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ARTICLE INFO ABSTRACT

Keywords: Reduced activation of positive valence systems (PVS), including blunted neural and physiological responses to
Re""’a'rd pleasant stimuli and rewards, has been shown to prospectively predict the development of psychopathology. Yet,
Positive valence little is known about how reduced PVS activation emerges across development or what implications it has for
Development . . . . .

MR prevention. We review genetic, temperament, parenting, and naturalistic and laboratory stress research on
EEG neural measures of PVS and outline developmentally-informed models of trajectories of PVS activation. PVS
Stress function is partly heritable and appears to reflect individual differences in early-emerging temperament traits.

Although lab-induced stressors blunt PVS activation, effects of parenting and naturalistic stress on PVS are mixed
and depend on the type of stressor, developmental timing, and interactions amongst risk factors. We propose that
there may be multiple, dynamic developmental trajectories to reduced PVS activation in which combinations of
genes, temperament, and exposure to severe, prolonged, or uncontrollable stress may exert direct and interactive
effects on PVS function. Critically, these risk factors may alter PVS developmental trajectories and/or PVS
sensitivity to proximal stressors. Distinct factors may converge such that PVS activation proceeds along a typical,
accelerated, chronically low, or stress-reactive trajectory. Finally, we present directions for future research with

translational implications.

1. Positive valence systems (PVS) and mental and physical
health

In October 2012, Superstorm Sandy struck the coastal regions of New
York and New Jersey, with devastating consequences. Our group has
been following a cohort of children in the region as part of the Stony
Brook Temperament Study (Klein and Finsaas, 2017), and had the
unique ability to examine pre-existing vulnerabilities that predicted
responses to natural disaster-related stress. Although we anticipated that
heightened neural reactivity to threatening images, as measured by
event-related potentials (ERPs), would increase risk for psychiatric
symptoms, reduced neural reactivity to positively-valenced stimuli also
emerged as a unique predictor of the development of psychiatric
symptoms in combination with hurricane-related stress (Kujawa et al.,
2016). That is, children who showed reduced sustained attention to
pleasant images—assessed at the neural level—exhibited elevated
symptoms when exposed to an acute stressor.

* Corresponding author.

Indeed, growing evidence indicates that reduced activation of posi-
tive valence systems (PVS), including low positive emotionality and
reduced reward responsiveness, is a key predictor of both mental and
physical health problems (Danner et al., 2001; Keren et al., 2018;
Kujawa and Burkhouse, 2017; Salovey et al., 2000; Tugade et al., 2004).
PVS, a domain of the National Institute of Mental Health Research
Domain Criteria (RDoC), includes behavioral and physiological pro-
cesses involved in anticipating, obtaining, and responding to positive
stimuli and rewards (National Institute of Mental Health, 2019; Olino,
2016). Particularly relevant to the current review, reduced activation of
PVS predicts, and therefore may be a vulnerability for, some forms of
psychopathology, particularly depression (Keren et al., 2018; Kujawa
and Burkhouse, 2017). Reduced PVS function has been proposed both as
a mechanism of the development of psychiatric disorders (Hanson et al.,
2017b; Keren et al., 2018) and a moderator of the effects of stress and
other risk factors on the emergence of psychiatric symptoms (Corral-F-
rias et al., 2015; Dennison et al., 2016; Goldstein et al., 2019; Kujawa
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Table 5
Proximal Stress: Overview of studies of proximal stress and PVS function.
First Author, Predictor PVS Measure Sample Size (N) Sample Age Range or M PVS Finding Estimated
Year Gender (% (Years) Effect Size
Female) (]
Child and Adolescent Studies

Gaffrey, 2018 Frustration task BOLD response to 52 54 M=6.0(SD=0.7) Trend for association —
reward feedback between cortisol

response to stress and
striatum activation

Lincoln, 2019 Social rejection and BOLD response to 40 75 12-14 Post-stress | striatum to —

performance feedback reward feedback wins compared to pre-
stress
Adult Studies

Admon, 2013 Military service BOLD response to 24 50 18 Post-military service VS —
reward anticipation, to reward feedback
feedback predicted PTSD

symptoms

Banis, 2012 Noise stressor RewP to reward 32 0 18-28 Stress | RewP —
feedback

Banis, 2014 Noise stressor RewP to reward 61 61 18—40 Stress | RewP —
feedback

Banis, 2017 Aversive movie clips ERP response to 18 100 19-26 Stressor | anticipatory —
reward ERP

Berghorst, Threat of shock Probabilistic reward 100 100 18-25 Stress | reward learning =~ —

2013 learning

Bogdan, 2006 Threat of electric shock, Probability reward 80 100 18-25 Stress | reward learning .24

performance feedback learning

Bogdan, 2010 Threat of electric shock, Probabilistic reward 53 100 18-25 Stress | reward learning; —

iso/val polymorphisms of learning strongest effect for val
MR gene (NR3C2) carriers
Bogdan, 2011 Threat of electric shock, RewP during 75 100 18-25 Stress | RewP and —
CRHRI1 gene probabilistic reward reward learning;
learning interacted with CRHR1
Born, 2010 Impossible cognitive BOLD response to 9 100 18-28 Stress | striatum in —
challenge palatable food satiated vs. fasted
condition

Cavanagh, Social evaluation Probabilistic reward 50 52 18-25 Stress | reward learning =~ —

2011 learning for high BIS participants

Ethridge, Past-year peer RewP to reward 61 89 18-25 Recent peer .26

2018 victimization feedback victimization associated

with | RewP

Ethridge, Montreal Imaging Stress Delta and theta 100 0 18-34 Stress | delta magnitude .60

2020 Task frequency bands to but not theta magnitude
reward feedback
underlying RewP

Glienke, 2015 Socially-evaluated cold RewP in reward 40 0 Stress: M =23.1 Stress 1 RewP; no —

pressor task learning task (SD=2.7); difference in reward
Control: M =25.8 learning
(SD=3.4)

Kruse, 2018 Trier Social Stress Task BOLD response in 56 0 Stress: M = 23.5 Stress | striatum to cues .44
appetitive (SD=3.3); paired with reward vs.
conditioning task Control: M = 23.8 cues paired without

(SD=2.8) reward
Kumar, 2014 Negative performance BOLD response to 18 61 18-25 Stress | striatum to .56-.72
feedback reward anticipation, reward feedback and 1
feedback striatum during reward
anticipation

Lighthall, Cold pressor task Probabilistic reward 96 50 18-85 Stress 1 reward learning —

2013 learning

Morris, 2015 Social evaluation during Reward learning 75 100 18-47 Stress | reward learning .29

impossible cognitive task

Nikolova, Final exam stress, 5- Probabilistic reward 70 45 M=18.5 Stress | reward learning —

2012 HTTLPR/rs25531 learning (SD=0.5) only in participants with

genotype one S allele

Ossewaarde, Aversive movie clips BOLD response to 27 100 18-25 No effect of stress on —

2011 reward anticipation, striatum
feedback

Pizzagalli, Self-reported perceived Reward learning S1: 88, S1: 55, S2: S1: M=22.2 Stress | reward learning .26—.27

2007 stress (S1); threat of shock S2: 80 100 (SD =4.4); S2:

or negative performance M=21.6
(S2) (SD=2.3)

Porcelli, 2012 Cold pressor task BOLD response to 32 50 18-27 Stress | striatum .56—.62

reward feedback
88 100 — —

(continued on next page)
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Table 5 (continued)
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First Author, Predictor PVS Measure Sample Size (N) Sample Age Range or M PVS Finding Estimated
Year Gender (% (Years) Effect Size
Female) )
Treadway, Cognitive challenge and BOLD response, No main effect of stress
2017 social evaluation reward prediction on VS; increase in IL-6

error

van Leeuwen, Trier Social Stress Task BOLD response to

2019 reward anticipation, schizophrenia
feedback patients)
Wei, 2013 Exposure to earthquake BOLD response in 30
monetary donation
task

74 (36 siblings of 0

following stress
predicted | VS

Group means from Stress 1 striatum to —

32.6-35.4 reward feedback in
healthy controls only
47 19-25 Exposure to earthquake .37-43

VS

Note: BOLD = blood oxygen level dependent; CRHR1 = corticotropin releasing hormone receptor 1; ERP = event-related potential; IL-6 = Interleukin 6; PTSD = post-
traumatic stress disorder; RewP = reward positivity; S1 = Study 1; S2 = Study 2; VS = ventral striatum.

In addition to fMRI, individual differences in PVS activation are
reliably measured at the neurophysiological level using ERPs derived
from the electroencephalogram (EEG), which are characterized by high
temporal but limited spatial resolution and easily assessed across
development. Particularly relevant ERP components for assessing PVS
function include the reward positivity (RewP) and late positive potential
(LPP; see Fig. 1). Longitudinal evidence indicates that both RewP and
LPP are reliably elicited in response to reward feedback and pleasant
stimuli, respectively (Kujawa et al., 2018; Pegg et al., 2019). RewP,
which is thought to reflect reinforcement learning processes (Holroyd
and Coles, 2002), appears as a relative positivity in the ERP wave
approximately 300 ms after reward or positive feedback compared to
loss or neutral feedback. RewP is also referred to as a feedback nega-
tivity, which presents as a more negative deflection the ERP wave for
loss feedback compared to win feedback. In monetary reward tasks, this
component appears to be more accurately described as a positivity for
wins and is consistently identified across development (Kujawa et al.,

2018). Combined ERP-fMRI studies have linked RewP to activation in
reward-related brain regions including VS, vmPFC, midcingulate and
ACC (Becker et al., 2014; Carlson et al., 2011). LPP is a later, more
sustained positivity in the ERP wave beginning around 400 ms after
stimulus onset that indexes motivated attention towards salient infor-
mation and is enhanced in response to both pleasant and unpleasant
stimuli (Cuthbert et al., 2000). LPP is thought to primarily be generated
by activation of visual processing regions, but has also been linked to a
broad neural network including subcortical regions like the amygdala,
and cortical regions, such as OFC, insula, and mPFC (Liu et al., 2012;
Sabatinelli et al., 2013).

Reduced activation of VS/DS and reduced RewP and LPP in response
to reward and positively-valenced stimuli have consistently been linked
to depressive symptoms in both youth and adults. Critically, there is also
evidence that these neural indicators of PVS function are associated with
risk for depression (for reviews, Keren et al., 2018; Kujawa and Burk-
house, 2017; Proudfit et al., 2015). Reduced activation of VS and

a b. C.
275-375 ms 400-1000 ms
Monetary Gain vs. Loss Pleasant vs. Neutral Images
P oom— S
Loss ouv 5uv -0.25 pv 3uv
Cz/FCz s 01/02/0z

5

0
0

5
5

2 10

10 15

20
15

25

20 LPP
RewP 30
400 -200 O 200 400 600 800 1000 200 0 200 400 600 800 1000
y= 13 Time (ms) Time (ms)
Gain Pleasant Images
_ Loss __Neutral Images

Fig. 1. Examples of neural measures of PVS: a. Activation of ventromedial prefrontal cortex (vmPFC), ventral striatum (VS), and dorsal striatum (DS) in response to
monetary gain vs. loss feedback during an fMRI monetary incentive delay task. Dorsomedial prefrontal cortex (dmPFC) is marked for comparison, but is less robustly
activated to monetary reward feedback. b. Scalp distribution and event-related potential (ERP; negative up) depicting the reward positivity (RewP) in response to
monetary gain vs. loss feedback in a guessing task. c. Scalp distribution and ERP depicting the late positive potential (LPP) in response to pleasant images (e.g., cute

animals, children having fun) vs. neutral images.
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blunted RewP and LPP have been observed in youth at high risk for
depression due to parental history prior to the emergence of symptoms
(Kujawa et al., 2014a, 2012; Nelson et al., 2015; Olino et al., 2014;
Sharp et al., 2014). Moreover, each of these indicators of PVS function
have been shown to prospectively predict the development of psychi-
atric symptoms in children and adolescents, particularly in combination
with stress (Bress et al., 2013; Kujawa et al., 2019b, 2016; Morgan et al.,
2013; Nelson et al., 2016; Stringaris et al., 2015).

The current review focuses on how reduced PVS activation—pri-
marily as assessed by these measures—emerges across development. It is
important to note that in contrast to VS/DS and RewP/LPP, increased
activation of vmPFC and ACC to rewards has been associated with
depression, although less consistently (for reviews, Forbes and Dahl,
2012; Zhang et al., 2013). Interactions between the VS/DS and
vmPFC/ACC are likely key to shaping PVS function and depression risk
(Forbes and Dahl, 2012), but the role of broader PVS-related networks in
depression risk is less clearly defined than that of the striatum. For this
reason, our summaries of neuroimaging results in Tables 1-5 focus
primarily on results of studies testing activation of VS/DS, although we
also address evidence of associations between our predictors of interest
and other PVS-related regions, as well as behavioral measures.

3. Typical development of PVS across levels of analysis

Brain circuits underlying PVS undergo dramatic developmental
changes from childhood through adolescence and into adulthood,
although specific developmental trajectories differ across levels of
analysis and networks. Adolescence is characterized by increased acti-
vation of subcortical regions involved in emotional processing and
motivation, including the amygdala and striatum (Casey et al., 2016;
Galvan, 2013; Shulman et al., 2016), and strengthening of connections
between subcortical regions, which is thought to facilitate later refine-
ment of connections with cortical regions (Casey et al., 2016). Cortical
networks, including both medial and lateral prefrontal cortex (PFC), are
involved in cognitive control and self-regulation and continue to
develop and mature into adulthood (Shulman et al., 2016), with the
strengthening of connections between subcortical and cortical regions
facilitating top-down regulation of affective responses (Casey et al.,
2016). Consistent with this, there is evidence from animal and human
studies of peaks in dopamine function in adolescence compared to
childhood and adulthood (Telzer, 2016; Wahlstrom et al., 2010), and
meta-analytic evidence supports heightened activation of VS, DS, and
amygdala to rewards in adolescence compared to adulthood (Silverman
et al., 2015). This adolescent-specific peak in VS activation is also
observed when considering developmental changes from childhood to
adolescence and is most apparent in response to reward feedback
(Braams et al., 2015; Cohen et al., 2010; Ernst et al., 2005; Galvan et al.,
2006; Somerville et al., 2011; Van Leijenhorst et al., 2009). Although
some studies have also found support for increased activation of the
striatum during reward anticipation in middle or late adolescence (Geier
et al., 2010; Lamm et al., 2014; Van Leijenhorst et al., 2009), these
findings are more mixed than evidence for developmental change during
the feedback stage of processing (Shulman et al., 2016), and others have
found reduced striatal activation in adolescents compared to adults
during reward anticipation (Bjork, 2004; Bjork et al., 2010). Discrep-
ancies in the literature may be due in part to methodological differences,
a lack of specificity in describing regions and defining adolescence, and
a focus on chronological age rather than pubertal development (Galvan,
2010; Pfeifer and Allen, 2016). Critically, heightened reward respon-
siveness in adolescence is thought to underlie risky decision-making and
impulsivity, particularly in social and emotional contexts (Blakemore
and Robbins, 2012), but also play a key role in healthy social develop-
ment and adjustment, facilitating prosocial behavior and pursuit of goals
and activities (Crone and Dahl, 2012; Pfeifer and Allen, 2012; Telzer,
2016).

There is more limited evidence for a comparable developmental

Developmental Cognitive Neuroscience 43 (2020) 100791

trajectory of RewP and LPP. Several studies have failed to find signifi-
cant developmental changes in RewP from childhood to adolescence or
adolescence to adulthood (Kujawa et al., 2018; Lukie et al., 2014; San-
tesso et al., 2011), although others have found evidence of a relatively
enhanced (Hammerer et al., 2011) or reduced (Kujawa et al., 2019a;
Zottoli and Grose-Fifer, 2012) RewP in adolescents compared to younger
children or adults. Variability in timing of assessments and
cross-sectional vs. longitudinal designs may contribute to mixed results.
Consistent with this possibility, a recent longitudinal study of a large
sample of 8- to 14-year-olds found an increase in RewP magnitude from
late childhood to early adolescence but not into later adolescence
(Burani et al., 2019). Several studies have examined developmental
change in LPP to happy faces or pleasant images. There is some evidence
that the magnitude of LPP decreased from childhood to adolescence,
although similar patterns have been observed across emotional and
neutral stimuli (Kujawa et al., 2013; MacNamara et al., 2016). Devel-
opmental changes in LPP may be best characterized by shifts in the scalp
topography of responses from more occipital distributions in childhood
to centroparietal into adolescence and adulthood, rather than increasing
or decreasing activation of PVS specifically (Pegg et al., 2019). RewP
and LPP reflect electrophysiological responses in broad neural networks
(e.g., Becker et al., 2014; Liu et al., 2012), which may include regions
with distinct developmental trajectories. Compared to neuroimaging
measures with high spatial resolution, ERP measures of PVS function
may be less sensitive to distinct developmental trajectories of specific
brain regions and potentially more stable across development.

Most studies of the development of PVS function rely on chrono-
logical age, with limited precision for defining specific windows.
Further, youth of the same age vary considerably in pubertal develop-
ment, which may partly account for mixed findings concerning devel-
opmental change (Pfeifer and Allen, 2016). There is considerable
evidence from animal studies that dopamine systems are sensitive to
circulating gonadal hormones (Caldti and Dreher, 2007), and a review of
the literature on pubertal development and brain function in humans
supported the possibility that hormonal changes correspond with in-
creases in activation of PVS-related brain systems, although effects of
pubertal stage are less consistent (Vijayakumar et al., 2018). Heightened
PVS function in adolescence is likely driven in part by increases in
testosterone and estradiol during this period (Braams et al., 2015; Op de
Macks et al., 2017; Op De Macks et al., 2011). Although similar patterns
have been observed in both boys and girls (Op De Macks et al., 2011),
there is also evidence of sex differences in associations between testos-
terone level and activation of the striatum during reward anticipation.
For example, one study found that higher levels of testosterone were
related to increased DS response during reward anticipation in boys,
with the inverse observed in girls (Forbes et al., 2010).

In considering the development of PVS function, it is crucial to also
consider context and variability across reward domains. Heightened
reward responsiveness in adolescence is thought to depend heavily on
the context and is particularly apparent in social or emotional situations
(Blakemore and Robbins, 2012; Crone and Dahl, 2012; Telzer, 2016).
Consistent with this, adolescents exhibit more of a preference for im-
mediate rewards when with peers vs. alone (O’Brien et al., 2011) and
enhanced activation of VS during a driving simulation task when
observed by peers vs. alone (Chein et al., 2011). Reward responsiveness
has also been shown to be heightened as a function of perceived control
over outcomes (Miihlberger et al., 2017). Further, adolescence is
thought to be a time of change in social reward systems, particularly
increasing salience and importance of peer relationships (Crone and
Dahl, 2012; Davey et al., 2008; Silk et al., 2012). Most research on
reward-related brain function across development relies on monetary
reward tasks, but predictors and trajectories of PVS function may vary
depending on the reward domain. Comparable networks are thought to
underlie responses to social rewards, like peer acceptance (e.g., Ethridge
et al., 2017; Olino et al., 2015), but little research to date has examined
developmental trajectories and predictors of neural responses to social
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reward specifically.
4. Developmental contributions to reduced activation of PVS
4.1. Genetics

Although self-report and behavioral measures of constructs related to
PVS, such as extraversion and positive emotionality, appear to be at least
moderately heritable (Borkenau et al., 2001; Pedersen et al., 1988), only
a handful of family and twin studies have examined familial aggregation
and genetic influence of neural measures of PVS (Hess et al., 2016).
Importantly, the heritability of positive emotionality/extraversion
changes over development. There appears to be minimal genetic influ-
ence in infancy (Planalp et al., 2017), with increasing heritability
through age 30, and then declining effects through the rest of the life-
span (Kandler, 2012). The heritability of neural indicators of PVS
function may also change across development, but this possibility has
yet to be examined.

Twin and family studies support the possibility that PVS function at
the neural level is modestly to moderately heritable. For example, one
study of adolescent monozygotic twin pairs found correlations between
twins in activation of VS/DS to reward (Silverman et al., 2014), but
could not separate genetic from environmental effects. One ERP study
indicated that RewP was moderately correlated between pairs of siblings
(Weinberg et al., 2015a). A similar pattern was observed with an asso-
ciation between RewP in fathers and RewP in children, although RewP
in mothers and children were negatively correlated (Moser et al., 2018).
Only one study has compared mono- and dizygotic twins on a neural
measure of PVS functioning, reporting that sustained attention to
pleasant images, as indicated by LPP, exhibited moderate heritability
(Weinberg et al., 2015b). Consistent with evidence at the neural level,
one study indicated that performance-based reward learning was
moderately heritable in a sample of 35 twin pairs (Bogdan and Pizza-
galli, 2009).

A larger literature has examined effects of genes on PVS function
(Hess et al., 2016), primarily using candidate gene approaches, which
are often underpowered, susceptible to false positive findings, and
ignore genes that are not assumed on a priori grounds to be associated
with PVS (Flint and Kendler, 2014; Hess et al., 2016). Genome-wide
association studies (GWAS) have replaced the candidate gene
approach as an unbiased strategy for identifying links between gene
variants and phenotypes. GWAS indicate that, for most traits, single
genes account for very small amounts of variance. For example, a
meta-analysis of GWAS of self-reported extraversion identified just one
significant single nucleotide polymorphism with a sample of over 63,
000 participants (Van den Berg et al., 2016). We are aware of only one
study that has applied GWAS to a neural measure of PVS. A region on the
vacuolar protein sorting-associated protein 4A (VPS4A) gene, which
encodes an ATPase involved in trafficking of G protein-coupled re-
ceptors including dopamine receptors, was associated with decreased
VS/DS activation during reward anticipation (Jia et al., 2016). In
another GWAS study, an association of self-reported positive emotion-
ality with a single-nucleotide polymorphism at rs322931 on chromo-
some 1 emerged, and the minor allele was subsequently associated with
greater VS activation to positive stimuli (Wingo et al., 2017). However,
in a replication and extension, the minor allele was associated with
reduced VS activation in response to pleasant images, but increased VS
activation to rewards (Lancaster et al., 2017).

Although a number of candidate genes have been tested for a po-
tential role in PVS, the largest literature is on dopamine-related genes,
which we focus on in this review. Although some relatively consistent
findings emerge across these studies, most studies are limited to rela-
tively small samples of adults (as small as 16, with only a few studies of
100 or more participants, see Table 1 for details). Several studies of the
dopamine transporter (DAT) gene DAT1 have reported links with neural
measures of PVS (Aarts et al., 2010; Dreher et al., 2009; Forbes et al.,
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2009; Heitland et al., 2012; Wittmann et al., 2013). Most of these studies
have found evidence of enhanced PVS function in those with the 9-repeat
allele (Aarts et al., 2010; Dreher et al., 2009; Forbes et al., 2009; Heit-
land et al., 2012), although one study found enhanced VS activation in
10-repeat homozygotes (Wittmann et al., 2013). Some studies have
failed to find main effects of DAT1 on VS/DS activation or RewP
(Boecker-Schlier et al., 2016; Dillon et al., 2010), and others found ef-
fects only in interaction with other genes (Yacubian et al., 2007) or
self-reported reward sensitivity (Hahn et al., 2011).

There is also relatively consistent evidence of associations between
the dopamine receptor DRD2 gene and activation of VS/DS to rewards
(Cohen et al., 2005; Felsted et al., 2010; Forbes et al., 2009; Richter
et al., 2017), with some exceptions (Pecina et al., 2013). Two studies
indicated that the presence of the TaqlA Al allele is associated with
reduced PVS function, including reduced VS activation (Cohen et al.,
2005; Felsted et al., 2010). Another study found links between the
TaqlA A1l allele and better performance on a recognition memory
following an incentive task, but only the ¢957 T polymorphism was
related to activation of reward-related brain regions during the reward
task (Richter et al., 2017). Finally one DRD2 study focused on the -141C
deletion polymorphism, showing greater VS activation to rewards in
adults with this polymorphism (Forbes et al., 2009). Thus, despite
relatively consistent links between variants of the DRD2 gene and in-
dicators of PVS, associations with specific alleles or polymorphisms vary
across studies.

Several studies have also found associations between the catechol-O-
methyltransferase (COMT) polymorphism and indicators of PVS,
including activation of VS or DS and RewP (Camara et al., 2010; Dreher
et al., 2009; Foti and Hajcak, 2012; Marco-Pallarés et al., 2009; Schmack
et al., 2008; Yacubian et al., 2007), and another study found an inter-
action between COMT and the substance sulpiride, which increases
dopamine release (Mueller et al., 2014a). Most studies support associ-
ations between the Met allele and greater PVS function (Dreher et al.,
2009; Foti and Hajcak, 2012; Schmack et al., 2008; Yacubian et al.,
2007). Two studies found evidence of enhanced PVS function in those
with the Val allele, but these effects were primarily driven by responses
to loss (Camara et al., 2010; Marco-Pallarés et al., 2009). Others have
failed to find significant effects of COMT on VS/DS activation or RewP
(Aarts et al., 2010; Baker et al., 2016; Dillon et al., 2010; Forbes et al.,
2009; Heitland et al., 2012). One study simultaneously recorded fMRI
and ERP, and did not find main effects of COMT on VS activation or the
RewP (Boecker-Schlier et al., 2016). Interestingly, however, a history of
early family adversity was positively associated with VS activation to
reward feedback in those with the Met/Met genotype (Boecker-Schlier
et al., 2016).

Finally, although one study observed an association between the 7-
repeat allele of DRD4 and greater VS activation (Forbes et al., 2009),
most have not documented links between DRD4 and VS activation or
ERP measures of PVS function (Baker et al., 2016; Boecker-Schlier et al.,
2016; Camara et al., 2010; Marco-Pallarés et al., 2009).

Although dopamine genes appear to be most consistently related to
activation of the striatum in reward tasks, some fMRI studies have found
associations between candidate genes involved in dopamine function
and activation of other PVS-related brain regions. For example, the
DRD2 Al allele has been associated with reduced activation of OFC and
amygdala to rewards (Cohen et al., 2005; Felsted et al., 2010). Further,
the Val allele of COMT has been linked to greater relative activation of
mPFC to large unexpected rewards compared to losses (Camara et al.,
2010).

Although effects of single genes on PVS function are likely to be small
in magnitude, associations may increase in magnitude as a function of
the number of susceptibility genes an individual possesses. One study
found a positive association between a composite score of the DAT1 9-
repeat allele and COMT Met allele and DS activation to rewards (Dil-
lon et al.,, 2010). Two studies examined multilocus composites of
DA-related SNPs and associations with PVS function (Nikolova et al.,
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2011; Stice et al., 2012). Results were relatively consistent across these
two studies, although there were some notable distinctions in coding of
composite scores. Specifically, Nikolova et al. (2011) tested a composite
linked to high dopamine signaling (DAT 9-repeat, DRD4 7-repeat,
DRD2-141C deletion, TaqlA A2, and COMT Met), while Stice et al.
(2012) tested a composite linked to low dopamine signaling (TaqIA A1,
DRD2 -141C Ins/Ins, DRD4 7-repeat or longer, DAT 10-repeat, and
COMT Met), with DRD4 and COMT coded in opposite directions across
these two studies. Although effects for individual single-nucleotide
polymorphisms were generally non-significant in both studies, com-
posite genetic measures were significantly associated with VS or DS
response to reward, such that composites associated with low dopamine
signaling were related to lower PVS activation (Nikolova et al., 2011;
Stice et al., 2012).

Overall, it appears that neural measures of PVS function are
moderately heritable, but few genetically-informative behavior genetic
studies and GWAS are available. Although there is evidence of associa-
tions between several candidate genes, particularly DAT, DRD2, and
COMT, as well as multilocus composites for dopamine signaling, it is
critical that future work goes beyond candidate gene studies by con-
ducting well-designed twin and adoption studies and adequately pow-
ered GWAS analyses of neural measures of PVS function across
development.

4.2. Temperament

Temperament refers to early-emerging dispositions that are partly
biogenetic in origin and become more complex and elaborated with
development, influencing cognitive and interpersonal styles (Caspi and
Shiner, 2006). We conceptualize temperament traits as influencing
subsequent neural reactivity to reward and appetitive stimuli, which
then in turn shape vulnerability for psychopathology. However, the
association between temperament and PVS function at the neural level is
likely complex and bidirectional. To some degree, traits manifested
through behavior and self-report may reflect similar phenomena to
neural measures, viewed at different levels of analysis.

All prominent models of temperament and personality include a PVS-
relevant trait dimension such as extraversion or positive emotionality
(Caspi and Shiner, 2006) that exhibits impressive continuity from early
childhood through adulthood (Roberts and DelVecchio, 2000) and is
particularly relevant when considering developmental trajectories of
PVS function and is the focus of our review. Although a few studies have
examined behavioral observations of temperament in early childhood,
most studies testing associations between extraversion or positive
emotionality and neural measures of PVS rely on self-report measures in
adults. We focus on the traits of extraversion and positive emotionality,
which have a very high degree of conceptual and empirical overlap
(Watson et al., 2006), but also review studies of self-reported behavioral
activation system (BAS) and reward sensitivity, which are conceptually
and empirically related to extraversion and positive emotionality
(Carver and White, 1994; Torrubia et al., 2001). However, unlike a
previous review (Hess et al., 2016), we do not include Cloninger’s
temperament model, as his reward dependence and novelty seeking
scales do not show good convergent and discriminant associations with
other widely-used measures of extraversion and positive emotionality
(De Fruyt et al., 2000).

Our review of the literature identified five fMRI studies that exam-
ined the relationship of positive emotionality-related constructs with VS
activation to reward in adults. As predicted, lower self-reported extra-
version/positive emotionality and reward sensitivity is associated with
reduced VS activity during reward anticipation (Hahn et al., 2011; Wu
et al., 2014) and to reward feedback (Cohen et al., 2005; Simon et al.,
2010). One fMRI study examined conditioning to images reinforced by
monetary reward, and did not find an association between extraversion
and appetitive conditioning in VS but did observe positive associations
with activation of hippocampus and thalamus (Schweckendiek et al.,
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2016). Extending beyond the striatum, there is also evidence of positive
associations between extraversion and medial OFC and amygdala acti-
vation to reward feedback (Cohen et al., 2005; Simon et al., 2010).

With regard to ERPs to reward, lower self-reported extraversion and
BAS has been associated with reduced RewP in adult samples (Cooper
et al., 2014; Lange et al., 2012; Mueller et al., 2014b; Smillie et al.,
2011). In the longitudinal Stony Brook Temperament Study, we
observed that lower positive emotionality in preschoolers modestly
predicted reduced RewP in later childhood (Kujawa et al., 2015a).
Interestingly, self-reported positive emotionality —was also
cross-sectionally associated with RewP in later childhood, although
observed and self-reported positive emotionality were not associated
with each other. Finally, a study of adolescent girls reported that
neuroticism moderated the association between positive emotionality
and RewP, with positive emotionality positively associated with RewP,
but only at lower levels of neuroticism (Speed et al., 2018). Findings of
links between individual differences in positive emotionality, extraver-
sion, and BAS with PVS function at the neural level are complemented
by a behavioral study indicating that lower BAS scores predicted lower
effort to obtain reward in a low probability of reward condition (Geaney
et al., 2015).

Despite relatively consistent evidence of effects of positive
emotionality-related constructs on brain function in the context of
monetary reward, studies of VS activation to other appetitive stimuli
provide less compelling support. Two small fMRI studies reported that
extraversion or BAS were positively associated with VS activation to
appetitive stimuli (Beaver, 2006; Canli et al., 2001), but others failed to
find significant associations between positive emotionality-related
constructs and VS activity to pleasant stimuli (Kehoe et al., 2012;
Mobbs et al., 2005; Rapp et al., 2008; Suslow et al., 2010), and two
studies reported inverse associations between extraversion and VS
reactivity to amusing films (Hutcherson et al., 2008) and chocolate
(Schaefer et al., 2011). Several studies have reported correlations be-
tween extraversion and activation of other PVS-related brain regions,
including increased activation in ventral portions of ACC to positive
words (Haas et al., 2006) and increased ventrolateral PFC and right OFC
activation to humorous cartoons (Mobbs et al., 2005).

At the neurophysiological level, fairly consistent evidence emerges
for associations between positive emotionality and related constructs
and processing of appetitive images. In a sample of young adults, posi-
tive emotionality was correlated with LPP to rewarding images (Wein-
berg and Sandre, 2018). Across development, extraversion in adolescent
girls was positively correlated with LPP to both positive and negative
images (Speed et al., 2015), and laboratory observations of positive
emotionality in 6-year-olds predicted an enhanced LPP to pleasant im-
ages in later childhood (Kessel et al., 2017).

Although positive emotionality-related traits have the strongest
conceptual links to neural indicators of PVS function, there is a smaller
literature linking negative emotionality and behavioral inhibition,
characterized by wariness in novel situations, to heightened PVS function
(Bar-Haim et al., 2009; Guyer et al., 2006; Lahat et al., 2018; Schaefer
et al., 2011), with one study indicating that individual differences in
neuroticism moderated the effects of positive emotionality on RewP to
rewards in adolescent girl (Speed et al., 2018).

In summary, there is consistent evidence of an association between
positive emotionality-related traits and sensitivity to reward feedback in
fMRI and ERP, although results for reward anticipation are less consis-
tent. Findings of ERP studies indexing attention to appetitive stimuli also
support a relationship with extraversion/positive emotionality, but
studies using fMRI are predominantly negative. Positive emotionality-
related traits may be specifically associated with reward responsive-
ness subconstructs of PVS. This literature is limited primarily to cross-
sectional studies of adults, making it difficult to draw conclusions
about the direction and development of these associations. Two studies
using observational measures of temperament in young children have
shown that positive emotionality predicts neural measures of PVS
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function later in development (Kessel et al., 2017; Kujawa et al., 2015a),
which provide the strongest support for the role of temperamental
emotionality in shaping neural indicators of PVS function across
development.

4.3. Parenting

In addition to genetics and temperament, developmental trajectories
of PVS function are likely influenced by early experiences, including
variability in parenting style and behaviors. Low positive parenting,
including lack of support, warmth, and structure, is one possible factor
contributing to low PVS function. Consistent with this, in one fMRI
study, adolescent girls of mothers low in affiliation showed decreased VS
activation to reward feedback (Schneider et al., 2012). However, two
other fMRI studies found increased activation of VS or DS during reward
anticipation in adolescents and adults experiencing insecure attachment
styles and low parental warmth in early life (Casement et al., 2014;
Quevedo et al., 2017).

Although more limited, there is some evidence that negative
parenting behaviors may also shape PVS function. One study found that
greater maternal negative affect during a mother-adolescent interaction
task predicted reduced VS activation to social reward in adolescents
(Tan et al., 2014). On the other hand, at the neurophysiological level,
there is evidence of specificity for low positive parenting rather than
negative parenting in predicting RewP (Kujawa et al., 2015b), which is
consistent with experimental work indicating that parental presence and
encouragement enhances RewP in young children compared to
completing a task alone (Kawamoto and Hiraki, 2018).

Other fMRI studies have identified effects of parenting on VS con-
nectivity and broader reward-related brain networks, rather than acti-
vation of VS or DS. For example, in a longitudinal study, observed
maternal hostility in early childhood predicted decreased VS connec-
tivity with ventrolateral PFC during a reward task later in childhood
(Kopala-Sibley et al., 2020). A second study indicated that maternal
rumination and disengagement interacted to predict decreased ventral
ACC response, but not VS activation, to reward feedback in adult
offspring (Morgan et al., 2017).

Specific effects of parenting on PVS activation likely depend on in-
teractions with genetic predispositions (e.g., Richards et al., 2016),
other risk factors, and developmental timing. Consistent with this, ef-
fects of parenting style on PVS measures have been shown to be
moderated by offspring temperament (Acevedo et al., 2017) and expo-
sure to proximal and acute stressors (Kessel et al., 2019). In addition,
effects may be strongest among those at high risk for depression or other
forms of psychopathology. A longitudinal study showed that low posi-
tive parenting in early childhood predicted a blunted RewP in later
childhood only among offspring of parents with a history of depression
(Kujawa et al., 2015b). Similar patterns were observed in a longitudinal
fMRI study of young men from low-income families, though effects
depended on developmental timing. Lower maternal warmth experi-
enced in very early childhood predicted greater VS response during
reward processing in offspring of depressed mothers, but lower maternal
warmth in early adolescence predicted reduced VS activation (Morgan
et al., 2014). Effects may also differ depending on stage of reward pro-
cessing. For example, a recent study of young adults followed since birth
indicated that among those with a family history of psychiatric disor-
ders, greater maternal stimulation of offspring in infancy predicted
increased DS activation during reward anticipation but decreased acti-
vation during reward feedback (Holz et al., 2018).

Taken together, there is evidence to support associations between
parenting and PVS activation. However, directions of results vary across
studies and depend on interactions with other risk factors, particularly
family history of psychopathology, and developmental timing. Given
evidence of genetic contributions to PVS function, associations between
parenting and PVS function may reflect both heritable affective styles
and aspects of the home environment.
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4.4. Stress

Stress is often considered to be a key contributor to reduced PVS
function, with effects thought to be mediated by elevated inflammatory
cytokines and alterations in dopamine function (for reviews, Nusslock
and Miller, 2015; Pizzagalli, 2014). Indeed, a relatively large literature
has examined associations between naturalistic and lab-induced stress
on PVS. Although it is clear that stress can have profound effects on PVS
function, the direction of effects varies across studies, likely as a function
of the type of stressor, developmental timing, and measure of PVS. Here,
we evaluate the evidence for effects of stress on PVS function, reviewing
research on effects of stress early in life, as well as associations between
proximal stressors and PVS activation in adolescents and adults.

4.4.1. Early life stress

We found five studies that presented evidence that childhood
adversity and stress predict reduced activation of VS or DS to reward
anticipation or feedback in adolescence or adulthood (Boecker-Schlier
et al., 2016; Dillon et al., 2009; Hanson et al., 2016, 2015; Mehta et al.,
2010), and one study with evidence of a general reduction in VS acti-
vation to faces among adolescents exposed to early adversity (Goff et al.,
2013). At the same time, others have indicated that early life stress
predicts increased activation of the striatum to rewards (Dennison et al.,
2016; Gonzalez et al., 2016; Kamkar et al., 2017). Patterns of blunted
VS/DS activation more consistently emerge among adolescents and
adults exposed to severe and prolonged childhood adversity, including
institutionalization, emotional neglect, and maltreatment (Dillon et al.,
2009; Hanson et al., 2015; Mehta et al., 2010), although there are ex-
ceptions (e.g., Dennison et al., 2016). Similar patterns also emerge for
cumulative life stress (e.g., moves, deaths, parental divorce) assessed
repeatedly across development (Boecker-Schlier et al., 2016; Hanson
et al., 2016), which may more sensitively detect level of total stress
exposure. On the other hand, less direct or severe stress, including lower
neighborhood quality and normative experiences assessed at a single
time point, have been shown to predict increased activation of VS during
reward anticipation in adulthood (Gonzalez et al., 2016; Kamkar et al.,
2017).

We also found five studies that failed to find effects of cumulative life
events, peer victimization earlier in life, and poverty in childhood or
adolescence on later VS/DS activation to reward, but observed associ-
ations with other PVS-related brain regions (Birn et al., 2017; Casement
etal., 2015, 2014; Romens et al., 2015). Several studies have implicated
alterations in mPFC activation to reward anticipation following stress
exposure (Casement et al., 2014, 2015; Romens et al., 2015), although
the direction of associations between stress and mPFC activation varies,
potentially due to the specific type of stress. Beyond activation, func-
tional connectivity studies have the potential to inform understanding of
the effects of stress on reward networks. In a large sample of young
adults, the combination of self-reported childhood maltreatment and
recent life stress predicted increased VS-mPFC connectivity to reward
(Hanson et al., 2017a).

At the neurophysiological level, one study indicated that family
adversity in childhood predicted a blunted ERP in anticipation of reward
(i.e., contingent negative variation [CNV]) in adulthood but had no
significant effect on RewP (Boecker-Schlier et al., 2016). At the behav-
ioral level, childhood exposure to maltreatment or food insecurity has
been shown to predict poorer performance on reward tasks (Dennison
et al., 2017; Hanson et al., 2017b), but one study indicated that greater
normative childhood stress predicted enhanced reward learning in late
childhood (Kamkar et al., 2017). Deficits in reward learning may emerge
only in response to more severe, prolonged, or uncontrollable early life
experiences. Further, specific manifestations of stress exposure may
depend both on the developmental timing of exposure and the window
in which PVS is assessed.

Taken together, evidence across levels of analysis indicates that
exposure to stress in early childhood alters development of PVS
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function, but the directions of effects are inconsistent and likely depend
on the type of exposure. Consistent with this, animal models indicate
that prolonged and uncontrollable stress inhibits dopamine function and
reward behavior (Cabib and Puglisi-Allegra, 1996; Pizzagalli, 2014). In
addition to chronicity and type of stress, there is support for effects of
developmental timing of stress, with some evidence that exposure to
stress in childhood may have stronger effects on PVS function than stress
experienced later in life (Boecker-Schlier et al., 2016; Hanson et al.,
2015). It is possible that stress exposure in adolescence may have
stronger effects on cortical regions involved in regulation of emotional
responses, as well as connectivity between cortical and subcortical re-
gions, due to the timing of development of these networks (Casey et al.,
2016; Spear, 2000).

4.4.2. Proximal stress

In contrast to the mixed findings for early life stress, a relatively
robust and consistent literature has demonstrated a blunting effect of
laboratory-induced stress (typically uncontrollable) on PVS function in
adults. Laboratory studies have employed psychosocial stressors
including social evaluation (Cavanagh et al., 2011; Kumar et al., 2014;
Morris and Rottenberg, 2015; Treadway et al., 2017), noxious stimuli
(Banis et al., 2014; Banis and Lorist, 2017, 2012; Ossewaarde et al.,
2011), and painful stimuli (Berghorst et al., 2013; Bogdan et al., 2010;
Bogdan and Pizzagalli, 2006; Lighthall et al., 2013; Porcelli et al., 2012).
Neuroimaging studies largely find decreased VS or DS activation to
reward feedback after acute stress (Born et al., 2010; Kumar et al., 2014;
Lincoln et al., 2019; Porcelli et al., 2012; but also see van Leeuwen et al.,
2019), but results may differ at other stages of processing. For example,
one study of 18 adults showed that stress led to deactivation of the DS to
reward feedback, but enhanced activation during reward anticipation
(Kumar et al., 2014). In another study of adult men using a reward
conditioning paradigm, laboratory stress was associated with less of a
difference in activation of the DS to reward compared to no-reward cues
(Kruse et al., 2018). In addition to effects on VS/DS activation, acute
stress has been associated with differential activation of the OFC to re-
wards, with two studies finding reduced activation of OFC to rewards
following stress (Born et al., 2010; Porcelli et al., 2012) and one study
finding increased activation of OFC to rewards after stress (van Leeuwen
et al., 2019).

The majority of laboratory stress studies examining ERP and
behavioral measures find evidence of a blunted RewP following stress
(Banis et al., 2014; Banis and Lorist, 2012; Bogdan et al., 2011; Ethridge
et al., 2020), as well as a reduced CNV ERP during reward anticipation
(Banis and Lorist, 2017) and reward learning impairments (Berghorst
et al., 2013; Bogdan et al., 2011, 2010; Bogdan and Pizzagalli, 2006;
Cavanagh et al., 2011; Morris and Rottenberg, 2015), although two
studies found opposite effects (Glienke et al., 2015; Lighthall et al.,
2013).

Patterns of reduced PVS function have also been observed following
proximal naturalistic stressors, rather than laboratory stressors. For
example, recent perceived stress, military service, peer victimization,
and academic stress have been associated with decreased activation of
VS or RewP to rewards (Admon et al., 2013; Ethridge et al., 2018; Wei
et al., 2013) and impaired reward learning (Nikolova et al., 2012; Piz-
zagalli et al., 2007).

Critically, there are individual differences in the extent to which PVS
function fluctuates in response to proximal stress. For example, a recent
study of 4- to 6-year-old children indicated that greater cortisol re-
sponses to a laboratory stressor predicted reduced amygdala reactivity
during a reward task administered at a separate assessment, although
associations with activation of VS/DS did not reach significance (Gaffrey
et al., 2018). Similarly, reduced reward sensitivity at the behavioral
level was observed only among adults exposed to stress who were also
considered high stress responders due to the magnitude of their cortisol
responses (Berghorst et al., 2013).

The extant literature examining the effects of acute laboratory and
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proximal naturalistic stress supports the idea that proximal stress can
induce at least a temporary reduction in PVS functioning in adolescents
and adults. Importantly, despite the relative consistency of these effects,
there is also evidence of moderators of the effects of proximal stress on
PVS activation, including sex differences, genes, personality, and early
life experiences (Bogdan et al., 2011, 2010; Cavanagh et al., 2011;
Kessel et al., 2019; Nikolova et al., 2012), suggesting that there are in-
dividual differences in the extent to which PVS activation fluctuates as a
result of proximal stress. It remains largely unexamined the extent to
which reductions in PVS function following an acute stressor persist
across time or whether individual differences in degree of change in PVS
function in response to stress predicts psychiatric symptoms over and
above a single PVS assessment.

5. Developmental trajectories of PVS function

Integrating developmental, genetic, temperament, parenting, and
stress research, it becomes clear that developmental trajectories to
reduced activation of PVS are complex, dynamic, and shaped by a
number of biological and environmental factors. Although the literature
reviewed suggests a range of contributors to PVS development, a close
examination of the evidence reveals that effect sizes of single variables
tend to be modest to moderate in magnitude and directions of associa-
tions can be inconsistent (see Tables 1-5). While large effect sizes are
observed at times, these may be overestimates due to small samples
(Button et al., 2013) or biases in selections of voxels and thresholding
procedures (Vul et al., 2009). Indeed, as outlined in detail in Tables 1-5,
sample sizes varied considerably across studies, with many studies
relying on fewer than 20 participants. Importantly, sample sizes tend to
be larger for more recent studies, indicating that more accurate esti-
mates of effect size will continue to emerge.

Early-emerging genetic factors and biobehavioral temperament
traits have the potential to exert both main and interactive effects in
combination with environmental experiences to shape styles of pro-
cessing and responding to positive reinforcers, alterations in which then
increase vulnerability for depression and other disorders (Admon et al.,
2013; Corral-Frias et al., 2015; Keren et al., 2018; Kujawa and Burk-
house, 2017). The evidence to date indicates there is not one single
mechanistic pathway to reduced PVS activation. Instead, inconsistent
findings emerge for even the most commonly implicated factors, like
early life stress, highlighting the need for a more nuanced perspective of
the emergence of PVS function considering multiple potential develop-
mental trajectories.

Although research in young children is limited, tendencies toward
reduced activation of PVS may emerge early in life as a function of ge-
netic predispositions and biobehavioral traits such as low extraversion/
positive emotionality. Indeed, there is fairly consistent evidence linking
genetics and temperament to neural measures of PVS, although candi-
date gene approaches have limitations and must be interpreted
cautiously. These early-emerging tendencies may be further exacerbated
among children exposed to stress, particularly severe, prolonged, or
uncontrollable stress (Boecker-Schlier et al., 2016; Dillon et al., 2009;
Hanson et al., 2016, 2015; Mehta et al., 2010), and to parenting styles
that are low in warmth and structure (Acevedo et al., 2017; Kujawa
et al., 2015b; Morgan et al., 2014; Schneider et al., 2012). However, the
specific effects of parenting style and stress on PVS function vary
dramatically depending on types of experiences, developmental timing,
and interactions with other variables.

It is clear from the current review that a range of factors have the
potential to alter PVS function. It is less clear exactly how genes,
temperament, parenting and stress affect the course of PVS development,
and we propose three possibilities for atypical developmental trajec-
tories of PVS function. That is, it is possible that individuals who exhibit
relatively reduced PVS function at a single time point may actually be
characterized by distinct developmental trajectories, which could partly
account for inconsistencies in the literature reviewed above.
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5.1. Chronically low PVS function

First, early-emerging factors may trigger a chronically low trajectory
of PVS function (Fig. 2). Youth on this trajectory may experience a
developmental increase in PVS function in adolescence (at least at some
levels of analysis), but continue to show relatively reduced PVS func-
tioning compared to those with typical developmental trajectories of
PVS. A chronically low trajectory may be most apparent among those
with early-emerging risk factors, including genetic predispositions,
temperamental low positive emotionality, and low positive parenting in
early childhood (Kessel et al., 2017; Kujawa et al., 2015b, 2015a). Few
studies have examined neural indicators of PVS function in early
childhood, but there is some evidence that reduced activation can
emerge prior to adolescence (Belden et al., 2016; Kujawa et al., 2015b;
Luking et al., 2016), raising the possibility that at least for a subset of
people, chronically low PVS function may appear early in childhood and
persist across development.

«= @ Typical Trajectory
@ Chronically Low Trajectory

PVS Activation

Early Childhood  Childhood Adolescence Young Adulthood Adulthood

«= == Typical Trajectory
e Accelerated Trajectory

PVS Activation

a

Adolescence  Young Adulthood Adulthood'

Early Childhood  Childhood

e == Typical Trajectory
e Stress Reactive Trajectory

PVS Activation

y

Early Childhood  Childhood Adolescence  Young Adulthood Adulthood'

Fig. 2. Models depicting three potential developmental trajectories leading to
relatively reduced PVS activation: a. chronically low, b. accelerated, and c.
stress reactive.

14

Developmental Cognitive Neuroscience 43 (2020) 100791
5.2. Accelerated development of PVS function

For others, adverse experiences early in life may alter the trajectory
of PVS function (Fig. 2). Accelerated development theories posit that
maturation of the brain may be evolutionarily adaptive for youth in
particularly adverse environments, allowing them to reach adult-like
brain function at an earlier age (Callaghan and Tottenham, 2016;
Tyborowska et al., 2018). As such, youth exposed to particularly severe,
chronic, and/or uncontrollable stress may show a relative increase in
PVS function in childhood, similar to the developmental increase
commonly observed in adolescence, but shift to relatively reduced
activation in adolescence and adulthood. Consistent with this trajectory,
increased VS activation and reward learning was observed in children
exposed to stress (Kamkar et al., 2017), suggesting the possibility that
they exhibit more adolescent-like patterns of brain activation. In addi-
tion, young adolescents exposed to emotional neglect showed less of a
developmental increase in VS activation across two years (Hanson et al.,
2015), possibly because the experience of emotional neglect led to an
earlier peak in PVS function.

5.3. Stress reactive PVS function

Finally, rather than the sustained trajectory of PVS function, genetic
factors, temperament, and early experiences may shape the extent to
which PVS activation fluctuates as a result of proximal stress (Fig. 2).
Among the most consistent evidence for contributors to low PVS func-
tion is the effect of laboratory stress on reductions in PVS function. That
is, in addition to sustained developmental change, PVS appears sensitive
to stress and daily life experiences throughout adulthood, but stress may
not always have large or lasting effects on PVS function. Instead, there
are likely individual differences in how reactive PVS function is to stress.
Studies in both young children and adults have indicated that those who
showed greater cortisol responses to stress showed reduced reward
reactivity at the neural and behavioral level (Berghorst et al., 2013;
Gaffrey et al., 2018), and there is evidence that sex, genes, personality,
and early life experiences moderate the magnitude of the effects of
proximal stress on PVS function (Bogdan et al., 2011, 2010; Cavanagh
et al., 2011; Kessel et al., 2019; Nikolova et al., 2012).

5.4. Overlapping trajectories

It should also be noted that these trajectories may not be fully in-
dependent. For example, people with a chronically low or accelerated
trajectory may subsequently show a more stress reactive pattern of PVS
function. Alternatively, certain risk factors may predispose to alterations
in both the sustained trajectory and extent to which PVS function is
reactive to stress. This idea is consistent with double hit models of
psychopathology risk, in that early experience may shape vulnerabilities
that then enhance stress reactivity later in life, with the combination of
both “hits” leading to psychopathology (Koss and Gunnar, 2018).
Further, there is evidence that individuals with relatively enhanced PVS
function show reduced physiological and subjective stress reactivity
(Ethridge et al., 2020; Heller et al., 2013; Vidal-Ribas et al., 2019).
Although it is unclear whether fluctuations in PVS function underlie
these physiological and subjective responses, these data support the
possibility that multiple trajectories may combine in such a way that
sustained trajectories of low PVS function can also predispose to
increased stress reactivity.

In conclusion, PVS function at a given time point may reflect rela-
tively stable individual differences shaped by early genetic, tempera-
mental, and environmental factors, but also acute fluctuations in
response to stress and changes in mood. Biobehavioral predispositions
likely shape an individual’s typical level of PVS activation, as well as
developmental trajectories and reactivity to stress. Early life stress and
certain parenting styles potentially have persistent effects on PVS acti-
vation, but PVS activation also shows continued fluctuations as a
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function of exposure to stress across adolescence and adulthood. In this
way, it may be the combination of both early and later stress that leads
to the most disruption in PVS activation (Hanson et al., 2017a; Kessel
et al., 2019), and greatest risk for psychopathology, particularly
depression.

6. Future research priorities

Since the introduction of the RDoC initiative (Sanislow et al., 2010),
considerable progress has been made in understanding the development
of PVS. Yet further work is needed to clarify developmental trajectories
and translational implications. First, it should be noted that we collapse
across broad neuroanatomical structures and regions (e.g., VS and DS,
subregions of mPFC) in our review. Yet, subregions of the striatum and
mPFC have distinct functions and patterns of connectivity (e.g., Bzdok
et al., 2013). More precise labeling of regions in charting developmental
trajectories and comparisons across studies should be a priority for
future work (Pfeifer and Allen, 2016). In addition, longitudinal studies
examining PVS function beginning early in life and with repeated as-
sessments across time are critically needed to chart developmental
course. Obtaining valid and developmentally-appropriate neural and
performance measures of PVS in young children is a challenge, although
recent work (Belden et al., 2016; Gaffrey et al., 2018) suggests that it is
possible and should be a priority. Multi-method longitudinal studies are
needed to chart trajectories of PVS function across levels of analysis and
examine effects of age and hormonal changes associated with puberty.
Such designs should account for both individual differences at rest, as
well as the magnitude and persistence of change in PVS function in
response to stress. Further, there is a need to extend research on reward
responsiveness to the social domain, given the salience of social re-
lationships in adolescence and the role of interpersonal stress in the
development of depression. Several tasks have been developed for
measuring responses to social feedback (e.g., Jarcho et al., 2016; Kujawa
et al., 2014b, 2017; Olino et al., 2015), but little work has examined
developmental trajectories of neural responses to social reward.

At the genetic level, research must extend to well-designed twin and
adoption studies and adequately powered GWAS. Given evidence of
developmental changes in the heritability of extraversion/positive
emotionality (Kandler, 2012), it is important to use longitudinal designs
to study multiple points in development. For temperament, research is
needed to evaluate temporal dynamics of these associations, beginning
in early childhood with repeated assessments of both temperament and
neural measures to compare concurrent and longitudinal relationships.
EEG/ERP research provides a useful complement to fMRI research in
this regard, in that these methods are relatively economically and easily
applied in large samples across development and guidelines for ERP
research with young children are emerging (Brooker et al., 2019).

For parenting, studies comparing specific parenting behaviors are
needed to identify key factors in shaping PVS development. This is
crucial as parenting may be a prime target for prevention, yet it remains
unclear what types of parenting are likely to be effective in promoting
healthy PVS development. For example, there is some evidence of spe-
cific links between positive parenting, rather than negative parenting,
and RewP in children (Kujawa et al., 2015b), but determining whether
this is driven by parental warmth or affection, structure and consistency,
and/or displays of positive affect is needed for prevention. For stress,
longitudinal research is needed to compare chronically low and accel-
erated development models of stress exposure, as well as factors that
predict specific developmental trajectories. Improved understanding of
how patterns observed in response to laboratory-induced stressors
translate to naturalistic stress is needed. To our knowledge, no studies
have examined whether effects of laboratory stressors on PVS are
evident beyond the session. This makes it difficult to evaluate the extent
to which such experiences lead to persistent change in PVS, as well as
individual differences in the amount of time required for PVS function to
return to baseline. As naturalistic stressors can be episodic or chronic,
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and co-occur with other stressors, careful assessment and designs will be
needed to disentangle the effects of specific stressors from other stressors
occurring concurrently as well as in prior and subsequent developmental
periods.

7. Clinical implications

Understanding trajectories of PVS function is essential for translating
findings from clinical and affective neuroscience to prevention. There is
growing evidence to suggest that low PVS function may be modifiable
target for prevention. For example, treatment studies indicate that that
neural indicators of PVS function may be sensitive to intervention, at
least for some people (Barch et al., 2019; Burkhouse et al., 2018; Dichter
et al., 2009). Further, we recently demonstrated that a brief motiva-
tional manipulation was effective in enhancing neural and behavioral
indicators of PVS in a nonclinical sample of emerging adults, supporting
the feasibility of targeting PVS function earlier in development to reduce
risk for later psychiatric disorders (Pegg and Kujawa, 2020).

A few directions for future research will advance the translational
implications of research on PVS function. First, determining the earliest
point at which alterations in PVS trajectories can be reliably identified
across development could allow for very early identification of youth in
need of prevention. Moreover, the trajectory of PVS activity may have
greater predictive value than the level of PVS activation at a single time
point (e.g., Hanson et al., 2015), and, as such, the identification of both
typical and atypical trajectories of change is essential. Second, identi-
fying early factors—and combinations of factors—that shape PVS
function will provide specific processes to target to promote healthy PVS
development (e.g., increasing supportive parenting in families with a
history of depression vs. reducing harsh parenting). Finally, examining
trajectories of both baseline PVS function and stress reactivity is
essential for developing interventions for youth exhibiting signs of low
PVS. If chronically low PVS function is the target, interventions to in-
crease positive affect may be most relevant (e.g., Craske et al., 2019). If
sensitivity of PVS function to stress is the target, interventions to
enhance ability to cope with stress may be most effective (e.g., Compas
et al., 2015).

8. Conclusions

Charting typical and atypical developmental trajectories of core di-
mensions of emotion and behavior prior to the emergence of psycho-
pathology is needed to understand the pathophysiology of psychiatric
conditions, as well as when and how to intervene. Although progress has
been made in identifying biological and environmental contributors to
reduced activation of PVS, the effects of single factors appear to be
relatively small and inconsistent. Greater consideration of develop-
mental processes and interactions amongst variables is needed to
advance understanding of how these patterns emerge and predispose to
risk for psychopathology. Continuing to test and refine an integrated
model of developmental trajectories to reduced activation for PVS will
move us towards translational work to reduce the burden of these
conditions.
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