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Cognitive radio (CR) enables unlicensed users (or secondary users, SUs) to sense for and exploit underutilized licensed spectrum
owned by the licensed users (or primary users, PUs). Reinforcement learning (RL) is an artificial intelligence approach that enables
a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing
enables a source node to search for a least-cost route to its destination node.While there have been increasing efforts to enhance the
traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing
in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function,
exploitation, and exploration, as well as learning rate) through simulation. New approaches and recommendations are proposed
to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show
that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and
the new approaches proposed in this paper improves SUs’ network performance without significantly jeopardizing PUs’ network
performance, specifically SUs’ interference to PUs.

1. Introduction

Cognitive radio (CR) has been proposed to enable unlicensed
users (or secondary users, SUs) to exploit the underutilized
licensed channels (or white spaces) owned by the licensed
users (or primary users, PUs). Most traditional routing
schemes adopt a rule-based approach [1] in which each node
keeps and follows a set of predefined rules in its action selec-
tion for different network conditions; and this may not suit
CR due to its intrinsic characteristic of the dynamicity and
unpredictability of the network conditions (i.e., PUs’ activities
and channel quality) which require context awareness and
intelligence [2–4]. Context awareness enables a SU node
to observe the operating environment; while intelligence
enables the SU node to learn and make action selection
that maximizes network performance as time goes by. These

capabilities are essential as the rule-based approach may not
be feasible to define actions for all possible sets of network
conditions in CR networks (CRNs).

Reinforcement learning (RL) [5], which is an artificial
intelligence approach, has been applied to achieve context
awareness and intelligence in CRNs [2]. This article presents
a simulation study on the application of RL to routing
in CRNs. Firstly, the traditional RL approach is applied
in a routing scheme, which we call Cognitive Radio Q-
routing (CRQ-routing). Next, a RL feature, namely reward
function, is investigated. An enhanced RL-based routing
scheme called weighted cognitive radio Q-routing (WCRQ-
routing) is proposed. Subsequently, other two RL features,
namely, exploitation and exploration, as well as learning
rate, are investigated. The network performance of RL-based
routing schemes can be enhanced by regulating the RL
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features; hence, new enhancements are proposed for the
reward function, exploitation, and exploration, as well as
learning rate.

CRQ-routing is a spectrum-aware scheme that finds
least-cost routes in CRNs taking into account the dynamicity
and unpredictability of the channel availability and channel
quality. Simulation results show that CRQ-routing and its
enhancements minimize SUs’ interference to PUs, SUs’ end-
to-end delay, and SUs’ packet loss rate, as well as maximizing
SUs’ throughput.

Our contributions are as follows.

(i) Section 3 presents CRQ-routing which applies the
traditional RL approach.

(ii) Section 4 investigates different reward representa-
tions for network performance enhancement. In
addition to CRQ-routing, this section investigates a
variant of the reward function which we conveniently
call WCRQ-routing. WCRQ-routing applies a weight
factor 𝜔 to adjust the tradeoff between PUs’ and
SUs’ network performance. Performance enhance-
ment achieved by CRQ-routing and WCRQ-routing
for different PU utilization levels (PULs) and packet
error rate (PER) are compared with the traditional
shortest path (SP) routing scheme and the optimal
primary user-aware shortest path (PASP) routing
scheme.

(iii) Section 5 investigates the effects of exploitation and
exploration on network performance. A simple and
pragmatic exploration approach called dynamic soft-
max (DS) is proposed to dynamically regulate the
frequency of exploration according to the dynamicity
of the operating environment. Performance enhance-
ment achieved by DS is compared with two tradi-
tional exploration approaches, namely, 𝜀-greedy and
softmax.

(iv) Section 6 investigates the effects of learning rate
on network performance. A simple and pragmatic
learning rate adjustment approach called the coun-
terapproach (CA), which is based on the traditional
win-or-learn-fast policy hill climbing (or win-lose)
[6], is proposed to dynamically regulate the learning
rate according to the dynamicity of the operating
environment. Performance enhancement achieved
by CA is compared with the traditional approach,
namely, win-lose.

Simulation experiment, results, and discussions are pre-
sented in each of the sections. Finally, Section 7 concludes
this paper.

2. Related Work

While most researches focus on the enhancement of either
PUs’ or SUs’ network performance [7–10], this paper focuses
on both PUs’ and SUs’. CRQ-routing minimizes SUs’ interfer-
ence to PUswithout causing significant detrimental effects on
SUs’ network-wide performance.

In [7–10], either one or both of the following require-
ments are applicable. Firstly, information on PUs’ and SUs’
physical locations is essential. The associated challenges are
additional energy consumption, increased hardware cost, and
the availability of the physical location information in indoor
scenarios [2]. Secondly, network-wide information such as
link cost is essential; however, it is difficult to obtain up-to-
date information for the entire network in the presence of
dynamicity and unpredictability of the channel availability
and channel quality in CRNs. For instance, a reactive routing
scheme requires a SU destination node to confirm a route
prior to data transmission; however, due to the dynamicity
and unpredictability of the channel availability and channel
quality, a new route may have expired before routing infor-
mation reaches the SU destination node. CRQ-routing does
not require geographical and network-wide information, and
it adopts a per-hop routing approach (rather than an end-
to-end routing approach) that enables each SU intermediate
node tomake routing decision for a single hop to its next-hop
node based on local information.

The application of RL to routing schemes in CRNs has
been limited, such as [11], although it has been shown to
improve routing performance in various traditional wireless
networks [12, 13]. In [11], the SUs’ network performance is
shown to be enhanced, while in CRQ-routing, both PUs’ and
SUs’ network performances are enhanced. Using RL, CRQ-
routing integrates route discovery mechanism with channel
selection. CRQ-routing is a multipath routing scheme that
enables a SU node to maintain multiple routes, and this
can be well incorporated into RL through its feature called
exploration. Generally speaking, the existence of multiple
routes helps to enhance network reliability and to achieve
load balancing among various routes. This is because a SU
can automatically switch its route to another one during route
recovery in the event of route failure.

3. CRQ-Routing: Application of
the Traditional Reinforcement Learning
Approach to Routing

This section presents CRQ-routing that takes account of
the PUs’ and SUs’ network performance by minimizing
SUs’ interference to PUs along a route without significantly
jeopardizing SUs’ network-wide performance. It applies a
traditional RL approach called Q-learning [14, 15], which is a
popular RL approach. CRQ-routing enables a SU to observe
its local operating environment regularly and subsequently
to learn an action selection policy through exploring various
routes, and finally to choose routes with enhanced network
performance (i.e., lower SUs’ interference to PUs, lower SUs’
end-to-end delay, lower SUs’ packet loss rate, and higher SUs’
throughput). Generally speaking, RL enables a SU node to

(a) estimate the dynamic link cost. This allows a SU to
learn about and adapt to the local network conditions
(i.e., PUs’ activities and channel quality) which are
dynamic and unpredictable in nature,
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Table 1: CRQ-routing model embedded at SU node 𝑖.

State 𝑠
𝑖

𝑡
∈ 𝑆 = {1, 2, . . . , 𝑁 − 1}, each state 𝑠𝑖

𝑡
representing a SU destination node 𝑛.𝑁 represents the number of SUs in the

entire network.

Action 𝑎
𝑖

𝑡
∈ 𝐴
𝑖
= {1, 2, . . . , 𝐽}, each action 𝑎𝑖

𝑡
representing the selection of a SU next-hop node 𝑗 along with its operating

channel. 𝐽 represents the number of SU 𝑖’s neighboring SU nodes.

Cost 𝑟
𝑖

𝑡
(𝑎
𝑖

𝑡
) represents the link-layer delay incurred to successfully deliver a packet from SU node 𝑖 to SU neighbor node

𝑎
𝑖

𝑡
= 𝑗, including retransmission delays as a result of PU-SU packet collision and packet loss.

(b) search for the best-possible route using information
observed from the local operating environment and
information received from neighboring nodes,

(c) incorporate a wide range of factors that can affect the
routing performance into consideration, including
both PUs’ activities and channel quality.

By choosing links with lower link-layer delay, which is
the time duration required to deliver a SU’s packet to a
next-hop node successfully, SUs’ interference to PUs can be
reduced and SUs’ end-to-end network performance can be
enhanced. Note that the link-layer delay includes the time
duration incurred by retransmission as a result of PU-SU
packet collisions. The RL model for CRQ-routing is shown
in Table 1, and it is embedded in a SU node 𝑖. Using CRQ-
routing, each SU chooses a next-hop node and channel pair
as part of a route. There are three key representations for the
RL model as follows.

(i) State 𝑠
𝑖

𝑡
∈ 𝑆 = {1, 2, . . . , 𝑁 − 1} represents a SU

destination node 𝑛, where 𝑁 represents the number
of SUs in the entire network.

(ii) Action 𝑎𝑖
𝑡
∈ 𝐴
𝑖
= {1, 2, . . . , 𝐽} represents the selection

of a next-hop SU neighbor node 𝑗 along with its
operating channel, where 𝐽 represents the number of
SU 𝑖’s neighboring SU nodes.

(iii) Cost 𝑟𝑖
𝑡
(𝑎
𝑖

𝑡
), which indicates the consequence upon

taking action 𝑎𝑖
𝑡
, represents the link-layer delay of a SU

communication node pair, namely nodes 𝑖 and 𝑗. The
link-layer delay includes retransmission delays caused
by packet loss and PU-SU packet collision. Hence,
the end-to-end delay (or the accumulated link-layer
delay) reflects the accumulated SUs’ interference to
PUs; and by achieving lower delay, the interference
level can be reduced.

Each SU node 𝑖 keeps track of 𝑄-value 𝑄𝑖
𝑡
(𝑠
𝑖

𝑡
, 𝑎
𝑖

𝑡
), which

relates the three representations, in its 𝑄-table (i.e., routing
table). For each state-action pair, the 𝑄-value represents
the accumulated link-layer delay of a route leading to SU
destination node 𝑠𝑖

𝑡
by choosing a SU next-hop node 𝑎𝑖

𝑡
= 𝑗.

At time 𝑡, SU 𝑖 selects a SU next-hop node 𝑎𝑖
𝑡
= 𝑗 as part of

a route to reach destination node 𝑠𝑖
𝑡
; and upon a successful

transmission at time 𝑡 + 1, it receives an end-to-end delay
estimate for the route, namely 𝑄

𝑗

𝑡
(𝑠
𝑗

𝑡
, 𝑘), from node 𝑗 and

estimates the link-layer delay 𝑟𝑖
𝑡+1
(𝑗). Note that the link-layer

delay is dynamic and unpredictable due to the nature of the
PUs’ activities in which there are different levels of PUL. In

general, the link-layer delay increases with PUL in a channel.
The 𝑄-value 𝑄𝑖

𝑡
(𝑠
𝑖

𝑡
, 𝑎
𝑖

𝑡
= 𝑗) is updated as follows:

𝑄
𝑖

𝑡+1
(𝑠
𝑖

𝑡
, 𝑗)← (1 − 𝛼)𝑄

𝑖

𝑡
(𝑠
𝑖

𝑡
, 𝑗)

+ 𝛼(𝑟
𝑖

𝑡+1
(𝑗) +min

𝑘∈𝐴
𝑗
𝑄
𝑗

𝑡
(𝑠
𝑗

𝑡
, 𝑘)) ,

(1)

where 0 ≤ 𝛼 ≤ 1 is the learning rate and node 𝑘 ∈ 𝐴
𝑗 is

an upstream node of SU node 𝑗. A SU node 𝑖 adopts a policy
𝜋
𝑖

𝑡+1
(𝑠
𝑖

𝑡
) that chooses a SU next-hop node with the minimum

cost as follows:

𝜋
𝑖

𝑡+1
(𝑠
𝑖

𝑡
) = argmin
𝑎 ∈ 𝐴

𝑖

(𝑄
𝑖

𝑡
(𝑠
𝑖

𝑡
, 𝑎)) . (2)

In the next section, we present a variant of the reward
representation in RL to further enhance PUs’ and SUs’
network performance.

4. WCRQ-Routing: A Variant of the Reward
Representation

WCRQ-routing incorporates a weight factor into the reward
representation of CRQ-routing to adjust the tradeoff between
PUs’ and SUs’ network performance. WCRQ-routing pro-
vides further enhancement on SUs’ network performance
without jeopardizing PUs’ network performance. The main
difference between WCRQ-routing and CRQ-routing is the
cost (or negative reward) representation as follows.

(i) CRQ-routing enables a SU to learn about the accumu-
lated cost in terms of link-layer delay along a route.

(ii) WCRQ-routing enables a SU to learn about the
accumulated cost in terms of the number of SUs’
packet retransmissions and the packet queue length
of SUs along a route. Hence, WCRQ-routing enables
a SU to take account of packet retransmission which
further improves the PUs’ network performance,
and network performance which further improves
the SUs’ network performance. WCRQ-routing also
incorporates a weight factor 𝜔 which adjusts the
tradeoff between PUs’ and SUs’ network performance.

The RL model for WCRQ-routing is shown in Table 2,
and it is embedded in a SU node 𝑖. The state and action
representations are similar for CRQ-routing (see Table 1) and
WCRQ-routing, and so only the reward representation is
shown. The reward representation for the RL model is as
follows.
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Table 2: Reward representation for WCRQ-routing model embedded at SU node 𝑖.

Cost
𝑟
𝑖

𝑡
(𝑎
𝑖

𝑡
) = 𝜔𝑟

𝑖,𝑗

𝑡
+ (1 − 𝜔)𝑞

𝑗

𝑡
where 𝑟𝑖,𝑗

𝑡
represents the number of retransmissions for a packet sent from SU node 𝑖 to SU

neighbor node 𝑗 at time 𝑡, while 𝑞𝑗
𝑡
represents the number of packets in the queue of SU neighbor node 𝑗. Weight

factor 𝜔 = [0, 1] is used to adjust the tradeoff between PUs’ and SUs’ network performance.

(i) Cost 𝑟𝑖
𝑡
(𝑎
𝑖

𝑡
) = 𝜔𝑟

𝑖,𝑗

𝑡
+ (1 − 𝜔)𝑞

𝑗

𝑡
has two components:

(1) 𝑟
𝑖,𝑗

𝑡
represents the number of retransmissions for

a packet sent from SU node 𝑖 to SU neighbor node 𝑗
at time 𝑡 as a result of PU-SU packet collisions and
SU packet loss and (2) 𝑞

𝑗

𝑡
represents the number of

packets in the queue of SU neighbor node 𝑗. Both
𝑟
𝑖,𝑗

𝑡
and 𝑞

𝑗

𝑡
values in reward 𝑟

𝑖

𝑡
(𝑎
𝑖

𝑡
) are normalized to

[0, 1].The weight factor𝜔 = [0, 1] adjusts the tradeoff
between PUs’ and SUs’ network performance.

Similar to CRQ-routing, each SU node 𝑖 keeps track of
Q-values𝑄𝑖

𝑡
(𝑠
𝑖

𝑡
, 𝑎
𝑖

𝑡
) in its Q-table (i.e., routing table). For each

state-action pair, the Q-value represents a weighted cost that
takes account of the number of packet retransmissions and
packet queue length of SUs along a route leading to SU
destination node 𝑠𝑖

𝑡
by choosing a SU next-hop node 𝑎𝑖

𝑡
. At

time 𝑡, SU 𝑖 selects a SU next-hop node 𝑎𝑖
𝑡
= 𝑗 as part of

a route to reach destination node 𝑠𝑖
𝑡
and upon a successful

transmission, it receives an estimate of the weighted cost
for the route, namely 𝑄𝑗

𝑡
(𝑠
𝑗

𝑡
, 𝑘), from node 𝑗 and estimates

reward 𝑟
𝑖

𝑡+1
(𝑗), which takes into account the number of

retransmissions for a packet and the number of packets in
the queue of SU neighbor node 𝑗 at time 𝑡 + 1. Note that
both number of retransmissions for a packet and number of
packets in the queue of a SU’s neighbor node are dynamic and
unpredictable due to the nature of the PUs’ activities in which
there are different levels of PUL. In general, 𝑟𝑖

𝑡+1
(𝑗) increases

with PUL in a channel.TheQ-value𝑄𝑖
𝑡
(𝑠
𝑖

𝑡
, 𝑎
𝑖

𝑡
) is updated using

(1) and a SU next-hop node with the minimum cost is chosen
using (2).

The rest of this section is organized as follows. Section 4.1
presents simulation setup and parameters. Section 4.2
presents a comparison of network performance achieved
by CRQ-routing, WCRQ-routing, and two baseline routing
schemes, namely, shortest path (SP) and PU aware shortest
path (PASP) routing schemes. Section 4.3 presents the effects
of the weight factor 𝜔 in reward representation on network
performance.

4.1. Simulation Setup and Parameters. Figure 1 shows the
system model which is a multihop CRN with 𝑁 SUs and
𝐾 PUs [16]. Each PU transmits in one of the 𝐾 different
channels. In Figure 1, we consider a SU source node 𝐴 and
a SU destination node 𝐺.

We compare the network performance achieved by CRQ-
routing and WCRQ-routing with nonlearning approaches,
specifically, the traditional SP routing and the optimal PASP
routing approaches. SP routing selects a route that has the
minimum number of hops and this has been shown to
improve the end-to-end network performance in traditional
networks. PASP routing selects a route that has theminimum
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Interference link

Figure 1: Network scenario.

accumulated amount of PUs’ activities. This means that the
route encounters the least number of PUs, and so the PUL
along the route may be the lowest. However, PASP routing
may not be feasible in practice as it is a centralized approach
that requires network-wide information of PUL for each
link and channel. Nevertheless, PASP routing is an optimal
approach that minimizes SUs’ interference to PUs and so it
serves as a good comparison in our simulation study.

There are four network performance metrics as follows.

(i) PU-SU collision probability indicates the level of SUs’
interference to PUs. Reducing this metric improves
the PUs’ network performance. This metric is a ratio
of the number of PU-SU collisions to the number of
SUs’ packet transmissions.

(ii) SU end-to-end delay includes the transmission, pro-
cessing, backoff, and queuing delays along a route.

(iii) SU packet loss rate is a ratio of the number of packet
loss to the total number of packets sent.

(iv) SU throughput is the number of arriving packets per
second (pps) at the SU destination node.

The simulation compares the aforementioned perfor-
mance metrics with respect to different levels of PULs
for CRQ-routing, WCRQ-routing, SP routing, and PASP
routing. The dynamicity of the PUs’ activities (or PUL) is
represented by PU arrival rate 𝜇PUL, and each scenario has
a certain level of unpredictability of the PUs’ activities (or the
standard deviation of PU arrival rate) which is represented by
𝜎PUL.

Table 3 shows a summary of the simulation parameters
and values. Generally speaking, each simulation is run for
100 seconds and repeated 50 times with different random
seeds. The simulation reporting interval is 1 second which
indicates that, at each second of the simulation running time,
amean value of the simulation result is calculated.The default
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Table 3: Simulation parameters and values.

Category Parameter Value

SU

SU’s transmission delay, 𝑑trSU 1.0ms
Processing delay, 𝑑prSU 1.0ms
Mean arrival rate, 𝜆SU 0.6
Learning rate, 𝛼 0.5
WCRQ-routing weight factor, 𝜔 0.5

PU
PU’s transmission delay, 𝑑trPU 1.2ms
Mean arrival rate (or PUL), 𝜇PUL [0.0, 1.0]
Standard deviation, 𝜎PUL {0.0, 0.4, 0.8}

Channel Mean PER, 𝜇PER 0.05
Standard deviation of PER, 𝜎PER 0.025

number of SUs is𝑁 = 10, and PUs is 𝐾 = 19. Each PU does
not change its channel and operates in distinctive channels.
Each PU activity in channel 𝑘 ∈ 𝐾 is modeled as a Poisson
process with mean 𝜆𝑘PUL(𝜇PUL, 𝜎PUL), which is assigned using
Box-Muller transform [17] according to an expected mean
𝜇PUL = [0, 1] and standard deviation 𝜎PUL = [0, 1]. The
standard deviation of PUL is 𝜎PUL ∈ {0.0, 0.4, 0.8}, which
indicates low, medium, and high levels of unpredictability of
the PUs’ activities, and these values are chosen due to their
significant effects to the results. Since the focus is on the
comparison of network performance in regard to PUL, we
assume the channels have low level of noise with 𝜇PER =

0.05 and 𝜎PER = 0.025. Packets are generated at the SU
source node using Poisson process with a mean arrival rate of
𝜆SU = 0.6. Since the PUs have higher priority than SUs, their
transmissions take longer; specifically, the SUs’ transmission
delay is 𝑑trSU = 1.0ms and the PUs’ transmission delay is
𝑑
tr
PU = 1.2ms. In order to model a simple queuing delay 𝑑quSU,

we assume a finite packet queue size of 1000 packets in each
SU node with a constant processing delay 𝑑prSU = 1.0ms. The
Q-values are initialized to 0 in order to encourage exploration
at the start of the simulation. The SU learning rate is 𝛼 =

0.5 (see (1)). For WCRQ-routing, the weight factor is set to
𝜔 = 0.5 so that there is a balanced tradeoff between PUs’ and
SUs’ network performance. The effects of 𝜔 on the network
performance are presented in Section 4.3.

4.2. Comparison of CRQ-Routing, WCRQ-Routing, SP, and
PASP Routing Schemes. We present simulation results for the
four performance metrics in this section.

4.2.1. SUs’ Interference to PUs. When the standard deviation
of PUL is low 𝜎PUL = 0, most next-hop node (or link)
and channel pairs have the same PU mean arrival rate 𝜇PUL,
so all routing schemes achieve similar probability of PU-SU
packet collisions across a CRN (see Figure 2(a)). When the
unpredictability level of PUL is 𝜎PUL = 0.4, the link and
channel pairs have greater difference in the levels of PUmean
arrival rate 𝜇PUL, WCRQ-routing, and CRQ-routing choose
routes that minimize SUs’ interference to PUs. Both WCRQ-
routing and CRQ-routing reduce collisions with PUs for up
to 19% compared to SP routing, whereas the empirical PASP

routing scheme, which provides the best results, reduces
collisions with PUs for up to 30% compared to SP routing
(see Figure 2(b)). When 𝜎PUL = 0.8, the link and channel
pairs have the greatest difference in the levels of PU mean
arrival rate 𝜇PUL. Similar trends to the network scenario of
𝜎PUL = 0.4 are observed although collisions with PUs have
generally increased due to the increased unpredictability of
PUs’ activities (see Figure 2(c)).

Generally speaking, both WCRQ-routing and CRQ-
routing achieves almost similar performance in terms of SUs’
interference to PUs; and the SUs’ interference to PUs increases
with the PUmean arrival rate𝜇PUL and the standard deviation
of PUL 𝜎PUL.

4.2.2. SU End-to-End Delay. When the standard deviation
of PUL is low 𝜎PUL = 0, most link and channel pairs
have the same PU mean arrival rate 𝜇PUL. The SU end-to-
end delay increases with PU mean arrival rate 𝜇PUL (see
Figure 3(a)). When the PU mean arrival rate 𝜇PUL is low,
the SU end-to-end delay consists of mainly transmission and
queuing delays, and when 𝜇PUL becomes higher (i.e., 𝜇PUL >
0.3), the retransmission and backoff delays caused by PU-SU
packet collisions and overflow of SUs’ packet queues increase
contributing to higher SU end-to-end delay. WCRQ-routing
reduces SU end-to-end delay for up to 72% compared to the
other routing schemes. This is because WCRQ-routing takes
into account the queue length of SUs along the route, so it
chooses routes with lower network congestion contributing
to lower SU end-to-end delay.

When the unpredictability level of PUL increases from
𝜎PUL = 0.4 to 𝜎PUL = 0.8, the link and channel pairs have
greater difference in the levels of PU mean arrival rate 𝜇PUL.
WCRQ-routing chooses routes that minimize the number of
packet retransmissions caused by PU-SU packet collisions
and overflow of SUs’ packet queues contributing to lower SU
end-to-end delay (see Figures 3(b) and 3(c)). With greater
unpredictability level of PUL 𝜎PUL, it is easier for WCRQ-
routing to find a route with better performance; hence, the
lower SU end-to-end delay when 𝜎PUL = 0.8 in Figure 3(c)
compared to 𝜎PUL = 0.4 in Figure 3(b), and WCRQ-routing
achieves lower SU end-to-end delay for up to 89% when
𝜎PUL = 0.8 compared to other routing schemes. Additionally,
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Figure 2: SUs’ interference to PUs for varying PU mean arrival rate 𝜇PUL for different levels of standard deviation of PUL 𝜎PUL.

there are two main observations. Firstly, the fluctuations of
SU end-to-end delay are observed because the routes of SP
routing and PASP routing are static as they are unaware
of the unpredictability of PUL, while the routes of CRQ-
routing andWCRQ-routing are dynamic in nature. Secondly,
PASP routing and CRQ-routing deteriorate to the network
performance of SP routing with increasing PU mean arrival

rate 𝜇PUL because both schemes take account of PU mean
arrival rate 𝜇PUL only in routing decision, and so when 𝜇PUL
becomes higher, they may choose longer routes resulting
in higher SU end-to-end delay. In contrast, WCRQ-routing
takes account of network congestion as well.

Generally speaking, WCRQ-routing reduces SU end-to-
end delay, and the metric increases with the PU mean arrival
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(b) 𝜎PUL = 0.4
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(c) 𝜎PUL = 0.8

Figure 3: SU end-to-end delay for varying PU mean arrival rate 𝜇PUL for different levels of standard deviation of PUL 𝜎PUL.

rate 𝜇PUL and reduces with the standard deviation of PUL
𝜎PUL.

4.2.3. SU Packet Loss. When the standard deviation of PUL
is low 𝜎PUL = 0, WCRQ-routing achieves load-balancing
among the available routes as it takes into account the queue
length of SUs along a route, so it reduces network congestion,
andhence there is lower SUpacket loss of up to 16% compared
to the other routing schemes (see Figure 4(a)).

When the unpredictability level of PUL is 𝜎PUL = 0.4

and 𝜎PUL = 0.8, WCRQ-routing achieves almost similar
network performance to PASP routing with lower packet loss
for up to 56% compared to SP routing and 25% compared to
CRQ-routing when 𝜎PUL = 0.8 (see Figures 4(b) and 4(c)).
This is because WCRQ-routing chooses routes with lower
network congestion in order to minimize packet retrans-
mission caused by PU-SU packet collisions and overflow
of SU’s packet queues leading to lower number of packet
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(c) 𝜎PUL = 0.8

Figure 4: SU packet loss for varying PU mean arrival rate 𝜇PUL for different levels of standard deviation of PUL 𝜎PUL.

retransmissions. Both network scenarios of 𝜎PUL = 0.4 and
𝜎PUL = 0.8 share almost similar trends although the SU
packet loss has generally decreased in the case of 𝜎PUL = 0.8.

Generally speaking, WCRQ-routing reduces SU packet
loss, and the metric increases with the PU mean arrival rate
𝜇PUL and reduces with the standard deviation of PUL 𝜎PUL.

4.2.4. SU Throughput. When the standard deviation of PUL
is low 𝜎PUL = 0, WCRQ-routing achieves load-balancing

among available routes as it takes into account the queue
length of SUs along a route, so it reduces network congestion,
and hence there is higher SU throughput of up to 11%
compared to the other routing schemes (see Figure 5(a)).

When the unpredictability level of PUL is 𝜎PUL = 0.4 and
𝜎PUL = 0.8, WCRQ-routing achieves higher SU throughput
of up to 27% compared to SP routing, up to 12% compared
to CRQ-routing, and up to 9% compared to PASP routing
when 𝜎PUL = 0.8 (see Figures 5(b) and 5(c)). This is because
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Figure 5: SU throughput for varying PU mean arrival rate 𝜇PUL for different levels of standard deviation of PUL 𝜎PUL.

WCRQ-routing chooses routes with lower network conges-
tion in order to minimize packet retransmission caused by
PU-SU packet collisions and overflow of SU’s packet queues
leading to higher SU throughput.

Generally speaking, WCRQ-routing increases SU
throughput, and the metric reduces with the PU mean
arrival rate 𝜇PUL and reduces with the standard deviation of
PUL 𝜎PUL.

4.2.5. Section Summary. We summarize simulation outcomes
for the comparison of CRQ-routing,WCRQ-routing, SP, and
PASP routing schemes as follows.

(i) Network performance degrades as the dynamicity of
PUs’ activities 𝜇PUL increases.

(ii) WCRQ-routing and CRQ-routing minimize SUs’
interference to PUs with respect to PUL in the
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Table 4: Simulation parameters and values for investigating the
effects of weight factor in reward representation.

Category Parameter Value
SU Mean arrival rate, 𝜆SU 0.8

PU Mean arrival rate (PUL), 𝜇PUL {0.2, 0.4}
Standard deviation, 𝜎PUL 0.5

Channel Mean PER, 𝜇PER {0.2, 0.4}
Standard deviation of PER, 𝜎PER 0.2

presence of dynamicity and unpredictability of the
channel availability.

(iii) WCRQ-routing enhances network performance of
SUs compared to other routing schemes including
lower SU end-to-end delay, lower SU packet loss,
and higher SU throughput. Using a weight factor
in WCRQ-routing, the cost represents two factors
including the number of packet retransmissions and
the packet queue length of SUs.

4.3. Effects of Weight Factor in Reward Representation. This
section investigates the effects of the weight factor 𝜔 of
WCRQ-routing on network performance. WCRQ-routing
applies a weight factor 𝜔 to adjust the tradeoff between
PUs’ and SUs’ network performance. Based on Table 2, with
a higher value of 𝜔, there is greater consideration on 𝑟

𝑖,𝑗

𝑡

which represents the number of retransmissions for a packet
sent from SU node 𝑖 to SU neighbor node 𝑗 at time 𝑡

and indicates the probability of PU-SU packet collision, and
lesser consideration on SU neighbor node 𝑗’s queue length
𝑞
𝑗

𝑡
which indicates SU network congestion. This means a

higher value of weight factor 𝜔 improves the PUs’ network
performance, while a lower value of 𝜔 improves the SUs’
network performance.

While Table 3 presents the default simulation parameters
and values, Table 4 presents the specific simulation param-
eters and values for this investigation. Generally speaking,
we simplify the simulation values in order to focus on the
effects of weight factor 𝜔. This explains why we consider two
different PUL 𝜇PUL and PER 𝜇PER values only and a fixed
value of the standard deviation of PUL 𝜎PUL. We increase the
network congestion level with increased SUmean arrival rate
to 𝜆SU = 0.8.

In this section, we assume that when PU-SU packet
collision occurs, a SU packet is transmitted successfully while
the PU’s packet is lost; therefore, the PUs’ activities can be
easily affected and it is prone to SUs’ interference. We present
the simulation results for the four performancemetrics in the
rest of this section.

4.3.1. SUs’ Interference to PUs. Figure 6 shows that the SUs’
interference to PUs decreases with the weight factor 𝜔 of
WCRQ-routing. Hence, a higher value of weight factor 𝜔
improves the PUs’ network performance, while a lower value
of 𝜔 improves SUs’ network performance. In addition, with
respect to PUL and PER, Figure 6 shows that PUL has
greater effects on PUs’ network performance compared to
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Figure 6: SUs’ interference to PUs for varying weight factor 𝜔.
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Figure 7: SU end-to-end delay for varying weight factor 𝜔.

PER because PUL has a direct effect on the PU-SU packet
collisions; hence, higher PULs indicate higher probability of
PU-SU collisions.

4.3.2. SU End-to-End Delay. Figure 7 shows that the SU end-
to-end delay increases with the weight factor 𝜔 of WCRQ-
routing.Hence, a higher value of weight factor𝜔 improves the
PUs’ network performance; while a lower value of𝜔 improves



The Scientific World Journal 11

1.00.90.80.70.60.50.40.30.20.10

100

90

80

70

60

50

40

30

20

10

0

SU
 p

ac
ke

t l
os

s (
%

)

Weight

PER = 0.2, PUL = 0.4

PER = 0.4, PUL = 0.2

Figure 8: SU packet loss for varying weight factor 𝜔.

SUs’ network performance. In addition, with respect to PUL
and PER, Figure 7 shows that PER has greater effects on SUs’
network performance compared to PUL because PER has
a direct effect on the packet length and a SU’s packet can
be transmitted successfully during a PU-SU packet collision.
With a higher value of PER (or a noisier channel), SUnetwork
congestion increases due to increasing number of SU packet
retransmissions leading to higher SU end-to-end delay.

4.3.3. SU Packet Loss. Figure 8 shows that the SU packet
loss increases with the weight factor 𝜔 of WCRQ-routing.
The explanations leading to this circumstance are similar to
those found in the investigation of SU end-to-end delay (see
Section 4.3.2). Interestingly, Figure 8 shows that when weight
factor is 𝜔 ≅ 0.5, WCRQ-routing achieves the lowest packet
loss. At𝜔 = 0.5, a SU node 𝑖 gives equal consideration to both
link quality 𝑟𝑖,𝑗

𝑡
, which aims to avoid routes with higher PUs’

activities in order to reduce SUs’ backoff delays, and SU 𝑗’s
queue length 𝑞

𝑗

𝑡
, both of which reduce the overflow of SUs’

queues and SUs’ packet loss.

4.3.4. SUThroughput. Figure 9 shows that the SU throughput
reduces with the weight factor𝜔 of WCRQ-routing. The
explanations leading to this circumstance are similar to
those found in the investigation of SU end-to-end delay (see
Section 4.3.2); and when weight factor is 𝜔 ≅ 0.5, WCRQ-
routing achieves the highest throughput.

4.3.5. Section Summary. We summarize simulation outcomes
for the effects of weight factor in reward representation as
follows.
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Figure 9: SU throughput for varying weight factor 𝜔.

(i) A higher value of weight factor 𝜔 improves the
PUs’ network performance; while a lower value of 𝜔
improves the SUs’ network performance.

(ii) A balanced weight factor 𝜔 ≅ 0.5 achieves the
best-possible SUs’ network performance, particularly
lower SU packet loss and higher SU throughput.

5. Enhancement of Exploration Mechanism

Traditionally, during route selection, there are two types of
actions, namely, exploitation and exploration. Exploitation
selects the best-known route 𝑎𝑖

𝑡
= argmin

𝑎∈𝐴
𝑄
𝑖

𝑡
(𝑠
𝑖

𝑡
, 𝑎), which

has the lowest cost, in order to improve network performance.
Exploration selects a random route 𝑎𝑖

𝑡
∈ 𝐴 in order to improve

knowledge, specifically, the estimation ofQ-values for various
routes. Two traditional exploration schemes are 𝜀-greedy and
softmax [5], and these schemes have been applied to regulate
the exploration probability. Awell-balanced tradeoff between
exploitation and exploration helps to maximize network
performance as time goes by. There have been some limited
efforts to investigate this tradeoff in wireless networks; and
this investigation applies to routing in CRNs. We present an
overviewof exploration probability and the traditional (called
𝜀-greedy and softmax) and our proposed (called dynamic
softmax) exploration approaches to dynamically regulate the
exploration probability, as well as simulation results for the
four performance metrics, in the rest of this section.

5.1. An Overview of Exploitation and Exploration. While
route exploitation may seem to improve network perfor-
mance as it forwards SUs’ packets using the best-known
route, it may cause network congestion and subsequently
degrade SUs’ network performance. On the other hand, route
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Figure 10: SU end-to-end delay for varying exploration probability
𝜀.

exploration reduces traffic load on the best-known route, and
so it may increase the convergence rate to an optimal route
in a dynamic and unpredictable operating environment.
However, if the exploration probability is high, forwarding
the SUs’ packets along nonoptimal routes may degrade SUs’
network performance causing higher end-to-end delay and
packet loss, as well as lower throughput.

We present simulation results of a preliminary investiga-
tion to show the effects of exploration probability 𝜀 on the
convergence rate of SUs’ network performance, particularly
SU end-to-end delay. Note that more details on simulation
setup and parameters are presented in later section. Using 𝜀-
greedy, a SU explores with a small probability 𝜀 and exploits
with probability 1 − 𝜀. Convergence rate is the time duration
for a SU node to find an optimal or near-optimal route, which
provides a stable and enhanced SUs’ network performance.
Figure 10 shows that, as the exploration probability increases,
the convergence rate increases (e.g., from approximately 200
seconds using 𝜀 = 0.1 to 100 seconds using 𝜀 = 0.2). The
average SU end-to-end delay increases with the exploration
probability 𝜀. Additionally, higher exploration probability
causes instability of SUs’ network performance (e.g., SU end-
to-end delay has higher fluctuations using 𝜀 = 0.4). Also, a
peak is observed when exploration probability is low using
𝜀 = 0.1 because a SU may exploit nonoptimal routes at most
of the time since theQ-values are initialized to 0 values which
encourages exploration.

This initial investigation motivates us to achieve a bal-
anced tradeoff between exploitation and exploration in route
selection.

5.2. Exploration Approaches. We present two traditional
exploration approaches (i.e., 𝜀-greedy and softmax) and a

variant of the exploration approach (i.e., dynamic softmax)
in this section.

5.2.1. The 𝜀-Greedy Approach. The 𝜀-greedy approach per-
forms exploration with a small probability 𝜀 (e.g., 𝜀 = 0.1)
and exploitation with probability 1 − 𝜀 [5]. A drawback is
that, during exploration, it selects nonoptimal routes with
below-average performance in a random manner with equal
probability, and if these routes are chosen most of the times,
the SUs’ network performance may degrade.

5.2.2. The Softmax Approach. The softmax approach chooses
an exploration action based on Q-values [5]. Specifically,
routes with lower Q-values (i.e., lower cost) are likely to be
explored than routes with higher Q-values (i.e., higher cost),
and this addresses the drawback of 𝜀-greedy; specifically,
it minimizes the detrimental effects of exploration to SUs’
network performance while exploring nonoptimal routes.

Using softmax (or the Boltzmann distribution), SU node
𝑖 chooses its next-hop SU neighbor node 𝑎𝑖

𝑡
∈ 𝐴 with the

following probability:

𝑃 (𝑠
𝑖

𝑡
, 𝑎
𝑖

𝑡
) =

𝑒
−𝑄
𝑖
𝑡(𝑠
𝑖
𝑡 ,𝑎
𝑖
𝑡)/𝑀

∑
𝑎 ∈ 𝐴

𝑖 𝑒
−𝑄
𝑖
𝑡(𝑠
𝑖
𝑡 ,𝑎)/𝑀

, (3)

where 𝐴
𝑖 represents a set of SU node 𝑖’s neighbor nodes

and 𝑀 is the temperature that determines the level of
exploration. Higher 𝑀 value indicates higher possibility
of exploration, whereas lower 𝑀 value indicates higher
possibility of exploitation.

5.2.3. The Dynamic Softmax Approach. In 𝜀-greedy and
softmax, the exploration probability is predefined; specifi-
cally, the exploration probability 𝜀 and tempreture 𝑀 are
predefined. There are two shortcomings. Firstly, while the
optimal 𝜀 and 𝑀 values are dependent on the dynamicity
and unpredictability of the network conditions, it may not be
feasible to determine these values on the fly. Secondly, routing
in CRNs involves a number of SU nodes, and it may not be
feasible to determine the optimal 𝜀 and𝑀 values for each SU
node, each of which may operate in distinctive channels.

We propose a simple and pragmatic exploration approach
called dynamic softmax, which is based on the traditional
softmax approach. Dynamic softmax regulates the explo-
ration temperature𝑀 (see (3)) of a SU based on the dynam-
icity and unpredictability of the network conditions. In [18],
a similar approach to regulate the exploration probability of
a nontraditional exploration approach is applied in wireless
sensor networks.

In dynamic softmax, temperature 𝑀 is increased and
decreased by a constant factor 𝑓 based on the network
conditions, so that more exploration is performed only when
necessary (see Algorithm 1). Higher values of 𝑓may increase
the convergence rate at the expense of higher fluctuations in
SUs’ network performance, whereas lower values of 𝑓 may
reduce the convergence rate; however, it achieves lower fluc-
tuations (or higher stability) of SUs’ network performance.
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initialize 𝑀 = [𝑀min,𝑀max]

while (updating a new 𝑄-value 𝑄𝑖
𝑡+1

)
if (𝑄𝑖

𝑡+1
> (𝑄
𝑖

𝑡
+ 𝜗)&&𝑀 < 𝑀max) then 𝑀+ = 𝑓

else if (𝑄𝑖
𝑡+1

< (𝑄
𝑖

𝑡
− 𝜗)) then 𝑀 = 𝑀

else if ((𝑄𝑖
𝑡
− 𝜗) ≤ 𝑄

𝑖

𝑡+1
≤ (𝑄
𝑖

𝑡
+ 𝜗)&&𝑀 > 𝑀min) then 𝑀− = 𝑓

end if
end

Algorithm 1: Dynamic softmax algorithm at SU node 𝑖.

Table 5: Simulation parameters and values for investigating the exploration approaches.

Category Parameter Value

SU

Traditional 𝜀-greedy exploration probability, 𝜀 {0.07, 0.14}
Traditional softmax exploration temperature,𝑀 {0.04, 0.05}
Initial dynamic softmax temperature,𝑀 0.05
Dynamic softmax adjustment factor, 𝑓 0.01
Dynamic softmax temperature range, [𝑀min,𝑀max] [0.01, 0.1]
Dynamic softmax 𝑄-value threshold, 𝜗 0.1

PU Standard deviation of PUL, 𝜎PUL {0.2, 0.8}

Channel Mean PER, 𝜇PER 0
Standard deviation of PER, 𝜎PER 0

The adjustment of temperature 𝑀 is based on the trend of
the Q-value of a route as follows.

(i) When theQ-value increases (i.e., higher routing cost),
temperature 𝑀 is increased in order to encourage
exploration of other routes as this may indicate the
emergence of PUs’ activities which have degraded the
SUs’ network performance.

(ii) When the Q-value decreases (i.e., lower routing
cost), temperature 𝑀 is left unchanged as this may
indicate a forthcoming convergence to an optimal
route which provides greater stability to SUs’ network
performance.

(iii) When the change ofQ-value is less than a threshold 𝜗,
the temperature𝑀 is decreased in order to encourage
exploitation as this indicates that there has been
convergence to an optimal route which provides a
stable network performance.

5.3. Comparison of 𝜀-Greedy, Softmax, Dynamic Softmax,
and Exploitation-Only Approaches. This section investigates
the effects of various exploration approaches applied to
WCRQ-routing on network performance. We compare the
network performance achieved byWCRQ-routing using two
traditional exploration approaches, namely, 𝜀-greedy and
softmax, an exploitation-only approach and a variant of the
exploration approach which we propose, namely dynamic
softmax. The exploitation-only approach exploits at all times
and does not explore.

While Table 3 presents the default simulation parameters
and values, Table 5 presents the specific simulation parame-
ters and values for this investigation. Generally speaking, we

simplify the simulation values in order to focus on the effects
of various exploration approaches on network performance
in the presence of the dynamicity of the channel availability
with respect to PUL, so we assume a noiseless channel
with 𝜇PER = 0 and 𝜎PER = 0. The simulation results are
shown for two conditions, in which the standard deviation
of PUL 𝜎PUL ∈ {0.2, 0.8} indicates low and high levels of
unpredictability of the channel availability, respectively. The
exploration metrics of the traditional approaches are 𝜀 ∈

{0.07, 0.14} and temperature 𝑀 ∈ {0.04, 0.05}, and these
are chosen empirically; specifically, these are the average
optimal values estimated by running extensive simulations
using different values of exploration metrics under different
levels of channel unpredictability 𝜎PUL. Hence, we compare
the dynamic softmax approach with the best possible net-
work performance achieved by 𝜀-greedy and softmax. For
dynamic softmax (see Algorithm 1), the temperature range
is [𝑀min,𝑀max] = [0.01, 0.1] because network performance
degrades significantly when𝑀 > 0.1. The initial temperature
is set to an average value of𝑀 = 0.05. Finally, the adjustment
factor is set to 𝑓 = 0.01 and the Q-value threshold is set to 𝜗
= 0.1, and these values are chosen empirically.

We present simulation results for the four performance
metrics in the rest of this section.

5.3.1. SUs’ Interference to PUs. When the standard deviation
of PUL is low 𝜎PUL = 0.2, most next-hop node (or link)
and channel pairs have very similar PU mean arrival rate
𝜇PUL; however, dynamic softmax outperforms the traditional
exploration approaches, specifically up to 39% compared to
softmax and up to 22% compared to 𝜀-greedy while achieving
very similar network performance with the exploitation-only
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Figure 11: SUs’ interference to PUs for varying PU mean arrival rate 𝜇PUL for different levels of standard deviation of PUL 𝜎PUL.

approach (see Figure 11(a)). When the PU mean arrival rate
𝜇PUL becomes higher, all channels have high levels of PUs’
activities and Q-values among the channels do not generally
vary. So, there is lack of exploration and all approaches
achieve very similar network performance.When 𝜎PUL = 0.8,
the link and channel pairs have the greatest difference in the
levels of PUmean arrival rate 𝜇PUL. Dynamic softmax outper-
forms the other exploration approaches, and the exploitation-
only approach causes the highest SUs’ interference to PUs
(see Figure 11(b)). When the standard deviation of PUL
𝜎PUL becomes higher, all channels have different levels of
PUs’ activities, and Q-values among the channels generally
vary. So, more explorations are necessary explaining why
the exploitation-only approach causes the worst network
performance with the highest SUs’ interference to PUs. In
general, softmax outperforms 𝜀-greedy in most cases because
softmax explores lesser below-average routes compared to 𝜀-
greedy.

Generally speaking, dynamic softmax achieves similar or
better network performance in terms of SUs’ interference
to PUs compared to the traditional exploration approaches
with optimal exploration metrics. This is because dynamic
softmax learns the optimal exploration temperature dynam-
ically based on the dynamicity and unpredictability levels of
the network conditions. Additionally, the SUs’ interference to
PUs increases with the PUmean arrival rate 𝜇PUL and reduces
with the standard deviation of PUL 𝜎PUL.

5.3.2. SU End-to-End Delay. When the standard deviation of
PUL is low 𝜎PUL = 0.2, most link and channel pairs have
very similar PU mean arrival rate 𝜇PUL. Dynamic softmax

outperforms the traditional exploration approaches, and up
to 52% compared to exploitation-only which incurs the
highest end-to-end delay (see Figure 12(a)).The exploitation-
only approach exploits the best-possible route at all times
and there is lack of load balancing among routes causing
network congestion and increased SU end-to-end delay. Note
that when there are low levels of PU mean arrival rate
𝜇PUL = [0.0, 0.4], softmax incurs the highest end-to-end
delay because it performs themost unnecessary explorations.
When 𝜎PUL = 0.8, the link and channel pairs have great
difference in the levels of PUmean arrival rate 𝜇PUL. Dynamic
softmax outperforms the other exploration approaches (see
Figure 12(b)). However, when there are low levels of PUmean
arrival rate 𝜇PUL = [0.0, 0.5], dynamic softmax incurs higher
SU end-to-end delay because it performs more unnecessary
explorations as a result of greater variations inQ-values, while
𝜀-greedy explores routes randomly which increases load-
balancing, and softmax chooses more above-average routes
which increases network congestion.

Generally speaking, dynamic softmax reduces SU end-to-
end delay compared to the traditional exploration approaches
with optimal exploration metrics. Additionally, the SUs’
interference to PUs increases with the PU mean arrival rate
𝜇PUL and reduces with the standard deviation of PUL 𝜎PUL.

5.3.3. SU Packet Loss. When the standard deviation of PUL
is low 𝜎PUL = 0.2, dynamic softmax either achieves
similar network performance or outperforms the traditional
exploration approaches, specifically up to 57% compared
to the exploitation-only approach which incurs the highest
packet loss (see Figure 13(a)).The exploitation-only approach



The Scientific World Journal 15

1.00.90.80.70.60.50.40.30.20.10

3000

1500

2500

2000

1000

500

0

SU
 en

d-
to

-e
nd

 d
el

ay
 (m

s)

PU mean arrival rate

Softmax (M = 0.05)

𝜀-greedy (𝜀 = 0.14)
Exploitation only
Dynamic softmax

(a) 𝜎PUL = 0.2

1.00.90.80.70.60.50.40.30.20.10

PU mean arrival rate

Exploitation only
Dynamic softmax

Softmax (M = 0.04)

𝜀-greedy (𝜀 = 0.07)
SU

 en
d-

to
-e

nd
 d

el
ay

 (m
s)

2000

1800

1600

1400

1200

1000

800

600

400

200

0

(b) 𝜎PUL = 0.8

Figure 12: SU end-to-end delay for varying PU mean arrival rate 𝜇PUL for different levels of standard deviation of PUL 𝜎PUL.
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Figure 13: SU packet loss for varying PU mean arrival rate 𝜇PUL for different levels of standard deviation of PUL 𝜎PUL.

exploits the best-possible route at all times and there is lack
of load balancing among routes causing network congestion
and increased SU packet loss. When 𝜎PUL = 0.8, dynamic
softmax outperforms the other exploration approaches (see

Figure 13(b)). The 𝜀-greedy approach explores routes ran-
domly which increases load-balancing, and so it outperforms
softmax at times, while softmax chooses more above-average
routes causing greater network congestions.
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Figure 14: SU throughput for varying PU mean arrival rate 𝜇PUL for different levels of standard deviation of PUL 𝜎PUL.

Generally speaking, dynamic softmax reduces SU packet
loss compared to the traditional exploration approaches with
optimal exploration metrics. Additionally, the SU packet loss
increaseswith the PUmean arrival rate𝜇PUL and reduceswith
the standard deviation of PUL 𝜎PUL.

5.3.4. SU Throughput. When the standard deviation of PUL
is low 𝜎PUL = 0.2, dynamic softmax either achieves similar
network performance or outperforms the traditional explo-
ration approaches, specifically, up to 17% compared to
the exploitation-only approach which incurs the highest
packet loss (see Figure 14(a)).The exploitation-only approach
exploits the best-possible route at all times and there is lack
of load balancing among routes causing network congestion
and reduced SU throughput. When 𝜎PUL = 0.8, similar
trends are observed in network scenario of 𝜎PUL = 0.8 in the
investigation of SU end-to-end delay (see Section 5.3.3).

Generally speaking, dynamic softmax increases SU
throughput compared to the traditional exploration
approaches with optimal exploration metrics. Additionally,
the SU throughput reduces with the PU mean arrival rate
𝜇PUL and the standard deviation of PUL 𝜎PUL.

5.3.5. Section Summary. Wesummarize simulation outcomes
for the comparison of 𝜀-greedy, softmax, dynamic softmax,
and exploitation-only approaches as follows.

(i) Network performance degrades as the dynamicity of
PUs’ activities 𝜇PUL increases.

(ii) Exploration approaches (i.e., 𝜀-greedy, softmax, and
dynamic softmax) achieve load-balancing among the
available routes, and hence they improve SUs’ (and

PUs’ in some cases) network performance compared
to the exploitation-only approach.

(iii) Traditional exploration approaches, namely 𝜀-greedy
and softmax, outperform each other under different
network conditions. For instance, when the unpre-
dictability of the channel availability 𝜎PUL is low,
softmax achieves better SUs’ network performance
than 𝜀-greedy; however, when the unpredictability
level of the channel availability 𝜎PUL becomes higher,
𝜀-greedy achieves better SUs’ network performance
than softmax due to greater load balancing among
routes, so there is lesser network congestion. Hence,
neither 𝜀-greedy nor softmax achieves the best-
possible network performance under all network
conditions.

(iv) WCRQ-routing and CRQ-routing minimize SUs’
interference to PUs with respect to PUL in the
presence of dynamicity and unpredictability of the
channel availability.

(v) Dynamic softmax achieves the best-possible PUs’ and
SUs’ network performances in most cases compared
to other approaches because it learns the best-possible
exploration temperature dynamically based on the
dynamicity and unpredictability levels of the channel
availability.

6. Enhancement of Learning Rate Adjustment

The learning rate 𝛼, which is used to regulate the speed
of convergence to the optimal or near-optimal action, is
another important parameter. A suitable learning rate 𝛼
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value is essential. There have been some limited efforts to
investigate the learning rate 𝛼 in the domain of routing
in wireless networks [19], and this investigation applies to
routing in CRNs. We present an overview of learning rate,
the traditional (called the Win-or-Learn-Fast Policy Hill
Climbing approach or win-lose [6]) and our proposed (called
the counterapproach) learning rate adjustment approaches
to dynamically regulate the learning rate, as well as the
simulation results for the four performance metrics, in the
rest of this section.

6.1. An Overview of Learning Rate. Higher learning rate
0 ≤ 𝛼 ≤ 1 indicates higher speed of learning and conver-
gence rate, and it is more responsive to the dynamicity of
the operating environment. Higher learning rate may cause
fluctuation in Q-value because the Q-value is now more
dependent on its recent estimates, which may be unstable,
rather than its previous experience. On the other hand, lower
learning ratemay cause very low convergence rate because the
Q-value is now more dependent on its previous experience
rather than its recent estimates.

We present simulation results of a preliminary investi-
gation to show the effects of learning rate 𝛼 on the SUs’
network performance, particularly SU end-to-end delay.
Note that more details on simulation setup and parameters
are presented in later section. Figure 15 shows that neither
the lowest (i.e., 𝛼 = 0.0001) nor the highest (i.e., 𝛼 = 1)

learning rate achieves the lowest SU end-to-end delay, and
learning rate 𝛼 = 0.0016 achieves the lowest SU end-to-end
delay. Hence, too low learning rate causes a SU to learn about
the available routes slowly and so it does not adapt well to
the changes in the PUs’ mean arrival rate, while too high a
learning rate causes a SU to learn very fast and so it changes
its route more frequently causing the SU end-to-end delay to
increase.

Hence, a suitable learning rate 𝛼 value is essential to
provide network performance enhancement. Traditionally,
the learning rate is a predefined and fixed value which is
not adaptive to the dynamicity and unpredictability levels of
the operating environment, and so it does not provide the
best network performance in a dynamic and unpredictable
operating environment.

This initial investigation motivates us to search for a
suitable learning rate.

6.2. Learning Rate Adjustment Approaches. We present a
traditional exploration approach (i.e., the win-lose approach)
and a variant of the exploration approach (i.e., the counter-
approach), as well as a baseline approach (i.e., the random
approach), in this section.

6.2.1. The Win-Lose Approach. In [20], a stochastic learning
algorithm, namely, win-or-learn-fast policy hill climbing
(or win-lose for simplicity) [6] is applied to regulate the
learning rate dynamically based on the dynamicity of the
operating environment in a wireless network. Given that
higherQ-values provide network performance enhancement,
the algorithm defines winning and losing as receiving higher
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Figure 15: SU end-to-end delay for varying learning rate 𝛼.

and lower Q-values than its current Q-value, which is its
expectation, respectively.When the algorithm is winning, the
learning rate is set to a lower value, and vice-versa.The reason
is that when a SU wins, it must be cautious in changing its
routing policy and more time must be given to other SUs
to adjust their own policies in favor of this winning. On the
other hand, when a SU node loses, it must adapt faster to
changes in the operating environment because its network
performance (or rewards) is lower than its expectation.

6.2.2. The Counterapproach. The traditional win-lose ap-
proach (see Section 6.2.1) regulates the learning rate for each
update of Q-value. Nevertheless, in a highly dynamic and
unpredictable operating environment, Q-values may vary
greatly and this causes frequent changes to learning rate. As a
consequence, there are frequent changes to routing decision
causing higher fluctuation in SUs’ network performance.

The proposed counterapproach addresses the aforemen-
tioned issue by regulating the learning rate based on the
historical Q-values. Specifically, for each Q-value (or state-
action pair), it keeps track of a counter for winning 𝑐

𝑝

𝑡

and another counter for losing 𝑐𝑛
𝑡
(see Algorithm 2). Subse-

quently, it calculates a ratio 𝑜
𝑛

𝑡
= 𝑐
𝑝

𝑡
/𝑐
𝑛

𝑡
, which represents

the number of winning to the number of losing for a Q-
value. When the ratio is 𝑜𝑛

𝑡
> 1, the learning rate is set to a

lower value because this indicates a winning event, while the
learning rate is set to a higher value when the ratio is 𝑜𝑛

𝑡
< 1

because this indicates a losing event, and when the ratio is
𝑜
𝑛

𝑡
= 1, the learning rate is unchanged as it indicates a stable

network performance. Similarly, when the newly received
Q-value is similar to the previous value, the counter is not
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initialize 𝛼𝑐𝑝
𝑡+1

+ + = [𝛼min, 𝛼max]

while (updating a new 𝑄-value 𝑄𝑖
𝑡+1

)
if (𝑄𝑖

𝑡+1
< 𝑄
𝑖

𝑡
) then 𝑐

𝑝

𝑡+1
+ +

else 𝑐𝑛
𝑡+1

+ +

end if
compute 𝑜𝑛

𝑡+1
= 𝑐
𝑝

𝑡+1
/𝑐
𝑛

𝑡+1

if (𝑜𝑛
𝑡+1

< 1&& 𝛼 < 𝛼max) then 𝛼+ = 𝑓

else if (𝑜𝑛
𝑡+1

> 1&& 𝛼 > 𝛼min) then 𝛼− = 𝑓

end if
end

Algorithm 2: Counterapproach algorithm at SU node 𝑖.

updated. Note that we assume the learning rate 𝛼 is increased
and decreased by a small constant factor 𝑓 in order to avoid
fluctuations in SUs’ network performance.

6.2.3. The Random Approach. The random approach, which
does not apply any learning mechanism, regulates the learn-
ing rate in a round robin fashion without considering the
dynamicity and unpredictability of the operating environ-
ment. This scheme serves as a baseline for comparison with
win-lose and the counterapproach, and more importantly, it
is used to show the effects of nonoptimal learning rates on
network performance. This approach regulates the learning
rate whenever it loses. Specifically, an agent decreases its
learning rate 𝛼 until the minimum learning rate limit 𝛼min
is reached, and then it increases the learning rate 𝛼 again
until the maximum learning rate limit 𝛼max is reached, and
this continues to loop in between the minimum 𝛼min and the
maximum 𝛼max limits.

6.3. Comparison of Win-Lose and Counter and Random
Approaches. This section investigates the effects of various
learning rate adjustment approaches applied to WCRQ-
routing on network performance. We compare the network
performance achieved by WCRQ-routing using a traditional
learning rate adjustment approach (i.e., win-lose), a variant
of the win-lose (i.e., the counterapproach), a baseline (i.e.,
the random approach), and another baseline that provides
the best empirical learning approach (which we may conve-
niently call best). The best empirical approach provides the
best possible network performance, and the learning rate 𝛼
is obtained by running extensive simulations under different
levels of channel unpredictability.

While Table 3 presents the default simulation parameters
and values, Table 6 presents the specific simulation parame-
ters and values for this investigation. Generally speaking, we
simplify the simulation values in order to focus on the effects
of various learning rate adjustment approaches on network
performance in the presence of the dynamicity of the channel
availability with respect to PUL, so we assume a noiseless
channel with 𝜇PER = 0 and 𝜎PER = 0. The simulation results
are shown for two conditions, inwhich the standard deviation

Table 6: Simulation parameters and values for investigating the
learning rate adjustment approaches.

Category Parameter Value

SU
Best empirical learning rate, 𝛼 {0.0064, 0.004}
Learning rate adjustment factor, 𝑓 0.001
Learning rate range, [𝛼min, 𝛼max] [0.001, 0.1]

PU Standard deviation of PUL, 𝜎PUL {0.2, 0.8}

Channel Mean PER, 𝜇PER 0
Standard deviation of PER, 𝜎PER 0

of PUL 𝜎PUL ∈ {0.2, 0.8} indicates low and high levels of the
unpredictability of channel availability, respectively. The best
empirical learning rate is set to 𝛼 ∈ {0.0064, 0.004}, which is
estimated by running extensive simulations. The range of the
learning rate is [𝛼min, 𝛼max] = [0.001, 0.1] because network
performance degrades significantly when 𝛼 > 0.1. Finally,
the learning rate adjustment factor is 𝑓 = 0.001, which is
estimated by running extensive simulationswith the objective
of enhancing SUs’ network performance.

We present simulation results for the four performance
metrics in the rest of this section.

6.3.1. SUs’ Interference to PUs. When the standard deviation
of PUL is low 𝜎PUL = 0.2, most next-hop node (or
link) and channel pairs have very similar PU mean arrival
rate 𝜇PUL. The effect of learning rate on network perfor-
mance is minimal and so all the learning rate adjustment
approaches achieve almost similar network performance (see
Figure 16(a)). When 𝜎PUL = 0.8, the link and channel pairs
have great difference in the levels of PU mean arrival rate
𝜇PUL, and the Q-values among the channels generally vary
greatly. The counterapproach achieves almost similar SUs’
interference to PUs compared to the best empirical approach
and the lowest interference level compared to the win-lose
and random approaches (see Figure 16(b)). This is because
when 𝜎PUL is high, the counterapproach chooses a suitable
learning rate that reduces fluctuations in Q-values while
making routing decisions, while the win-lose and random
approaches adjust the SU learning rate very fast resulting
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Figure 16: SUs’ interference to PUs for varying PU mean arrival rate 𝜇PUL for different levels of standard deviation of PUL 𝜎PUL.

in more frequent changes to SU route decision, and hence
higher SUs’ interference to PUs.

Generally speaking, the counterapproach reduces SUs’
interference to PUs. Additionally, the SUs’ interference to PUs
increaseswith the PUmean arrival rate𝜇PUL and reduceswith
the standard deviation of PUL 𝜎PUL.

6.3.2. SU End-to-End Delay. When the standard deviation of
PUL is low 𝜎PUL = 0.2, most link and channel pairs have
very similar PUmean arrival rate 𝜇PUL.The counterapproach
achieves almost similar SU end-to-end delay compared to
the best empirical approach and the lowest SU end-to-end
delay compared to the win-lose and random approaches,
specifically up to 11% compared to win-lose which incurs the
highest packet loss (see Figure 17(a)). The random approach
has the highest SU end-to-end delay, which is up to 12%
higher compared to the best empirical learning rate approach,
and this shows the effects of non-optimal learning rate on SU
end-to-end delay. When 𝜎PUL = 0.8, the link and channel
pairs have great difference in the levels of PUmean arrival rate
𝜇PUL, and the Q-values among the channels generally vary
greatly. So, the learning rate has greater effects on SU end-
to-end delay as a SU needs a suitable learning rate to learn
about the available routes while minimizing fluctuations in
Q-values. Similarly, the counterapproach achieves almost
similar SU end-to-end delay to PUs compared to the best
empirical approach, and the lowest SU end-to-enddelay com-
pared to the win-lose and random approaches, specifically
up to 21% lower compared to win-lose (see Figure 17(b)).
This is because when 𝜎PUL is high, the counterapproach

chooses a suitable learning rate that reduces fluctuations in
Q-values while making routing decisions, while the win-lose
and random approaches adjust the SU learning rate very fast
resulting in more frequent changes to SU route decision, and
hence higher SU end-to-end delay. When PU mean arrival
rate is 𝜇PUL = 1, the win-lose and random approaches reduce
SU end-to-end delay since faster adjustment of learning helps
to achieve load balancing among the available routes.

Generally speaking, the counterapproach reduces SU
end-to-end delay. Additionally, the SU end-to-end delay
increaseswith the PUmean arrival rate𝜇PUL and reduceswith
the standard deviation of PUL 𝜎PUL.

6.3.3. SU Packet Loss. When the standard deviation of PUL
is low 𝜎PUL = 0.2, the effect of learning rate is minimal
and so all the learning rate adjustment approaches achieve
almost similar network performance. When the PU mean
arrival rate is 𝜇PUL = [0.8, 1.0], the win-lose and random
approaches achieve lower packet loss compared to other
approaches, specifically up to 8% lower compared to the
counterapproach (see Figure 18(a)). This is because the win-
lose and random approaches adjust the SU learning rate
faster than the counterapproach leading to more frequent
changes to routes, and as the routes become more congested,
this helps to achieve load balancing among the available
routes and reduces SU packet loss. When 𝜎PUL = 0.8, the
learning rate has slightly greater effects on SU packet loss
as a SU needs a suitable learning rate to learn about the
available routes while minimizing fluctuations in Q-values.
Similarly, the counterapproach achieves almost similar SU
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Figure 17: SU end-to-end delay for varying PU mean arrival rate 𝜇PUL for different levels of standard deviation of PUL 𝜎PUL.
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Figure 18: SU packet loss for varying PU mean arrival rate 𝜇PUL for different levels of standard deviation of PUL 𝜎PUL.

packet loss compared to the best empirical approach, and the
lowest SU packet loss compared to the win-lose and random
approaches, specifically up to 23% lower compared to win-
lose (see Figure 18(b)). This is because when 𝜎PUL is high, the

counterapproach chooses a suitable learning rate that reduces
fluctuations in Q-values while making routing decisions.

Generally speaking, the counterapproach reduces SU
packet loss. Additionally, the SU packet loss increases with
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Figure 19: SU throughput for varying PU mean arrival rate 𝜇PUL for different levels of standard deviation of PUL 𝜎PUL.

the PU mean arrival rate 𝜇PUL and reduces with the standard
deviation of PUL 𝜎PUL.

6.3.4. SU Throughput. When the standard deviation of PUL
is low 𝜎PUL = 0.2, the effect of learning rate is minimal
and so all the learning rate adjustment approaches achieve
almost similar network performance (see Figure 19(a)), and
the reasons are similar to those observed in the investigation
of SU packet loss (see Section 6.3.3). When 𝜎PUL = 0.8,
the counterapproach achieves almost similar SU through-
put compared to the best empirical approach, and the
highest SU throughput compared to the win-lose and ran-
dom approaches, specifically up to 7% higher compared to
win-lose (see Figure 19(b)), and the reasons are similar to
those observed in the investigation of SU packet loss (see
Section 6.3.3).

Generally speaking, the SU throughput decreases with
the PU mean arrival rate 𝜇PUL and reduces with the standard
deviation of PUL 𝜎PUL.

6.3.5. Section Summary. We summarize simulation out-
comes for the comparison of win-lose, counter and random
approaches as follows.

(i) Network performance degrades as the dynamicity of
PUs’ activities 𝜇PUL increases.

(ii) The effects of learning rate on SUs’ network perfor-
mance increase with the unpredictability of the PUs’
activities 𝜎PUL.

(iii) When the PU mean arrival rate is high (i.e., 𝜇PUL =

[0.8, 1.0]), where route congestion is higher, the win-
lose and random approaches improve SUs’ network

performance. This is because these approaches reg-
ulate the learning rate at higher speed, and this
helps to achieve load balancing among the available
routes, and subsequently enhances SUs’ network per-
formance.

(iv) The counterapproach achieves almost similar SU
network performance to the best empirical learning
rate approach and outperforms the win-lose and ran-
dom approaches in most cases, particularly when the
unpredictability of the PUs’ activities 𝜎PUL becomes
higher. This is because the counterapproach chooses
a suitable learning rate to reduce fluctuations in Q-
values which start to vary at higher 𝜎PUL values.

7. Conclusions

Through simulation, this paper investigates the effects of
reinforcement learning (RL) parameters on network perfor-
mance for routing scheme in the presence of the dynamicity
and unpredictability of the channel availability in cognitive
radio ad hoc networks. We present WCRQ-routing that
incorporates a weight factor 𝜔 in the reward representation
to adjust the tradeoff between PUs’ and SUs’ network per-
formances, as well as to further improve the overall network
performance of SUs. Higher weight factor 𝜔 increases PUs’
network performance, while lower 𝜔 increases SUs’ network
performance, and so a balanced value of𝜔helps to achieve the
best SUs’ network performance, particularly lower packet loss
andhigher throughput.TheSUs’ network performance can be
further enhanced by regulating exploration probability and
learning rate. We present a simple and pragmatic exploration
approach called dynamic softmax to regulate the exploration
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temperature. Dynamic softmax learns a near-optimal explo-
ration temperature dynamically according to the dynamic-
ity and unpredictability of the channel availability, and it
achieves better network performance inmost cases compared
to the traditional exploration approaches, namely 𝜀-greedy
and softmax.We present a simple and pragmatic learning rate
adjustment approach called the control approach to regulate
the learning rate dynamically based on the historical Q-
values. The counterapproach achieves better SUs’ network
performance compared to the traditional win-lose approach,
and it achieves almost similar SUs’ network performance to
the best empirical learning rate approach by learning a near-
optimal learning rate dynamically based on the dynamicity
and unpredictability of the operating environment.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by the Malaysian Ministry of
Science, Technology and Innovation (MOSTI) under Science
Fund 01-02-16-SF0027.

References

[1] H. A. A. Al-Rawi and K.-L. A. Yau, “Routing in distributed
cognitive radio networks: a survey,” Wireless Personal Commu-
nications, vol. 69, no. 4, pp. 1983–2020, 2013.

[2] H. A. A. Al-Rawi, M. A. Ng, and K.-L. A. Yau, “ Application
of reinforcement learning to routing in distributed wireless
netowrks: a review ,” Artificial Intelligence Review, 2013.

[3] P. Derakhshan-Barjoei, G. Dadashzadeh, F. Razzazi, and S. M.
Razavizadeh, “Power and time slot allocation in cogitive relay
networks using particle swarm optimization,” The Scientific
World Journal, vol. 2013, Article ID 424162, 9 pages, 2013.

[4] J. Zhao and J. Yuan, “An improved centralized cognitive radio
network spectrum allocation algorithm based on the allocation
sequence,” nternational Journal of Distributed Sensor Networks,
vol. 2013, Article ID 875342, 13 pages, 2013.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT Press, Cambridge, Mass, USA, 1998.

[6] M. Bowling and M. Veloso, “Multiagent learning using a
variable learning rate,” Artificial Intelligence, vol. 136, no. 2, pp.
215–250, 2002.

[7] Q. Guan, F. R. Yu, S. Jiang, and G. Wei, “Prediction-based
topology control and routing in cognitive radio mobile ad hoc
networks,” IEEE Transactions on Vehicular Technology, vol. 59,
no. 9, pp. 4443–4452, 2010.

[8] K. R. Chowdhury and I. F. Akyildiz, “CRP: a routing protocol
for cognitive radio ad hoc networks,” IEEE Journal on Selected
Areas in Communications, vol. 29, no. 4, pp. 794–804, 2011.

[9] Q. Zhu, Z. Yuan, J. B. Song, Z. Han, and T. Başar, “Dynamic
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