. Florez L, Castro-Lacouture D. Optimization model for sustainable materials selection using objective

and subjective factors. Materials & Design, 2013; 46: 310–321.

41. Zhao R, Su H, Chen X, Yu Y. Commercially available materials selection in sustainable design: An inte-

grated multi-attribute decision making approach. Sustainability, 2016; 8(1): 79.

42. Anojkumar L, Ilangkumaran M, Sasirekha V. Comparative analysis of MCDM methods for pipe material

selection in sugar industry. Expert Systems with Applications, 2014; 41(6): 2964–2980.

43. Huang H, Zhang L, Liu Z, Sutherland JW. Multi-criteria decision making and uncertainty analysis for

materials selection in environmentally conscious design. The international journal of advanced

manufacturing technology, 2011; 52(5–8): 421–432.

44. Liu HC, Mao LX, Zhang ZY, Li P. Induced aggregation operators in the VIKOR method and its applica-

tion in material selection. Applied Mathematical Modelling, 2013; 37(9): 6325–6338.

45. Desai S, Bidanda B, Lovell MR. Material and process selection in product design using decision-making

technique (AHP). European Journal of Industrial Engineering, 2012; 6(3): 322–346.

46. Rahman S, Odeyinka H, Perera S, Bi Y. Product-cost modelling approach for the development of a deci-

sion support system for optimal roofing material selection. Expert Systems with Applications, 2012; 39

(8): 6857–6871.

47. Anojkumar L, Ilangkumaran M, Vignesh M. A decision making methodology for material selection in

sugar industry using hybrid MCDM techniques. International Journal of Materials and Product Technol-

ogy, 2015; 51(2): 102–126.

48. Onut S, Kara SS, Mert S. Selecting the suitable material handling equipment in the presence of vague-

ness. The International Journal of Advanced Manufacturing Technology, 2009; 44(7–8): 818–828.

Green material selection using a hybrid MCDM approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0177578 May 12, 2017 24 / 26

https://doi.org/10.1371/journal.pone.0177578
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