
QMflows: A Tool Kit for Interoperable Parallel Workflows in
Quantum Chemistry
Felipe Zapata,#,† Lars Ridder,† Johan Hidding,† Christoph R. Jacob,‡ Ivan Infante,*,#,§

and Lucas Visscher*,#

#Division of Theoretical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The
Netherlands
†Netherlands eScience Center, Science Park 140 (Matrix I), 1098 XG Amsterdam, The Netherlands
‡Institute of Physical and Theoretical Chemistry, TU Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
§Department of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

*S Supporting Information

ABSTRACT: We present the QMflows Python package for quantum chemistry
workflow automatization. QMflows allows users to write complex workflows in terms
of simple Python scripts. It supports the development of interoperable workflows
involving multiple quantum chemistry codes and executes them efficiently on large
scale parallel computers. This open source library provides standardized interfaces to
a number of quantum chemistry packages and can be easily extended to
accommodate additional codes. QMflows features are described and illustrated
with a number of representative applications.

■ INTRODUCTION

In the last years, new pathways to materials discovery that go
beyond trial-and-error processes have been implemented with
promising results. These paths are usually based on computer
prediction algorithms that either find new materials by
comparing structures from available databases storing hun-
dreds of thousands of known structures or by exploratory
algorithms that generate new materials without much previous
knowledge.1 Either way, these new materials are usually linked
to specific desired properties that often need to be computed
at the atomistic level and that represent further constraints in
the search of novel structures. Such computed properties are
usually carried out at the quantum chemical level, and
knowledge and availability of the various computational tools
are fundamental. Rational design based on computational
modeling indeed often requires a combination of theoretical
approaches and software and commonly involves composite
workflows consisting of a large number of individual
calculations.2,3 Such workflows are well suited for parallel
computing as it is much easier to exploit job-type parallelism
than to parallelize each computational task individually. There
are, however, two complications in exploiting job-type
parallelism that should be considered. Complex workflows
require the execution of several different program packages,
which require different, program-specific input data, which in
turn possibly depends on the results of preceding calculations.
These dependencies between different tasks are often non-
trivial and need to be taken into account in the parallel
execution of workflows.
A well-known example of a computational workflow that

benefits from automation and parallelization is running a

benchmark study to assess the performance of a series of
density functional theory (DFT) exchange-correlation func-
tionals.4−7 Another simple example is the geometry relaxation
of a set of related molecules. More complicated applications
involve multiple methods and are characterized by interde-
pendencies between the calculations. An example is the
prediction of the activation energy of several reactions by
performing a multilevel calculation of reactants and transition
states.8

Overall, three common tasks need to be automated: (i) the
preparation of specific inputs for the quantum chemical (QM)
software package(s) that is (are) used; (ii) submission of jobs
to a queuing system on a supercomputer facility; and (iii) the
collection and analysis of the output files, often involving
postprocessing steps with yet other software tools. Commonly
used ad hoc Unix shell or Python scripts for such purposes are
often poorly transferable and difficult to maintain and extend.
They furthermore require sufficient programming experience
to attain good performance. In most research groups, the time
available to tune and document such scripts is limited, resulting
in a suboptimal use of computational and human resources.
To address these limitations of project-specific scripting, a

number of generic solutions for the preparation and execution
of QM workflows have been developed: PyADF,9 Chemshell,10

FireWorks,11 Aiida,12 ASE.13 While being very helpful in the
automation of input/output handling, many of these solutions
have still limited abilities for parallel processing or require
expert knowledge. Parallelization of the workflow often

Received: May 8, 2019
Published: June 19, 2019

Article

pubs.acs.org/jcimCite This: J. Chem. Inf. Model. 2019, 59, 3191−3197

© 2019 American Chemical Society 3191 DOI: 10.1021/acs.jcim.9b00384
J. Chem. Inf. Model. 2019, 59, 3191−3197

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

pubs.acs.org/jcim
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.9b00384
http://dx.doi.org/10.1021/acs.jcim.9b00384
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html


requires input from the user who should indicate the stages in
the simulation that can be run in parallel. Another common
limitation in currently available tools arises from the definition
of the interfaces to the different QM packages. Usually, the
interfaces are specific to the different supported program
packages, and different interfaces are required for performing
the same task (e.g., a DFT geometry optimization) with
different program packages. This hinders the interoperable use
of different codes in one workflow.
To facilitate automation and parallelization, while keeping

maximum flexibility and limiting maintenance, we have
developed the Python package QMflows for the automation
of computational chemistry workflows. QMflows is built on
top of the PLAMS library14 that is designed to provide a
general interface to QM simulation packages. QMflows
furthermore incorporates the Noodles15 library that is
developed for dependency analysis and automatic parallel
execution of workflows. We chose to implement the QMflows
platform with Python, the most-used programming language
for the automation of computations in chemistry. In this way,
we aim at supporting both beginners and experienced Python
programmers. Beginners will benefit from the simple and
unobtrusive syntax to specify job dependencies, while more
advanced users will be able to construct complex workflows.
QMflows’ main objective is to allow users with only basic

programming skills to build complex workflows that can be
reused, adapted, and executed in high-performance computing
environments. The most relevant features of our library are (i)
manipulation of molecular objects to quickly generate and
modify molecular structures, combined with interoperability
between QM packages to facilitate use of multiprogram
workflows; (ii) parallel execution of tasks defined in the
workflow by automated analysis of task dependencies; (iii)
recovery and restart in case of job failure; and (iv) a file
manager for a posteriori retrieval and analysis of data.
A major objective of QMflows is to enable beginners to

focus on the scientific aspects of the workflows (the definition
of the molecules to be studied, the level of theory to be used
for each task, and the molecular properties that are to be
retrieved and analyzed) instead of solving technical issues
related to specific program packages or to the parallel
execution of the workflow. For this kind of use only a basic
understanding of the Python scripting language is required, a
skill that most computational chemists nowadays possess.
Advanced users will be able to extend the existing functionality
by programming new functions in Python with only minor
adaptations to allow Noodles to perform an automatic
dependency analysis. QMflows currently supports the ADF,16

CP2K,17 DIRAC,18 GAMESS-US,19 and ORCA20 packages
and is distributed as open source software under the LGPL-3.0
license.21

■ METHODS
QMflows has four major modules, as schematically depicted in
Figure 1 and described in more detail below.
Module 1: Input Manipulation. The first step takes care

of the manipulation of the molecular objects that are studied in
the QM calculations. In QMflows, molecules are by default
defined with the Molecule class of the PLAMS library. An
instance of a Molecule object holds atoms and coordinates and
can optionally store bond information as well. It can be created
from the xyz, mol, and pdb data formats and has methods for
adding and deleting atoms and for identifying, adding, and

deleting bonds. For more complex structure manipulations, a
dedicated Molkit library is available, which builds on 3D
chemical structure functionality offered by the RDKit package.
The second step is dedicated to the preparation of the input

for the individual QM calculations. Here we build on the input
model adopted by the PLAMS library, which avoids the use of
“hard-coded” interfaces to the QM packages. PLAMS makes
use of the fact that most QM packages adopt a hierarchical
input structure, consisting of input sections, subsections, and
key-value pairs. PLAMS enables the representation of such
input as a nested Python dictionary, which can be automati-
cally translated into a correct input file for a specific package.
This strategy allows PLAMS users to access the complete set of
features offered by a given QM package and not only a subset
covered by a predefined wrapper or interface. This design also
minimizes maintenance costs of the interfaces as the addition
of new features in a package does not require an update of the
interface.
On top of the PLAMS interface, QMflows offers a set of

generic key words and templates for easy access to
functionalities that are provided by multiple QM packages.
These generic key words make it possible to use the same input
definitions for common features (e.g., basis set, DFT
functional) when calling different QM codes and makes it
easy to switch between two implementations of a particular
method. The translation from generic to specif ic key word is
stored as a dictionary that is easy to maintain and extend when
the input of one or more of the packages changes. The
translation from generic to specif ic key words is done
automatically at run time, so for standard applications users
can use identical run scripts for different quantum chemistry
packages.
The templates consist of PLAMS settings for common

computational chemistry tasks, such as structure optimization,
transition state searches, and vibrational frequency calculations.
These settings objects can be modified and merged by the user,
who can also add generic and code-specif ic additional input for a
particular task.
An example of a template for a geometry optimization is

provided below:

In line 3 we define a molecule object by reading coordinates
from an external xyz file. Then we use a generic template to
define the settings for the type of calculation (a geometry

Figure 1. Schematic representation of the QMflows architecture.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00384
J. Chem. Inf. Model. 2019, 59, 3191−3197

3192

http://dx.doi.org/10.1021/acs.jcim.9b00384


optimization). Note that we do not yet define the QM
package. The next line calls the ADF program with the settings
and the molecule object as arguments. In this case, the template
for an ADF geometry optimization makes use of a nonscalar
calculation with a DZP basis set, a BLYP exchange-correlation
functional, and a frozen core MEDIUM. The advantage of this
approach is that, without rewriting any input, we may carry out
the geometry optimization with another code, e.g. CP2k, by
simply replacing the word adf in line 5 with cp2k. In the latter
case, the DZP is switched in a basis set of similar quality, a
DZVP, and a GTH pseudpotential for the core electrons. All
the templates set for a given task (scf, geometry optimization,
etc.) have been wrapped for each QM code by applying similar,
albeit not equal, input parameters. More details on these
template input parameters are provided in the online
documentation of QMflows.
Below, we also illustrate how a user may modify the basis set

and the DFT exchange-correlation functional of the template
using generic key words:

Before calling the adf function in line 7, in lines 5 and 6, the
variables basis and functional of the default settings object are
redefined by the user. These generic key words can be used
with most QM codes and can be set to program-independent
values. QMflows will translate these to the corresponding
package-specific key words and values once the actual QM
code to be used for the task is known. The current list of
generic key words is presented in Table S1, and it will be
expanded in the future for enhanced flexibility.
The definition of templates and generic key words that can be

used by multiple packages does not prohibit the use of options
that are only available in a specific QM code. In this case, the
user can extend the default settings for a given calculation by
adding generic key words (as demonstrated above) and/or also
package-specif ic key words in a dedicated subsection of the
input settings indicated by the key word “specific” and the
name of the package. This subsection should follow the input
tree structure of the specific QM package. An example of this is
illustrated in the code snippet below:

Until line 6 the workflow resembles exactly the previous
example. In lines 7−9, however, we assign three extra key
words specific to the ADF code. The first calls the excitations
module to perform a time-dependent DFT (TDDFT)
calculation computing the lowest 10 roots; the second calls
the ZORA module to include scalar relativistic effects; the
third overwrites the default setting for the number of iterations
employed in the SCF procedure. Only for these specific key
words the user should look up the input tree structure and key
word definition used by the specific QM package.

Module 2: Workflow Execution and Communication
between Jobs. The task of the second module of the package
is to efficiently execute the user-defined Python workflows.
With the Noodles framework, dependencies between the tasks
defined in the QMflows Python script are automatically
detected. The idea behind this library is to postpone the
execution of tasks to allow for dependency analysis. Rather
than immediately executing the Python code found in a user
script, Noodles will first construct a dependency graph in
which tasks (for example the optimization of a molecular
structure or a calculation of NMR shieldings for a given
molecule) are represented by nodes connected via edges to
represent the dependencies between these tasks (for example
the NMR calculation needs the structure from the geometry
optimization task). The tasks are always implemented as
scheduled functions which return “promised objects” rather
than results. The actual results of the workflow are obtained
using an explicit run statement at the end of the workflow. This
run statement triggers the evaluation of the dependencies and
the generation and execution of the actual jobs. The advantage
of this approach is that the user script looks almost like a
normal Python script, while in the background Noodles takes
care of those calls to QMflows tasks that do not depend on
each other and are executed in parallel. This is highlighted in
the following script where the call to Noodles is delayed until
line 12.

This makes it possible to optimally use the options available
for parallel execution that compute servers may offer. For this
purpose, Noodles comes with several back ends for different
common architectures. For small workflows, the user can
simply reserve a number of threads on his or her local
computer, while larger workflows can be run via job schedulers
on a compute cluster or supercomputer. This flexibility allows
users to easily scale workflows from the testing phase to the
production phase. A more detailed description of the Noodles

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00384
J. Chem. Inf. Model. 2019, 59, 3191−3197

3193

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00384/suppl_file/ci9b00384_si_001.pdf
http://dx.doi.org/10.1021/acs.jcim.9b00384


library, which is used for non-QM workflows as well, is
available online.15

Module 3: Job Recovery. To enable extension of the set
of molecules to be studied or the types of analysis to be carried
out, QMflows is from the outset designed to allow for restarts.
The workflow and dependencies are stored in a database that is
updated with information on successfully completed calcu-
lations during the execution of the workflow. When the run
command is invoked, noodles traverses the graph of job
dependencies and checks against the database for a reference
to the job results; if such reference does not exist, then the job
is executed, and the resulting output metainformation is stored
in the database.
If the execution of the workflow is stopped by the user or

fails for technical reasons, the generated database with
metadata can be used to restart the workflows. Noodles will
walk through the dependencies tree in the same way as when
started from scratch but will query the database for already
existing results and execute only the tasks that were not yet
successfully completed. This makes the restart procedure very
straightforward for the user who will need only to resubmit the
original job scheduler script (Slurm or PBS) without
modifications.
Module 4: Output Postprocessing. When tasks involve

different software packages and are run on different resources,
data transfer between tasks involves data conversion as well as
communication between the different computational resources.
To allow for efficient and general data handling, QMflows
distinguishes between primary data that results from the
execution of a particular task, output data that is to be used in a
next step as input, and metadata that describes the type of tasks
that was executed. The latter is stored in a database that is also
used to monitor the progress of the workflow execution. The
primary data is kept in the native format of the quantum
chemistry program that was used and at the location where this
task was executed. The subset of output data that is needed as
input for a next task is converted to the portable HDF5 format
for ease of communication between resources. In case primary
data of a particular step is not needed for analysis of the results,
users may choose to have these data automatically deleted after
the task is completed. Otherwise the data of all steps is stored
in its original form at the local computing node to allow for a
posteriori analysis.
In the simple code snippets presented earlier, the results of

the calculations were simply printed to screen using Python
commands. In real applications, in which the amount of data
produced is much larger, it is desirable to store data to a file
and retrieve the subset of data of interest when needed. In
QMflows, we have implemented parsers to retrieve the most
essential information about a system from output or
checkpoint file(s). This currently includes the coordinates of
the optimized geometry, the total energy of the system, dipole
moments, gradient, excitation energies, and Hessians matrices.
For other data, the user can use the parsers offered by the QM
code or write its own parser to retrieve the desired output data.

■ EXAMPLES
To demonstrate QMflows capabilities, we provide some use
cases with workflows of increasing complexity.
Example 1: Multilevel Geometry Optimization and

Excitation Spectrum. A common starting point for a high-
level quantum chemistry calculation of molecular properties is
a structure optimized at a lower level of theory. For example, it

is quite common to perform a single point post-Hartree−Fock
calculation on a DFT-optimized structure. As also DFT
optimization can be time-consuming for larger molecules it is
preferable to perform a preoptimization step to define a
starting geometry that is already close to the minimum. Figure
2 demonstrates the implementation of such a multilevel

approach, with three different QM packages interoperating in a
single QMflows workflow. In this example, we consider
calculating the lowest excitation energies of the coumarin
dye for which we perform a preoptimization with DFTB, send
the resulting structure to the ADF package for further
optimization with the PBE functional, and finally employ the
Orca program to compute the 10 lowest electronically excited
states at the equation of motion CCSD level of theory. This
example demonstrates that QMflows provides the flexibility to
assign each optimization task to the QM implementation that
is most suitable for this task. The full code is provided in
Example S1 in the Supporting Information.

Example 2: Screening Absorption Characteristics of
Organic Molecules. In the following example a series of
organic chromophores is screened to select molecules with
absorption wavelength in a desired range. As a simple criterion
for a first selection we calculate the DFT HOMO−LUMO gap.
The set of molecules is taken from the chemical database
GDB-17,22 which provides structures in SMILES format. The
flowchart and the workflow to carry out this screening is
illustrated in Figure 3.
First, the SMILES strings representing the target molecules

are converted to 3D chemical structures using Molkit. For each

Figure 2. QMflows workflow for a multilevel geometry optimization
followed by an excited states calculation on the relaxed structure. The
QMflows actions are highlighted in red, while the results of the action
are highlighted in green.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00384
J. Chem. Inf. Model. 2019, 59, 3191−3197

3194

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00384/suppl_file/ci9b00384_si_001.pdf
http://dx.doi.org/10.1021/acs.jcim.9b00384


molecule, an initial geometry optimization is performed using
the computationally inexpensive DFTB method followed by a
single point DFT calculation with the SAOP functional. The
HOMO and LUMO energies are extracted, and the best
performing candidates, those with HOMO−LUMO gaps
within the desired energy range, are selected for further
study by DFT structure optimization and TD-DFT calculation
of the lowest excited states. This workflow illustrates
manipulation of structures, extraction of selected data, and
workflows in which the number of jobs is determined at
runtime. The full code is provided in Example S2 in the
Supporting Information. Notice that there are no dependencies
between the calculations for different molecules, and this fact is
automatically picked by Noodles that generates a dependency
graph where the jobs of different molecules are independent
from each other and therefore are marked to run in parallel.
Example 3: Multilevel Transition State Search. Figure

4 shows another workflow to illustrate the integration of
calculations with different packages by QMflows. Starting from
an automatically generated 2-methylbiphenyl molecule, a
constrained geometry optimization is performed with the
DFTB package, to obtain an approximate TS state for the
rotation between two conformers. Subsequently, a frequency
calculation is performed to obtain a DFTB Hessian. This
Hessian is then used to initialize the transition state calculation
at the DFT level in a different package (ORCA). The full code
is provided in Example S3 in the Supporting Information. This
example shows how QMFlows allows (partial) interoperability

between codes by providing generic functionality that is
common to different packages, translating between different
input specifications without user intervention.

Example 4: Multilevel Transition State Search with
Conditional Workflows. The flowchart in Figure 5 illustrates
another possibility for conditional workflows. In this case we
check whether the preoptimization was successful and skip this
step in case it was not. This is helpful when looping in over a
wide class of molecules for which it is difficult to predict
whether a certain preoptimizer will provide a converged result.
After the preoptimizing step with DFTB, the molecules are
further optimized with DFT (Orca) with a final step of TD-
DFT calculation including solvent effects with the ADF
program. Figure S1 shows the output of the script, indicating
that the preoptimizations for molecules containing a boron
atom failed (because this atom is not contained in the default
parameter set). QMflows allows users to decide whether an
error should be propagated to the rest of the dependencies (as
a Python None value), or the user can provide an alternative
function to execute in case of failure, for example an alternative
calculation or a default value.

■ CONCLUSIONS
In summary, we have presented the open source software
QMflows, a flexible and powerful Python code capable of easily
automatizing and parallelizing quantum chemistry workflows.
The software is constructed on four main pillars:

a. Flexible input manipulation. Here QMflows provides
generic key words and templates for different tasks
(single points, geometry optimizations, etc.) that are

Figure 3. QMflows workflow for a multilevel geometry optimization
followed by an excited states calculation on the relaxed structure. The
QMflows actions are highlighted in red, while the results of the action
are highlighted in green.

Figure 4. QMflows workflow for a multilevel transition state search.
The QMflows actions are highlighted in red, while the results of the
action are highlighted in green.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00384
J. Chem. Inf. Model. 2019, 59, 3191−3197

3195

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00384/suppl_file/ci9b00384_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00384/suppl_file/ci9b00384_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00384/suppl_file/ci9b00384_si_001.pdf
http://dx.doi.org/10.1021/acs.jcim.9b00384


valid for several quantum chemical packages. The users
will only need to call the desired QM package and a
given task to carry out the calculation. If specific key
words are required beyond the provided templates,
QMflows allows to add them following the tree structure
of the given QM code.

b. Workflow execution. In a complex workflow where
several QM packages and tasks are called, QMflows rely
on the Noodles framework to construct the depend-
encies between each task and schedule them as
“promised objects”. The actual workflow is executed at
the end of the script allowing for optimal usage of
parallel resources.

c. Efficient restart procedure. Thanks to the Noodles
framework, if a job fails for whatever reason, Noodles
will check the dependency tree querying a database with
the metadata of the successfully executed parts of the
workflow. In this way, the user will need only to
resubmit the original Slurm or PBS script without any
modification, starting from the last successful job.

d. Data postprocessing. QMflows is furnished with output
parsers of several QM packages to retrieve essential data.
Additionally, QMflows allows for storing metadata in a
HDF5 portable format, which can be used for further
postprocessing.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jcim.9b00384.

Full code snippets for examples presented in manuscript
(PDF)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: i.a.c.infante@vu.nl.
*E-mail: l.visscher@vu.nl.
ORCID
Christoph R. Jacob: 0000-0002-6227-8476
Ivan Infante: 0000-0003-3467-9376
Lucas Visscher: 0000-0002-7748-6243
Notes
The authors declare no competing financial interest.
This QMflows software is distributed as a Python library that
can be downloaded from GitHub at www.github.com/SCM-
NV/QMflows.

■ ACKNOWLEDGMENTS
This work was supported by The Netherlands eScience Center
(Grant No. 027.014.202) and by The Netherlands Organ-
ization of Scientific Research (NWO) through the Innova-
tional Research Incentive (Vidi) Scheme (Grant No.
723.013.002).

■ ABBREVIATIONS
DFT, density functional theory; DFTB, tight-binding DFT;
QM, quantum mechanics

■ REFERENCES
(1) Liu, Y.; Zhao, T.; Ju, W.; Shi, S. Materials discovery and design
using machine learning. J. Mater. 2017, 3, 159−177.
(2) Goḿez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Hirzel, T. D.;
Duvenaud, D.; Maclaurin, D.; Blood-Forsythe, M. A.; Chae, H. S.;
Einzinger, M.; Ha, D.-G.; Wu, T.; Markopoulos, G.; Jeon, S.; Kang,
H.; Miyazaki, H.; Numata, M.; Kim, S.; Huang, W.; Hong, S. I.; Baldo,
M.; Adams, R. P.; Aspuru-Guzik, A. Design of efficient molecular
organic light-emitting diodes by a high-throughput virtual screening
and experimental approach. Nat. Mater. 2016, 15, 1120−1127.
(3) Hachmann, J.; Olivares-Amaya, R.; Atahan-Evrenk, S.; Amador-
Bedolla, C.; Sańchez-Carrera, R. S.; Gold-Parker, A.; Vogt, L.;
Brockway, A. M.; Aspuru-Guzik, A. The Harvard Clean Energy
Project: Large-Scale Computational Screening and Design of Organic
Photovoltaics on the World Community Grid. J. Phys. Chem. Lett.
2011, 2, 2241−2251.
(4) Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C.
Development and assessment of new exchange-correlation func-
tionals. J. Chem. Phys. 1998, 109, 6264−6271.
(5) Goerigk, L.; Grimme, S. A thorough benchmark of density
functional methods for general main group thermochemistry, kinetics,
and noncovalent interactions. Phys. Chem. Chem. Phys. 2011, 13,
6670.
(6) Santra, B.; Michaelides, A.; Scheffler, M. On the accuracy of
density-functional theory exchange-correlation functionals for H
bonds in small water clusters: Benchmarks approaching the complete
basis set limit. J. Chem. Phys. 2007, 127, 184104.
(7) Azpiroz, J. M.; Ugalde, J. M.; Infante, I. Benchmark Assessment
of Density Functional Methods on Group II−VI MX (M = Zn, Cd; X
= S, Se, Te) Quantum Dots. J. Chem. Theory Comput. 2014, 10, 76−
89.
(8) Jacobson, L. D.; Bochevarov, A. D.; Watson, M. A.; Hughes, T.
F.; Rinaldo, D.; Ehrlich, S.; Steinbrecher, T. B.; Vaitheeswaran, S.;
Philipp, D. M.; Halls, M. D.; Friesner, R. A. Automated Transition
State Search and Its Application to Diverse Types of Organic
Reactions. J. Chem. Theory Comput. 2017, 13, 5780−5797.
(9) Jacob, C. R.; Beyhan, S. M.; Bulo, R. E.; Gomes, A. S. P.; Götz,
A. W.; Kiewisch, K.; Sikkema, J.; Visscher, L. PyADF - A scripting
framework for multiscale quantum chemistry. J. Comput. Chem. 2011,
32, 2328−2338.

Figure 5. QMflows workflow for a multilevel transition state search
using a conditional function. The QMflows actions are highlighted in
red, while the results of the action are highlighted in green.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00384
J. Chem. Inf. Model. 2019, 59, 3191−3197

3196

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00384
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00384/suppl_file/ci9b00384_si_001.pdf
mailto:i.a.c.infante@vu.nl
mailto:l.visscher@vu.nl
http://orcid.org/0000-0002-6227-8476
http://orcid.org/0000-0003-3467-9376
http://orcid.org/0000-0002-7748-6243
http://www.github.com/SCM-NV/QMflows
http://www.github.com/SCM-NV/QMflows
http://dx.doi.org/10.1021/acs.jcim.9b00384


(10) Metz, S.; Kas̈tner, J.; Sokol, A. A.; Keal, T. W.; Sherwood, P.
ChemShell-a modular software package for QM/MM simulations.
Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 101−110.
(11) Jain, A.; Ong, S. P.; Chen, W.; Medasani, B.; Qu, X.; Kocher,
M.; Brafman, M.; Petretto, G.; Rignanese, G.-M.; Hautier, G.; Gunter,
D.; Persson, K. A. FireWorks: a dynamic workflow system designed
for high-throughput applications. Concurr. Comput. Pract. Exp. 2015,
27, 5037−5059.
(12) Pizzi, G.; Cepellotti, A.; Sabatini, R.; Marzari, N.; Kozinsky, B.
AiiDA: automated interactive infrastructure and database for
computational science. Comput. Mater. Sci. 2016, 111, 218−230.
(13) Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.;
Christensen, R.; Dułak, M.; Friis, J.; Groves, M. N.; Hammer, B.;
Hargus, C.; Hermes, E. D.; Jennings, P. C.; Jensen, P. B.; Kermode, J.;
Kitchin, J. R.; Kolsbjerg, E. L.; Kubal, J.; Kaasbjerg, K.; Lysgaard, S.;
Maronsson, J. B.; Maxson, T.; Olsen, T.; Pastewka, L.; Peterson, A.;
Rostgaard, C.; Schiøtz, J.; Schütt, O.; Strange, M.; Thygesen, K. S.;
Vegge, T.; Vilhelmsen, L.; Walter, M.; Zeng, Z.; Jacobsen, K. W. The
atomic simulation environmenta Python library for working with
atoms. J. Phys.: Condens. Matter 2017, 29, 273002.
(14) Software for Chemistry & Materials B.V. (SCM): 2018.
(15) Hidding, J.; Weel, B.; Zapata, F.; Borgdorff, J. NLeSC/noodles
0.2.3; DOI: 10.5281/ZENODO.205986.
(16) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca
Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T.
Chemistry with ADF. J. Comput. Chem. 2001, 22, 931−967.
(17) Hutter, J.; Iannuzzi, M.; Schiffmann, F.; Vandevondele, J. Cp2k:
Atomistic simulations of condensed matter systems. Wiley Interdiscip.
Rev. Comput. Mol. Sci. 2014, 4, 15−25.
(18) Visscher, L.; Jensen, H. J. Aa.; Bast, R.; Saue, T. with
contributions from Bakken, V.; Dyall, K. G.; Dubillard, S.; Ekström,
U.; Eliav, E.; Enevoldsen, T.; Faßhauer, E.; Fleig, T.; Fossgaard, O.;
Gomes, A. S. P.; Hedegård, E. D.; Helgaker, T.; Henriksson, J.; Ilias,̌
M. Dirac, A relativistic ab initio electronic structure program, Release
DIRAC17.
(19) Gordon, M. S.; Schmidt, M. W. In Theory and Applications of
Computational Chemistry; Elsevier: 2005; pp 1167−1189,
DOI: 10.1016/B978-044451719-7/50084-6.
(20) Neese, F. The ORCA program system. Wiley Interdiscip. Rev.
Comput. Mol. Sci. 2012, 2, 73−78.
(21) Zapata, F.; Ridder, L.; Hidding, J.; Infante, I.; Visscher, L.
QMflows; DOI: 10.5281/ZENODO.1045523.
(22) Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J.-L.
Enumeration of 166 Billion Organic Small Molecules in the Chemical
Universe Database GDB-17. J. Chem. Inf. Model. 2012, 52, 2864−
2875.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00384
J. Chem. Inf. Model. 2019, 59, 3191−3197

3197

http://dx.doi.org/10.5281/ZENODO.205986
http://dx.doi.org/10.1016/B978-044451719-7/50084-6
http://dx.doi.org/10.5281/ZENODO.1045523
http://dx.doi.org/10.1021/acs.jcim.9b00384

