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Abstract

Spinal cord injury (SCI) is a severe condition that affects many people and results in high
health care costs. Therefore, it is essential to find new targets for treatment. The fibroblast
growth factor receptor 1 (FGFR1) signalling pathway has a history of being explored for SCI
treatment. Several groups have examined the effect of high availability of different FGFR1
ligands at the injury site and reported corticospinal tract (CST) regeneration as well as
improved motor functions. In this study, we investigated overexpression of the FGFR1 in rat
corticospinal neurons in vivo after injury (unilateral pyramidotomy) and in cerebellar granule
neurons (CGNSs) in vitro. We show that overexpression of FGFR1 using AAV1 intracortical
injections did not increase sprouting of the treated corticospinal tract and did not improve
dexterity or walking in a rat model of SCI. Furthermore, we show that overexpression of
FGFR1 in vitro resulted in decreased neurite outgrowth compared to control. Thus, our
results suggest that the FGFR1 is not a suitable therapeutic target after SCI.

Introduction

Spinal cord injury (SCI) is a condition that affects 250,000 to 500,000 people worldwide
(World Health Organisation 2013). Axons of the central nervous system (CNS) have a very
low level of spontaneous regeneration compared to axons of the peripheral nervous system.
Regeneration of the CNS is inhibited by extrinsic factors (e.g., inhibitory proteoglycan and
myelin-associated factors), as well as intrinsic factors (e.g., lack of regeneration-associated gene
expression). Since there is a shortage of therapies to increase regeneration after SCI, research
aimed at identifying new targets for therapy is very important. The FGFR pathway has a history
of being investigated as a therapeutic target. Various studies have demonstrated beneficial
effects of delivering FGFR1 ligands to the injury site following SCI [1-9]. Peripheral nerve
grafts and slow releasing matrices filled with FGF1 have been supplied to the injury site either
alone [1] or in combination with agents to alter the inhibitory environment of the scar tissue
[2, 8]. These approaches have led to improved CST regeneration and motor function.
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Furthermore, FGF2 has been demonstrated to improve CST growth when delivered close to
the injury site after SCI [3, 4, 9]. Similar improvement of CST growth has been shown by
overexpression of the FGFRI ligand L1 that leads to activation of the endocannabinoid system
[5-7].

The fibroblast growth factor receptor 1 (FGFR1) is one of four different FGF receptors,
named FGFR1-4, FGF1-3 exist in two different splice variants [10]. So far 22 fibroblast growth
factor (FGF) ligands have been identified. FGF1 and FGF2 are both secreted ligands, signal in a
para- or autocrine fashion and bind all four receptors [10]. They are abundant in the intact and
injured nervous system [11, 12] and many therapeutic approaches concentrate on these two
ligands. In addition to the FGF ligands, there are a number of adhesion molecules, such as
Ncam, N-cadherin, and L1, that have been shown to activate the FGFR pathway in the nervous
system [13-15]. Activation of the FGFR pathway via adhesion molecules has been found to
result in phospholipase Cy (PLCy) activation [16] leading to activation of the endocannabinoid
system [17]. This in turn has been shown to stimulate neurite outgrowth in vitro [18, 19]. Here,
we investigated whether overexpression of the common receptor of these ligands, FGFR1, in
corticospinal neurons increases sprouting of the treated neurons and improves dexterity or
walking in a rat model of SCI. Furthermore, we shed light on the underlying mechanism by
which FGFRI signalling affects neurite outgrowth in vitro in cerebellar granule neurons
(CGNe).

Results

We investigated overexpression of the FGFRI1 in an in vivo model of SCI. The time-line of this
experiment is depicted in Fig 1A. Rats were randomised to treatment, and all behavioural
experiments were performed in a blinded manner. Animals were pre-trained for three weeks
on the Montoya staircase test and on a horizontal ladder with irregularly spaced rungs. During
this period the preferred forepaw was identified according to the staircase test performance.
We produced an adeno-associated viral vector (AAV) serotype 1 overexpressing FGFR1 and
EGFP or mCherry and EGFP from the following bicistronic vectors: CMV-FGFR1-2A-EGFP
(Fig 2) CMV-mCherry-2A-EGFP. The two genes are separated by a 2A sequence to achieve
expression of two separate proteins from the single CMV promoter [20]. AAV-CMV-FGFR1-
2A-EGFP or AAV-CMV-mCherry-2A-EGFP was injected into the motor cortex controlling
the less preferred forepaw. One week after AAV injection all rats underwent unilateral injury
of the corticospinal tract (CST) (unilateral pyramidotomy) controlling the preferred forepaw
(Fig 1B). We used AAV serotype 1 because we had perviously shown that this transduces corti-
cal neurons including corticospinal neurons [21]. We injected it intracortically to test the
hypothesis that unlesioned corticospinal axons would sprout into the affected hemicord after
pyramidotomy.

We confirmed the functionality of the injected AAV by validating overexpression of FGFRI1
in animals that were injected with the AAV-CMV-FGFR1-2A-EGFP relative to control ani-
mals (AAV-CMV-mCherry-2A-EGFP) by quantitative reverse transcription PCR since anti-
bodies against FGFR1 are not suitable for immunostaining. Our results show that in motor
cortices that were isolated from animals injected with AAV-CMV-FGFR1-2A-EGFP the
expression level of FGFR1 is about six fold higher compared to AAV-CMV-mCherry-
2A-EGFP injected animals (p = 0.02) (Fig 3A). To confirm that the CMV-FGFR1-2A-EGFP
construct is expressed in the CST we stained coronal sections of the C2 spinal cord. Due to the
lack of trustworthy antibodies against FGFR1 we stained using antibodies against GFP. Corti-
cospinal axons expressed the reporter transgene (Fig 3B). This is consistent with previous work
from our group [22, 23]. This will underestimate the number of FGFR1 overexpressing CST
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Fig 1. Timeline and scheme of in vivo experiment. A) Rats were pre-trained on the Montoya staircase test and the horizontal ladder for three weeks. One
week before the SCI (pyramidotomy) animals were injected with AAVs overexpressing FGFR1 or mCherry into the sensorimotor cortex innervating the less
preferred paw. During spinal cord surgeries the medullary pyramids were cut unilaterally in the brainstem innervating the preferred paw of all animals. Three
days post-surgery the animals were assessed behaviourally and thereafter every week for ten weeks. Four weeks prior to the end of the study all animals
were injected with BDA on the same side as to the vector injection. B) Scheme of the different surgical procedures. 1) Injection of AAVs expressing either
CMV-FGFR1-2A-EGFP or CMV-mCherry-2A-EGFP, 2) unilateral pyramidotomy, 3) BDA injection for axon tracing, and 4) counting fibres that sprouted over
the cervical midline.

doi:10.1371/journal.pone.0150541.g001

fibres since our group has shown that the second gene in these bicistronic vectors can be
expressed less than the first gene and that the reporters are not transported into the axon collat-
erals within grey matter [22, 23] (Fig 3B). We then investigated a potential functional effect of
FGFR1 overexpression after SCI. All rats were tested on a horizontal ladder with irregularly
spaced rungs. Rats had to cross the ladder three times and the performance was averaged over
the 3 runs. Fig 3C depicts the percentage of errors made by the affected forelimb at baseline
and then 10 weeks post-injury. The baseline level for the percentage of errors made by crossing
the ladder was around 2% for control and FGFR1 overexpressing animals. The number of
errors made by the affected forelimb increased up to 10-15% 10 weeks post-injury. However,
we did not find a significant difference between control and FGFR1 overexpressing animals.
We also tested all rats on the Montoya staircase test to investigate dexterity. Rats were offered
three sugar pellets on each step on both sides. The number of sugar pellets consumed was
recorded on each side of the staircase for each rat. We show here the data for the affected fore-
limb. All rats showed a considerable deficit after SCI and partial spontaneous recovery over the
tested period. The staircase test revealed a tendency of AAV-CMV-FGFR1-2A-EGFP injected
animals to retrieve fewer pellets compared to control animals. However this difference did not
reach significance (Fig 3D).
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Fig 2. Schematic diagram of the CMV- FGFR1-2A-eGFP vector. The two genes are separated by a 2A sequence to achieve expression of two separate
proteins from the single cytomegalovirus (CMV) promoter (19). ITR: Inverted Terminal Repeat Sequences; CMV: cytomegalovirus; WPRE: woodchuck
hepatitis virus post-transcriptional regulatory element; AmpR: ampicillin resistance. Created using Serial Cloner 2.6.

doi:10.1371/journal.pone.0150541.g002

We also examined if overexpression of FGFR1 resulted in increased sprouting of the intact
CST over the cervical spinal midline. Previous experiments have shown that the EGFP expres-
sion from the bicistronic AAV used is not strong enough to allow tracing of the whole axon
[22], therefore, we injected all rats 4 weeks prior to perfusion with the anterograde tracer Bioti-
nylated Dextran Amine (BDA) (refer to the time line of the experiment in Fig 1A). The injec-
tions were performed into the motor cortex that normally controls the less preferred paw. The
C7 spinal cord segment was processed for staining and the BDA positive fibres were visualised
by immunolabelling (Fig 4A). Crossing over of intact CST fibres into the affected spinal hemi-
cord was assessed at three different planes and the “ipsi” boundary where non-decussated CST
fibres enter the grey matter from the ventral white matter (Fig 4B). We investigated if the fibres
crossed the midline (M), and if they did so, how far they grew (at two different distances from
the midline, D1 and D2). Analysis of the number of sprouted fibres showed that there was no
difference between the two groups (Fig 4C). These results are in line with our observations that
there is no functional difference between the two groups. In summary, we conclude that
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Fig 3. FGFR1 overexpression did not increase dexterity in the Montoya Staircase or reduce errors on the horizontal ladder. A) Cortical expression of
FGFR1 transcript in mCherry and FGFR1 injected animals. A separate cohort of rats was used for this experiment. gRTPCR was performed with RNA
extracted 1 to 2.5 weeks after injection of AAV. The expression values of FGFR1 expression was normalised to GAPDH expression. Graph shows

means + SEM, p = 0.02. B) A representative picture of a coronal section of the spinal cord at the level of C2 stained using antibodies against GFP, 10 weeks
after pyramidotomy. GFP positive fibres were found unilaterally in the dorsal columns, confirming expression in CST axons. Dotted line shows outline of
dorsal columns on the side. Scale bar, 200um. C) All animals were tested on the horizontal ladder before surgery (baseline) and after 10 weeks. Depicted is
the percentage of errors made when crossing the ladder. Graph shows means + SEM. D) All animals were tested on the Montoya staircase test three days
after surgery and thereafter weekly for ten weeks. BL = base line. Graph shows means + SEM.

doi:10.1371/journal.pone.0150541.g003

overexpression of FGFR1 following SCI did not improve dexterity or walking, or increase
sprouting of the treated corticospinal tract in a rat model of SCL.

To investigate the underlying mechanism of the FGFR1 pathway on neurite outgrowth we
examined FGFRI overexpression in vitro. We isolated CGN’s from rat pups at post-natal day 7
to 9 to investigate neurite outgrowth. A single cell suspension of CGN's was electroporated with
a bicistronic plasmid overexpressing FGFR1 and EGFP (CMV-FGFR1-2A-EGFP) (Fig 2). We
and others find that of those neurons which survive electroporation, only a proportion express
the transgene after electroporation of plasmids [24-27]. Because we need to measure neurite
growth only in those neurons which express the FGFR1 transgene, we co-electroporate neu-
rons with a green fluorescent reporter (pMaxGFP), which enables us to detect transgenic
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Fig 4. Tracing of intact corticospinal axons. A) A representative picture of BDA traced C7 spinal cord Dotted line shows outline of the grey matter and
dorsal column. Scale bar, 100um. B) Crossing of intact corticospinal fibres was assessed by counting injecting BDA in the motor cortex innervating the
unlesioned forepaw. Fibres that crossed over were counted at C7 at the midline, two different distances from the midline (D1 and D2). Sprouting of the non-
decussated fibres was counted on the line called “Ipsi”. C) Number of fibres that crossed a given line in C7 for control and FGFR1 overexpressing animals.

doi:10.1371/journal.pone.0150541.9004

neurons, as described previously [26, 28]. To ensure a high level of expression of green fluores-
cence, cells were co-electroporated with pMaxGFP (Fig 5A) because prior work from our
group showed that the 2A-EGFP sequence did not adequately label all the neurites. Control
cells were electroporated with pMaxGFP only. After electroporation cells were grown on a
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Fig 5. Wild type and mutant FGFR1 reduced neurite length on growth permissive PLL and growth inhibitory CSPGs when compared to control
cells. A) Schematic diagram of the pMaxGFP vector highlighting distinct features. CMV: cytomegalovirus. B) Representative pictures of cerebellar granule
neurons grown on CSPG. C,D) Cells were transfected with 1ug pMaxGFP and 4ug of either wild type or mutant FGFR1 by electroporation and then cultured
on PLL (C) or CSPGs (D) for 48 hours. Control cells were transfected with 1ug pMaxGFP. Cells were stained for Bl tubulin and DAPI and analysed for

neurite outgrowth by fluorescence microscopy. Data are mean + SEM (n = 8) and significance is shown for Dunnett's post hoc test values when groups were
compared to cells transfected with pMaxGFP alone. *P < 0.05; **P < 0.01; ***P < 0.001; ns—not significant.

doi:10.1371/journal.pone.0150541.9005

growth permissive poly-L-lysine (PLL) substrate or on a growth inhibitory chondroitin sul-
phate proteoglycan (CSPG) substrate for 48 hours. These experiments revealed that overex-
pression of wild-type (WT) FGFRI reduces neurite outgrowth by 20% when cells were grown
on PLL (p = 0.01) (Fig 5C), and by 50% when grown on CSPGs (p = 0.003) (Fig 5D). We also
overexpressed a mutated form of FGFR1, which harbours a lysine instead of an asparagine at
position 544 (N544K). This mutant has been shown to have increased kinase activity [29, 30].
Our results show that overexpression of FGFR1-N544K results in the same degree of downre-
gulation of neurite outgrowth as with overexpression of the WT FGFR1 (p>0.05) (Fig 5C &
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5D). To further understand the mechanism by which FGFR1 reduces neurite outgrowth we
mutated tyrosine 764 to phenylalanine (Y764F) in order to prevent phosphorylation of FGFR1
at this position, and therefore binding and activation of PLCy [31, 32]. Our data show that
overexpression of the FGFR1-Y764F mutant did not significantly alter neurite outgrowth com-
pared to WT FGFRI overexpression (p>0.05) (Fig 5C & 5D).

Discussion

We show here that overexpression of FGFR1 in vitro in CGNs reduces neurite outgrowth com-
pared to control cells. The underlying mechanism for outgrowth inhibition upon FGFR1 overex-
pression needs further investigation. We have shown that inhibition of PLCy signalling
downstream of overexpressed FGFR1 does not rescue the observed reduction in neurite outgrowth.

For our in vitro experiments we grew the transfected CGNs for 48 hours on growth permis-
sive PLL or on growth inhibitory CSPG coated 96-well plates. Neurites were longer on CSPG
(80pm) compared to PLL (60pm) coated plates. This was unexpected as we and others have
previously shown that CGN neurite lengths are shorter on CSPG, however, the finding was
very robust across independent experiments and we believe that it might have been due to the
particular batches of the CSPG that we used.

We have also shown that overexpression of FGFR1 in the motor cortex of rats with a contra-
lateral lesion of the corticospinal tract in the pyramids is not beneficial for sprouting of intact
fibres over the midline and does not lead to increased functional regeneration as measured by
the Montoya staircase and horizontal ladder test.

A range of other studies have shown that FGFR1 ligand supplementation at the site of SCI
increases neurite outgrowth and is functionally beneficial [1-8]. Therefore, we hoped to com-
bine the beneficial effect of various FGFR1 ligands by overexpression of the receptor. Interest-
ingly, overexpression of FGFR1 did not lead to a functional benefit and/or neurite outgrowth.
Possible explanations for the lack of neurite outgrowth might be that the previously studied
ligands do not only bind FGFR1, but also other FGF receptors, such as FGFR2. The activation
of other receptors in addition to FGFR1 may be essential in order to result in a beneficial out-
come after injury. Indeed, during preparation of this manuscript, another group showed that
FGFR1 and FGFR2 are constitutively expressed in the motor cortex of mice and are required
for the limited degree of spontaneous recovery after SCI that occurs [33]. Our data extend this
work by showing that overexpression of FGFRI1 by itself does not further enhance spontaneous
recovery after SCI. In addition, we report a worse outcome for neurite outgrowth following
FGFR1 overexpression in vitro. This might be due to the overexpressed FGFR1 sequestering
adaptor proteins away from other pro-neurite outgrowth pathways and therefore inhibiting
these pathways. Indeed, it has been shown by others that overexpression of FGFR1 inhibits
nerve growth factor signalling via TRKA, the receptor for the nerve growth factor (NGF).
TRKA signalling is dependent on the FGF receptor substrate 2 (FRS2) [34]. PLCy activation
downstream of FGFR1 signalling has been described to induce neurite outgrowth [35, 36]. We
therefore overexpressed a mutant of FGFR1 (Y764F) that is unable to activate PLCy. However,
this mutant had no effect on neurite outgrowth compared to WT FGFR1 overexpression. This
suggests that the reduced neurite outgrowth that we observed upon FGFR1 overexpression is
not mediated via PLCy signalling.

In conclusion, we found that overexpression of FGFR1 in the motor cortex of rats after SCI
is not beneficial in a rat model of spinal cord injury. This might be due to depletion of adaptor
proteins from other pro-regenerative signalling pathways. Further studies are needed to eluci-
date the exact mechanism. We believe that overexpression of a combination of pro-regenera-
tive receptors mutated for enhanced function could lead to positive effects.
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Material and Methods

All procedures were in accordance with the UK Home Office guidelines and Animals (Scien-
tific Procedures) Act of 1986 and have been approved by the AWERB and Home Office of the
UK. Anaesthesia was performed using Isoflurane, Euthanasia was performed using an overdose
with Euthatal

Cerebellar granule neuron culture and electroporation: Postnatal day 7-9 (P7-9) CGNs were
prepared as previously described [26]. We originally identified FGFR1 as a candidate pro-
regenerative gene using CGNs in a high content screening study of more than 500 plasmids
(unpublished). In that previous work, we used CGNs because one may obtain large numbers of
these neurons easily for screening hundreds of different candidate genes. In the present work
we decided to continue using CGNss for continuity (rather than to change to a new cell type
such as cortical neurons). Briefly, the cerebellae of P7-9 rat pups were isolated, the meninges
removed and the cerebellae finely diced with a razor blade before being incubated with 5 ml
0.05% trypsin/EDTA in calcium and magnesium free medium (CMF) containing 0.4 mg/ml
KClI, 0.06 mg/ml KH2PO4, 7.65 mg/ml NaCl, 0.35 mg/ml NaHCO3, 0.048 mg/ml Na2HPO4,
2.38 mg/ml HEPES in sterile water (pH 7.2) for 15 min at 37°C. The trypsin/EDTA was deacti-
vated using an equal volume of 10% fetal bovine serum (FBS) in CMF. The cell pellet was
mechanically triturated in the presence of 0.5 ml 5 mg/ml DNase I (Sigma) in 2 ml CMF. The
cells were left to settle for 5 min before 1.5 ml of supernatant was harvested and the cells col-
lected by centrifugation at 100xg for 5 min. The cell pellet was resuspended in 5 ml serum free
media containing Neurobasal media (Invitrogen) supplemented with, 2% B27 (Invitrogen), 25
mM KCl (Sigma), 100 U/ml penicillin and 100 ug/ml streptomycin (Invitrogen), 3 mg/ml D-
glucose (Sigma), 2 mM L-glutamine (Sigma). Cells were counted using a hemocytometer and
resuspended in internal neuronal buffer containing 135 mM KCl, 2 mM MgCl2, 10 mM
HEPES, 0.2 mM CaCl2, 5 mM ethylene glycol tetraacetic acid (EGTA) and sterile water (pH
7.3). The cells were mixed with either 1pug pMaxGFP DNA for control cells or 1 ug pMaxGFP
and 4pg CMV-FGFR1-2A-EGFP DNA on a 96 well plate. Electroporation was performed with
a HT-200 plate handler connected to an ECM 830 square-wave pulse generator (BTX Harvard
Apparatus). The pulse generator was connected to a TDS 1002 oscilloscope (Tektronix, USA)
to monitor the delivery of the required pulses. Parameters used were 300 V and a 1 ms pulse.
Directly after electroporation Hibernate E (Thermo Fisher Scientific A12476-01) was added to
the cells before they were plated on PPL or CSPG coated dishes.

Measurement of neurite outgrowth: 48 hours after electroporation and growth on PLL or
CSPG, cells were fixed with cold 4% paraformaldehyde (PFA) in PBS. Cells were stained over-
night at room temperature with an anti BIII tubulin antibody (Promega, USA) diluted in PBS
containing 10% normal goat serum (Invitrogen) and 0.2% Triton-X-100. The next day, cells
were incubated for 1 hour in goat anti mouse IgG conjugated to Alexa Fluor 546 (Invitrogen,
USA) and 4’, 6-diamidino-2-phenylindole (DAPI), diluted in PBS containing 0.2% Triton-X-
100. Images were taken with an IN Cell Analyser 1000 with a 10x camera objective and 10x
Nikon ApoPlan objective (GE Healthcare Life Sciences, UK). Calculation of neurite length was
achieved using the IN Cell Developer Toolbox software. Transfected neurons were identified
by GFP expression.

DNA preparation: The Mus Musculus FGFRI (BC033447.1) cDNA clone was purchased
pre-cloned into the pPCMVSPORTS6 (Source Bioscience, Nottingham, UK) which uses the RNA
polymerase IT human CMV promoter to drive transgene expression. The pMaxGFP plasmid
was purchased from Amaxa, which uses the CMV promoter to drive expression of maxGFP
(Amaxa, UK). The pCMVSPORT6-mCherry plasmid was a kind gift (Dr. Willie Buchser, Prof.
Vance Lemmon and Prof. John Bixby, University of Miami Miller School of Medicine).
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mCherry was cloned out of this vector and transferred into the psubCMV-2A-WPRE vector as
described below.

Bicistronic plasmid construction: The psubCMV-2A-WPRE AAV transfer plasmid was a
kind gift from Dr. Hansruedi Bueler, University of Kentucky. The coding sequences for mouse
FGFR1 (BC033447.1), mCherry and EGFP were amplified using PCR and cloned in frame
either upstream (FGFR1 or mCherry) or downstream (EGFP) of the Foot and mouth disease
virus (FMDV) 2A sequence as described before [22]. The PCR amplification primers were
designed so that the upstream coding sequence lacked a translation stop codon while the
downstream coding sequence lacked a translation initiation codon. Both plasmids contained a
CMV promoter to drive expression and a woodchuck hepatitis virus post-transcriptional regu-
latory element (WPRE). The two plasmids that were generated (psubCMV-FGFR1-2A-Egfr-
WPRE and psubCMV-mCherry-2A-EGFP-WPRE) were sequenced to confirm successful
cloning.

Site-directed mutagenesis: Site-directed mutagenesis was performed according to the Quik-
Change Lightning Site-Directed Mutagenesis Kit (Agilent Technologies, Wokingham, UK).
The mutations were introduced into the psub-CMV-FGFR1-2A-EGFP vector by performing
PCR using the following mutagenic primers (the triplets coding for the desired mutated amino
acid are underlined and the desired mutated nucleotides are highlighted in bold): N544K-for-
ward 5 GCA CAA GAA TAT CAT CAA GCT TCT GGG AGC GTG C 3’ N544K-reverse 5’
GCA CGC TCC CAG AAG CTT GAT GAT ATT CTT GTG C 3’; Y764F-forward 5 GCA
CAA GAA TAT CAT CAA GCT TCT GGG AGC GTG C 3’ Y764F-reverse 5 ACA GGT CCA
GAA ACT CCT GGT TGG AGG TCA AGG 3. PCR reactions contained 5pl 10X reaction
buffer, 50ng dsDNA template, 125ng each forward and reverse mutagenic primer, 1pl ANTP
mix, 1.5ul QuikSolution reagent, ddH,0 and 1pl QuikChange Lightning enzyme in a final vol-
ume of 50pl. The PCR cycle conditions were as follows: 95°C for 2 minutes; 95°C for 20 sec-
onds, 60°C for 10 seconds, 68°C for 5 minutes, 18 cycles, 68°C for 5 minutes. Sequencing
confirmed successful clones.

Quantitative reverse transcription PCR (qRTPCR): We used tissues from rats that were
euthanised between 1 and 2.5 weeks after AAV injection. Injected rat cortex was snap frozen
after collection and stored at -80°C. Cortices were homogenised using a GentleMACS program
RNA_02.1 (Miltenyi Biotech). RNA was extracted using Trizol (Invitrogen). Reverse transcrip-
tion was performed from1ng RNA using Superscript III Reverse transcriptase (Invitrogen) and
random primers (Invitrogen) as per the manufacturer’s instruction. FGFR1 expression was
assessed using quantitative PCR (qPCR). qPCR was performed with a LightCycler 480 II from
Roche and with the LightCycler 480 SYBR Green I Master (04887352001, Roche). Values of
expression were calculated using the values for slope and intercept as calculated from the stan-
dard curve on the same plate. The PCR program used was as follows: Pre-incubation: 95°C for
5 minutes, ramp rate 4.8C/s. Amplification (45 cycles): 95°C for 10 seconds, ramp rate 4.8 C/s,
60°C for 10 seconds, ramp rate 2.5°C/s, 72°C for 10 seconds, ramp rate 4.8°C/s. All quantita-
tions were normalized to rat Gapdh. Primers: mouse FGFR1 5-GGTTGACCGTTCTG-
GAAGC-3, 5-GCCCCGGTGCAGTAGATA-3'". Rat Gapdh 5'-
GTTACCAGGGCTGCCTTCTC-3', 5-ACCAGCTTCCCATTCTCAGC-3’

Experimental in vivo design: The experimental design is presented in Fig 1. All procedures,
behavioural testing and analysis were performed using a randomised block design and in a
blinded fashion: codes were only broken after the end of the study.

Adeno-associated viral vector injection: Adeno-associated viral vectors (AAVs) serotype 1
expressing either mCherry or FGFR1 were titre matched at 2.44E+12 GC/ml (Genomic Copies/
ml) and injected into the sensorimotor cortex that controls the non-preferred forepaw. Seven
holes were drilled into the skull using a dental drill at the following anterioposterior (AP) and
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mediolateral (ML) coordinates relative to Bregma: 1) AP: +1.0 mm, ML: 1.5 mm; 2) AP: +0.5
mm, ML: 2.5 mm; 3) AP: +1.5 mm, ML: 2.5 mm; 4) AP: +0.5 mm, ML: 3.5 mm; 5) AP: +2.0
mm, ML: 3.5 mm; 6) AP: —0.5 mm, ML: 3.5 mm; 7) AP: +3.5mm, ML: 2.0 mm. The vector was
injected using a Hamilton syringe and a 34G needle (point style 2; Hamilton). The needle was
slowly lowered 1.5 mm below the cortical surface and 0.5 pl of vector was injected at a rate of
0.25 pl per 10 seconds with a pause of 1 min after each infusion. The scalp was then sutured
and analgesic given as described below.

Spinal cord injury surgery: The preferred forepaw was identified in the Montoya staircase
test. One week after AAV injection the CST innervating the preferred forepaw was cut unilater-
ally before it decussates at the level of the pyramids in the brainstem as described earlier [37].
Briefly, animals were anesthetised with isoflurane. 4% isoflurane in O, was used for induction;
1.5% to 2% in O, was delivered via a face mask to maintain anaesthesia. Rectal temperature
was maintained at ~37°C using a homeothermic system. The analgesic Carprofen (5mg/kg)
was administered subcutaneously. A 2-3 cm midline incision caudal to the chin was per-
formed, and the muscular layer was blunt dissected. The trachea was slightly displaced to one
side and muscles were further dissected until the skull became visible. In a modification of the
surgery described previously [37], we did not cauterise any blood vessels and no retractors
were used. Instead, the surgical field of interest was kept clear from surrounding tissue with for-
ceps. The skull above the medullary pyramid corresponding to the preferred forepaw was
opened up using a Friedman-Pearson rongeur (0.5mm cup, curved, 16221-14). The dura was
cut and a 1.5mm wide and Imm deep cut from the midline was performed in the pyramid as
described in Kathe et al. [37]. After the cut, all bleeding was stilled and the animal was sutured.
5ml 0.9% saline was administered to each flank of the animal. Dopram was only used in cases
where the animals had acute breathing problems during the procedure. Carprofen was given
on the two consecutive days.

Behaviour: Rats were trained (for 3 weeks) and evaluated (10 weeks) on behavioural tasks.
Preoperative baseline scores for the horizontal ladder were collected one and two weeks before
surgery. Postoperative behaviour was performed on day 3 post-surgery and then weekly
thereafter.

Horizontal ladder: The apparatus consisted of Plexiglas side walls, 1.2 m long, 50 cm high
and width adjusted to approximately 2 cm wider than the animal to try and prevent turning.
Metal rungs were placed at a height of 20 cm; they were spaced unequally (between 1 cm and 4
cm apart) and changed weekly to avoid improvement through pattern learning. Rats were vid-
eotaped crossing a 1m-length of the horizontal ladder weekly, 3 times per session. Any slight
paw slips, deep paw slips and complete misses were scored as errors. The mean number of
errors per step was calculated for each limb for each week.

Montoya staircase test: The test was performed as described earlier [38]. Rats were offered
three sugar pellets on each step on both sides. Each rat was assessed during 10 minutes. The
number of sugar pellets consumed was recorded on each side of the staircase for each rat. Con-
sumed pellets are defined as total pellets offered on all 7 staircases minus displaced-but-not-
eaten pellets and any remaining pellets. During pretraining, rats were food restricted 24 hours
prior to testing. Once the rats were used to the sucrose pellets food restriction was stopped.

Corticospinal tract tracing: Anterograde tracer (Biotinylated Dextran Amine, BDA, 10,000
kDa, 10% in PBS, Invitrogen) was injected into the contralesional sensorimotor cortex six
weeks after injury. Seven holes were drilled into the skull using a dental drill at the following
anterioposterior (AP) and mediolateral (ML) coordinates relative to Bregma: 1) AP: +1.0 mm,
ML: 1.5 mm; 2) AP: +0.5 mm, ML: 2.5 mm; 3) AP: +1.5 mm, ML: 2.5 mm; 4) AP: +0.5 mm,
ML: 3.5 mm; 5) AP: +2.0 mm, ML: 3.5 mm; 6) AP: —0.5 mm, ML: 3.5 mm; 7) AP: +3.5 mm,
ML: 2.0 mm. 0.5ul of 10°000 MW BDA per injection site was infused using a Hamilton syringe
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with a 34G needle (Hamilton part number 207434, 11 mm/point style 2). The needle was
slowly lowered 1.5 mm below the cortical surface and BDA injected at a rate of 0.25 ul per 10
seconds with a pause of 1 min after each infusion. The scalp was then sutured and analgesic
given as described above. Ten weeks post CST surgery (i.e., four weeks after BDA labelling),
rats were terminally anesthetised with Sodium Pentobarbital (Euthatal) and perfused transcar-
dially with PBS (NaCl, 137 mM; KCl, 2.7 mM; Na,HPOy,, 4.3 mM; KH,PO,, 1.4 mM) for 2
minutes, followed by 500 ml of 4% paraformaldehyde (PFA) in PBS for 12 minutes. The spinal
cord and brainstem were carefully dissected and stored in 4% paraformaldehyde in PBS for 24
hours and then transferred to 30% sucrose in PBS and stored at 4°C. The C7 spinal cord seg-
ment was embedded in optimal cutting temperature compound (OCT) and 40 um transverse
slices were cut using a freezing stage microtome (Kryomat, Leitz, Germany) and transferred
into TBS/azide (100mM Tris, 15 mM NaCl, 0.5mM NaNj, pH 7.4) and stored at 4°C. Ten
series of sections were cut and placed in 10 wells.

Histology: For BDA staining, free floating sections were incubated in 0.3% H,O, in H,O (30
min). Sections were incubated in ABC vector (VectorLabs, UK) (30 min) then amplified using
biotinyl tyramide (1:75, PerkinElmer, USA), then left overnight at room temperature on a
shaker with extra avidin FITC (1:500, Sigma). Sections were washed between all steps. Sections
were cover slipped with Mowiol.

Corticospinal axons were counted that were anterogradely traced with BDA and crossed the
midline, D1, D2, or the “ipsi” boundary at C7. For each rat, the number of corticospinal axons
per cord segment were calculated by counting the number of corticospinal axons in all sections
in a series, normalising to the number of fibres labelled in the dorsal column and then multi-
plying by the total number of sections in the whole C7 segment and then divided by the num-
ber of sections counted [39].

The presented representative picture was taken using a Leica SPE scanning laser confocal
microscope controlled with Leica LAS AF software.

For GFP positive CST fibres in the dorsal columns, free floating sections were blocked in
10% goat serum, incubated with an anti-GFP antibody (abcam, ab13970) over night. Next day
sections were washed incubated with secondary goat anti chicken 488 (A-11039), washed and
mounted in VECTASHIELD Antifade Mounting Medium with DAPI (Vector Laboratories, H-
1200). Immunofluorescence was visualised using a Leica SPE scanning laser confocal micro-
scope controlled with Leica LAS AF software.

Statistics: Results are expressed as mean + Standard Error of Mean (SEM). For Figs 3A, 3B
and 4C Student’s unpaired t-test was used to determine significant values. The data presented
in Fig 3C was analysed using two way repeated measures ANCOVA. In Fig 5C and 5D data
was analysed with an ANOVA using a Dunnett’s post hoc test for comparison between each
condition and the cells transfected with pMaxGFP alone. *P < 0.05; “*P < 0.01; ***P < 0.001;
ns-not significant.

Acknowledgments

We would like to thank the Penn Vector Core in the Gene Therapy Program of the University
of Pennsylvania for adeno-associated viral vector production and Dr. Willie Buchser, Prof.
Vance Lemmon and Prof. John Bixby, University of Miami Miller School of Medicine for the
PCMVSPORT6-mCherry plasmid. The research leading to these results has received funding
from the Swiss National Science Foundation (SNSF), the Henry Smith Charity, the Wings for
Life Spinal Cord Research Foundation, the Miami Project to Cure Paralysis, the National Insti-
tute of Neurological Disorders and Stroke (09923) and the Christopher and Dana Reeve Foun-
dation International Research Consortium.

PLOS ONE | DOI:10.1371/journal.pone.0150541 March 25, 2016 12/15



@ PLOS | one

FGFR1 Overexpression and SCI

Author Contributions

Conceived and designed the experiments: BH LDFM. Performed the experiments: BH HA KG.
Analyzed the data: BH. Contributed reagents/materials/analysis tools: THH SCM MBB. Wrote
the paper: BH LDFM.

References

1.

10.

11.

12

13.

14.

15.

16.

17.

18.

Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb
function. Science. 1996; 273(5274):510-3. PMID: 8662542.

Guest JD, Hesse D, Schnell L, Schwab ME, Bunge MB, Bunge RP. Influence of IN-1 antibody and
acidic FGF-fibrin glue on the response of injured corticospinal tract axons to human Schwann cell
grafts. J Neurosci Res. 1997; 50(5):888—-905. PMID: 9418975.

Rabchevsky AG, Fugaccia |, Fletcher-Turner A, Blades DA, Mattson MP, Scheff SW. Basic fibroblast
growth factor (bFGF) enhances tissue sparing and functional recovery following moderate spinal cord
injury. J Neurotrauma. 1999; 16(9):817-30. PMID: 10521141.

Rabchevsky AG, Fugaccia |, Turner AF, Blades DA, Mattson MP, Scheff SW. Basic fibroblast growth
factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat. Exp Neurol.
2000; 164(2):280-91. doi: 10.1006/exnr.2000.7399 PMID: 10915567.

Roonprapunt C, Huang W, Grill R, Friedlander D, Grumet M, Chen S, et al. Soluble cell adhesion mole-
cule L1-Fc promotes locomotor recovery in rats after spinal cord injury. J Neurotrauma. 2003; 20
(9):871-82. doi: 10.1089/089771503322385809 PMID: 14577865.

Chen J, Bernreuther C, Dihne M, Schachner M. Cell adhesion molecule 1-transfected embryonic stem
cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord
injury. J Neurotrauma. 2005; 22(8):896—906. doi: 10.1089/neu.2005.22.896 PMID: 16083356.

Chen J, Wu J, Apostolova |, Skup M, Irintchev A, Kugler S, et al. Adeno-associated virus-mediated L1
expression promotes functional recovery after spinal cord injury. Brain. 2007; 130(Pt 4):954—69. doi:
10.1093/brainfawm049 PMID: 17438016.

Lee YS, Lin CY, Jiang HH, Depaul M, Lin VW, Silver J. Nerve regeneration restores supraspinal control
of bladder function after complete spinal cord injury. J Neurosci. 2013; 33(26):10591-606. doi: 10.
1523/JNEUROSCI.1116-12.2013 PMID: 23804083; PubMed Central PMCID: PMCPMC3693049.

Kasai M, Jikoh T, Fukumitsu H, Furukawa S. FGF-2-responsive and spinal cord-resident cells improve
locomotor function after spinal cord injury. J Neurotrauma. 2014; 31(18):1584—98. doi: 10.1089/neu.
2009.1108 PMID: 20199141; PubMed Central PMCID: PMCPMC4161154.

Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer.
2010; 10(2):116—29. doi: 10.1038/nrc2780 PMID: 20094046.

Logan A, Frautschy SA, Gonzalez AM, Baird A. A time course for the focal elevation of synthesis of
basic fibroblast growth factor and one of its high-affinity receptors (flg) following a localized cortical
brain injury. J Neurosci. 1992; 12(10):3828-37. PMID: 1403086; PubMed Central PMCID:
PMCPMC4086626.

Koshinaga M, Sanon HR, Whittemore SR. Altered acidic and basic fibroblast growth factor expression
following spinal cord injury. Exp Neurol. 1993; 120(1):32—48. doi: 10.1006/exnr.1993.1038 PMID:
7682969.

Doherty P, Cohen J, Walsh FS. Neurite outgrowth in response to transfected N-CAM changes during
development and is modulated by polysialic acid. Neuron. 1990; 5(2):209—19. PMID: 2200449.

Williams EJ, Furness J, Walsh FS, Doherty P. Activation of the FGF receptor underlies neurite out-
growth stimulated by L1, N-CAM, and N-cadherin. Neuron. 1994; 13(3):583-94. PMID: 7917292.

Williams EJ, Walsh FS, Doherty P. Tyrosine kinase inhibitors can differentially inhibit integrin-depen-
dent and CAM-stimulated neurite outgrowth. J Cell Biol. 1994; 124(6):1029-37. PMID: 8132706;
PubMed Central PMCID: PMCPMC2119981.

Doherty P, Walsh FS. CAM-FGF receptor interactions: a model for axonal growth. Mol Cell Neurosci.
1996; 8(2—3):99—111. doi: 10.1006/mcne.1996.0049 PMID: 8918827.

Williams EJ, Walsh FS, Doherty P. The production of arachidonic acid can account for calcium channel
activation in the second messenger pathway underlying neurite outgrowth stimulated by NCAM, N-cad-
herin, and L1. J Neurochem. 1994; 62(3):1231—-4. PMID: 8113807.

He JC, Gomes |, Nguyen T, Jayaram G, Ram PT, Devi LA, et al. The G alpha(o/i)-coupled cannabinoid
receptor-mediated neurite outgrowth involves Rap regulation of Src and Stat3. J Biol Chem. 2005; 280
(39):33426-34. doi: 10.1074/jbc.M502812200 PMID: 16046413.

PLOS ONE | DOI:10.1371/journal.pone.0150541

March 25, 2016 13/15


http://www.ncbi.nlm.nih.gov/pubmed/8662542
http://www.ncbi.nlm.nih.gov/pubmed/9418975
http://www.ncbi.nlm.nih.gov/pubmed/10521141
http://dx.doi.org/10.1006/exnr.2000.7399
http://www.ncbi.nlm.nih.gov/pubmed/10915567
http://dx.doi.org/10.1089/089771503322385809
http://www.ncbi.nlm.nih.gov/pubmed/14577865
http://dx.doi.org/10.1089/neu.2005.22.896
http://www.ncbi.nlm.nih.gov/pubmed/16083356
http://dx.doi.org/10.1093/brain/awm049
http://www.ncbi.nlm.nih.gov/pubmed/17438016
http://dx.doi.org/10.1523/JNEUROSCI.1116-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.1116-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23804083
http://dx.doi.org/10.1089/neu.2009.1108
http://dx.doi.org/10.1089/neu.2009.1108
http://www.ncbi.nlm.nih.gov/pubmed/20199141
http://dx.doi.org/10.1038/nrc2780
http://www.ncbi.nlm.nih.gov/pubmed/20094046
http://www.ncbi.nlm.nih.gov/pubmed/1403086
http://dx.doi.org/10.1006/exnr.1993.1038
http://www.ncbi.nlm.nih.gov/pubmed/7682969
http://www.ncbi.nlm.nih.gov/pubmed/2200449
http://www.ncbi.nlm.nih.gov/pubmed/7917292
http://www.ncbi.nlm.nih.gov/pubmed/8132706
http://dx.doi.org/10.1006/mcne.1996.0049
http://www.ncbi.nlm.nih.gov/pubmed/8918827
http://www.ncbi.nlm.nih.gov/pubmed/8113807
http://dx.doi.org/10.1074/jbc.M502812200
http://www.ncbi.nlm.nih.gov/pubmed/16046413

@ PLOS | one

FGFR1 Overexpression and SCI

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

He JC, Neves SR, Jordan JD, lyengar R. Role of the Go/i signaling network in the regulation of neurite
outgrowth. Can J Physiol Pharmacol. 2006; 84(7):687—94. doi: 10.1139/y06-025 PMID: 16998532.

Furler S, Paterna JC, Weibel M, Bueler H. Recombinant AAV vectors containing the foot and mouth dis-
ease virus 2A sequence confer efficient bicistronic gene expression in cultured cells and rat substantia
nigra neurons. Gene Ther. 2001; 8(11):864—73. doi: 10.1038/sj.gt.3301469 PMID: 11423934,

Hutson TH, Verhaagen J, Yanez-Munoz RJ, Moon LD. Corticospinal tract transduction: a comparison
of seven adeno-associated viral vector serotypes and a non-integrating lentiviral vector. Gene Ther.
2012; 19(1):49-60. doi: 10.1038/gt.2011.71 PMID: 21562590; PubMed Central PMCID:
PMCPMC3160493.

Hutson TH, Kathe C, Menezes SC, Rooney MC, Bueler H, Moon LD. The use of an adeno-associated
viral vector for efficient bicistronic expression of two genes in the central nervous system. Methods Mol
Biol. 2014; 1162:189-207. doi: 10.1007/978-1-4939-0777-9_16 PMID: 24838969.

Hutson TH, Kathe C, Moon LD. Trans-neuronal transduction of spinal neurons following cortical injec-
tion and anterograde axonal transport of a bicistronic AAV1 vector. Gene Ther. 2015. doi: 10.1038/gt.
2015.103 PMID: 26656848.

Gartner A, Collin L, Lalli G. Nucleofection of primary neurons. Methods Enzymol. 2006; 406:374—-88.
PMID: 16472671.

Buchser WJ, Pardinas JR, Shi Y, Bixby JL, Lemmon VP. 96-well electroporation method for transfec-
tion of mammalian central neurons. Biotechniques. 2006; 41(5):619-24. Epub 2006/12/05. 000112279
[pii]. PMID: 17140120; PubMed Central PMCID: PMC2424126.

Hutson TH, Buchser WJ, Bixby JL, Lemmon VP, Moon LD. Optimization of a 96-Well Electroporation
Assay for Postnatal Rat CNS Neurons Suitable for Cost-Effective Medium-Throughput Screening of
Genes that Promote Neurite Outgrowth. Frontiers in molecular neuroscience. 2011; 4:55. doi: 10.3389/
fnmol.2011.00055 PMID: 22207835; PubMed Central PMCID: PMC3245668.

Leclere PG, Panjwani A, Docherty R, Berry M, Pizzey J, Tonge DA. Effective gene delivery to adult neu-
rons by a modified form of electroporation. J Neurosci Methods. 2005; 142(1):137—43. PMID:
15652627.

Buchser WJ, Smith RP, Pardinas JR, Haddox CL, Hutson T, Moon L, et al. Peripheral nervous system
genes expressed in central neurons induce growth on inhibitory substrates. PLoS ONE. 2012; 7(6). doi:
10.1371/journal.pone.0038101 PMID: WOS:000305348400035.

Chen H, Ma J, Li W, Eliseenkova AV, Xu C, Neubert TA, et al. A molecular brake in the kinase hinge
region regulates the activity of receptor tyrosine kinases. Mol Cell. 2007; 27(5):717-30. doi: 10.1016/j.
molcel.2007.06.028 PMID: 17803937; PubMed Central PMCID: PMCPMC2094128.

Lew ED, Furdui CM, Anderson KS, Schlessinger J. The precise sequence of FGF receptor autopho-
sphorylation is kinetically driven and is disrupted by oncogenic mutations. Sci Signal. 2009; 2(58):ra6.
doi: 10.1126/scisignal.2000021 PMID: 19224897; PubMed Central PMCID: PMCPMC2755185.

Mohammadi M, Honegger AM, Rotin D, Fischer R, Bellot F, Li W, et al. A tyrosine-phosphorylated car-
boxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain
of phospholipase C-gamma 1. Mol Cell Biol. 1991; 11(10):5068-78. PMID: 1656221; PubMed Central
PMCID: PMCPMC361508.

Mohammadi M, Dionne CA, Li W, Li N, Spivak T, Honegger AM, et al. Point mutation in FGF receptor
eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature. 1992; 358(6388):681—
4. doi: 10.1038/358681a0 PMID: 1379698.

Jacobi A, Loy K, Schmalz AM, Hellsten M, Umemori H, Kerschensteiner M, et al. FGF22 signaling regu-
lates synapse formation during post-injury remodeling of the spinal cord. EMBO J. 2015; 34(9):1231—
43. doi: 10.15252/embj.201490578 PMID: 25766255; PubMed Central PMCID: PMCPMC4426482.

Ong SH, Guy GR, Hadari YR, Laks S, Gotoh N, Schlessinger J, et al. FRS2 proteins recruit intracellular
signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor
receptors. Mol Cell Biol. 2000; 20(3):979-89. PMID: 10629055; PubMed Central PMCID:
PMCPMC85215.

Kolkova K, Novitskaya V, Pedersen N, Berezin V, Bock E. Neural cell adhesion molecule-stimulated
neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein
kinase pathway. J Neurosci. 2000; 20(6):2238—46. PMID: 10704499.

Kiryushko D, Berezin V, Bock E. Regulators of neurite outgrowth: role of cell adhesion molecules. Ann
N'Y Acad Sci. 2004; 1014:140-54. PMID: 15153429.

Kathe C, Hutson TH, Chen Q, Shine HD, McMahon SB, Moon LD. Unilateral pyramidotomy of the corti-
cospinal tract in rats for assessment of neuroplasticity-inducing therapies. Journal of visualized experi-
ments: JOVE. 2014;(94: ). doi: 10.3791/51843 PMID: 25549050.

PLOS ONE | DOI:10.1371/journal.pone.0150541

March 25, 2016 14/15


http://dx.doi.org/10.1139/y06-025
http://www.ncbi.nlm.nih.gov/pubmed/16998532
http://dx.doi.org/10.1038/sj.gt.3301469
http://www.ncbi.nlm.nih.gov/pubmed/11423934
http://dx.doi.org/10.1038/gt.2011.71
http://www.ncbi.nlm.nih.gov/pubmed/21562590
http://dx.doi.org/10.1007/978-1-4939-0777-9_16
http://www.ncbi.nlm.nih.gov/pubmed/24838969
http://dx.doi.org/10.1038/gt.2015.103
http://dx.doi.org/10.1038/gt.2015.103
http://www.ncbi.nlm.nih.gov/pubmed/26656848
http://www.ncbi.nlm.nih.gov/pubmed/16472671
http://www.ncbi.nlm.nih.gov/pubmed/17140120
http://dx.doi.org/10.3389/fnmol.2011.00055
http://dx.doi.org/10.3389/fnmol.2011.00055
http://www.ncbi.nlm.nih.gov/pubmed/22207835
http://www.ncbi.nlm.nih.gov/pubmed/15652627
http://dx.doi.org/10.1371/journal.pone.0038101
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000305348400035
http://dx.doi.org/10.1016/j.molcel.2007.06.028
http://dx.doi.org/10.1016/j.molcel.2007.06.028
http://www.ncbi.nlm.nih.gov/pubmed/17803937
http://dx.doi.org/10.1126/scisignal.2000021
http://www.ncbi.nlm.nih.gov/pubmed/19224897
http://www.ncbi.nlm.nih.gov/pubmed/1656221
http://dx.doi.org/10.1038/358681a0
http://www.ncbi.nlm.nih.gov/pubmed/1379698
http://dx.doi.org/10.15252/embj.201490578
http://www.ncbi.nlm.nih.gov/pubmed/25766255
http://www.ncbi.nlm.nih.gov/pubmed/10629055
http://www.ncbi.nlm.nih.gov/pubmed/10704499
http://www.ncbi.nlm.nih.gov/pubmed/15153429
http://dx.doi.org/10.3791/51843
http://www.ncbi.nlm.nih.gov/pubmed/25549050

" ®
@ ’ PLOS ‘ ONE FGFR1 Overexpression and SCI

38. Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB. The "staircase test": a measure of inde-
pendent forelimb reaching and grasping abilities in rats. Journal of neuroscience methods. 1991; 36(2—
3):219-28. PMID: 2062117.

39. Duricki DA, Hutson TH, Kathe C, Soleman S, Gonzalez-Carter D, Petruska JC, et al. Delayed intramus-
cular human neurotrophin-3 improves recovery in adult and elderly rats after stroke. Brain. 2015. doi:
10.1093/brain/awv341 PMID: 26614754.

PLOS ONE | DOI:10.1371/journal.pone.0150541 March 25, 2016 15/15


http://www.ncbi.nlm.nih.gov/pubmed/2062117
http://dx.doi.org/10.1093/brain/awv341
http://www.ncbi.nlm.nih.gov/pubmed/26614754

