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Abstract

Context: Color normalization techniques for histology have not been empirically 
tested for their utility for computational pathology pipelines. Aims: We 
compared two contemporary techniques for achieving a common intermediate 
goal  –  epithelial‑stromal  classification.  Settings and Design: Expert‑annotated 
regions of epithelium and stroma were treated as ground truth for comparing classifiers 
on original and color‑normalized images. Materials and Methods: Epithelial 
and stromal regions were annotated on thirty diverse‑appearing H and E stained 
prostate cancer tissue microarray cores. Corresponding sets of thirty images each 
were generated using the two color normalization techniques. Color metrics were 
compared for original and color‑normalized images. Separate epithelial‑stromal 
classifiers were trained and compared on test images. Main analyses were conducted 
using a multiresolution segmentation (MRS) approach; comparative analyses using 
two other classification approaches (convolutional neural network [CNN], Wndchrm) 
were also performed. Statistical Analysis: For the main MRS method, which relied 
on  classification  of  super‑pixels,  the  number  of  variables  used  was  reduced  using 
backward  elimination  without  compromising  accuracy,  and  test  ‑  area  under  the 
curves  (AUCs) were compared  for original  and normalized  images.  For CNN and 
Wndchrm,  pixel  classification  test‑AUCs  were  compared.  Results: Khan method 
reduced color saturation while Vahadane reduced hue variance. Super‑pixel‑level 
test‑AUC for MRS was 0.010–0.025 (95% confidence interval limits ± 0.004) higher 
for the two normalized image sets compared to the original in the 10–80 variable 
range.  Improvement  in  pixel  classification  accuracy 
was  also  observed  for  CNN  and  Wndchrm for 
color‑normalized images. Conclusions: Color 
normalization  can  give  a  small  incremental  benefit 
when  a  super‑pixel‑based  classification  method 
is used with features that perform implicit color 
normalization while the gain is higher for patch‑based 
classification  methods  for  classifying  epithelium 
versus stroma.
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INTRODUCTION

Significant advances have been made over the last decade 
in computational pathology – use of computer software 
and hardware for analysis of tissue images. Promising 
results have been reported not only for automated 
grading of cancer tissue but also for obtaining more 
accurate prognosis using computer algorithms.[1,2] A 
common step in many computational pathology pipelines 
is segmentation of images into different tissue 
compartments followed by classification using 
appropriate labels such as epithelium, stroma, and nuclei. 
Segmentation and classification algorithms frequently 
utilize color features, and in many cases, these algorithms 
are trained on hand‑labeled regions delineating these 
compartments.

Some color variation can be useful in classifying images 
because such variation might reflect important contrasts 
in the underlying biochemical composition of the tissue. 
However, images of similar tissues that are colored using 
the same stain also suffer from unwanted color variation 
due to differences in stain manufacturing processes 
across vendors, staining protocols across labs, and color 
responses across digital scanners. This is especially 
true for the H and E stain that is universally used by 
surgical pathologists to reveal histopathological detail. 
Hematoxylin itself is a natural product extracted from 
logwood trees; standardization across batches is, therefore, 
difficult and the dye is prone to precipitation in storage, 
which can cause day‑to‑day variation even within a single 
lab.[3‑5] In addition, the handling of the specimen during 
fixation and processing can alter the way in which the 
tissue interacts with the dyes, producing extraneous 
variation even in tissue microarray (TMA) cores stained 
on the same slide. Figure 1 shows an example of this 
diversity of stain appearances, among prostate cancer 
TMA cores scanned on the same digital microscope. 
The two cores shown in the left half of Figure 1 show 
extremes of epithelial appearance whereas the two cores 
in the right half show extremes of stromal appearance. 
Such variation in stain appearance can be problematic for 
algorithms in computational pathology that rely on tissue 
color.

While the impact of color normalization on the 
ultimate results of analysis will vary depending 
upon the specific end goal of each application, its 
impact on the fundamental step of epithelial‑stromal 
segmentation is of considerable general interest and is 
not yet well understood. In this work, we focused on 
epithelial‑stromal classification because it is a common 
early step in computational pathology, irrespective of 
the highly specific end goals such as cancer grading or 
prognosis. Separation of cancerous epithelial cells from 
surrounding stroma is particularly important in many 
analytic pipelines. We explored the advantages and 

disadvantages of two state‑of‑the‑art color normalization 
techniques when used before applying a machine 
learning approach to classify epithelium and stroma.[4,5] 
The success of a machine learning approach is dependent 
upon the representativeness of the training data vis‑à‑vis 
the testing data, among other factors. It is natural to 
hypothesize that due to normalization, differences in 
color distribution of epithelium (or stroma) across 
images will be diminished, thus making it more likely 
that the color‑normalized training set will be a good 
representation of the color‑normalized testing set. On 
the other hand, there is a danger that in removing 
some of the inter‑image color variation, some of the 
color differences that might be informative for further 
downstream objectives such as predicting prognosis might 
also be removed.

The two color normalization methods compared in this 
paper represent sophisticated contemporary methods 
specifically designed for analysis of H and E ‑ stained 
histology images. Color normalization methods commonly 
used for photographic (i.e., naturally‑colored) images do 
not take advantage of specific properties of stained tissue 
images. Normalization techniques meant for stained 
images work on each stain separately. The technique 
published by Vahadane et al. (hereafter referred to as 
“Vahadane”) estimates sparse and nonnegative stain 
density maps from the color images, and then combines 
the stain density maps of source images with the color 
basis of a target image.[4] The target image usually is one 
with a stain appearance that is advantageous in some way. 
For example, it could be an image that is preferred by a 
pathologist for its appearance. Similarly, the technique 
published by Khan et al. (hereafter referred to as “Khan”) 
also normalizes a source image to the color appearance of 
a target image.[5] It does this by estimating the color basis 
of both images, followed by color deconvolution and 

Figure 1: Diversity of H and E stained images illustrated using 
four prostate cancer samples with Gleason Grade 3. The first two 
samples show range of epithelial brightness, and the last two show 
the range of stromal brightness
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nonlinear mapping of the source color space to match 
the statistics to that of the target. Color basis estimation 
followed by deconvolution is conceptually similar to 
stain separation used by Vahadane, but the two methods 
differ in important details. For example, stain color basis 
estimation in Vahadane is completely unsupervised, while 
the estimation of color basis in Khan is based on the 
classification of pixels into the two stain classes using a 
pretrained classifier provided by the authors.

When these normalization algorithms were first published 
their performance was presented only from the point of 
view of image appearance. These algorithms have not 
been tested empirically for assisting downstream goals 
in computational pathology such as epithelial‑stromal 
classification. In the present work, we sought to compare 
the two color‑normalized image sets and the original 
images to determine which set of source images provides 
the most accurate classification in an unbiased machine 
learning approach. We also sought to characterize the 
effects of each normalization technique on critical 
aspects of color variation that could be significant in 
computational pathology.

MATERIALS AND METHODS

Tissue Samples and Digitization
We used an H and E stained set of TMA slides from the 
cooperative prostate cancer tissue resource (CPCTR).[6] 
This TMA set includes quadruplicate 0.6 mm diameter 
core samples of prostate cancer from 404 patients and 
includes tumors with Gleason Grades 3, 4, and 5, and 

combinations thereof. The tissues were provided from 
five hospitals participating in the CPCTR network. 
Sections from the five blocks comprising the TMA set 
were stained with H and E at the University of Illinois 
at Chicago. The stained slides were scanned at ×200 
on an Aperio ScanScope CS® (Leica Biosystems, Inc., 
Vista, CA, USA). From >1000 core images in the TMA 
set, we selected thirty that had significant variation in 
stain appearance.

Image Set Generation
Under the supervision of a pathologist, epithelial and 
stromal areas were separately marked on the thirty images 
using Aperio ImageScope® software to delineate regions 
serving as ground truth for both training and testing 
the epithelial‑stromal classifiers. Due to the complex 
architecture of epithelial glands, it would have been 
impractically tedious to annotate entire images. Thus, 
we annotated only a few sub‑regions in each image such 
that a large and diverse set of training examples was 
created. As illustrated in Figure 2, the set of thirty cores 
was further divided into twenty cores that were used for 
training epithelial‑stromal classifier, and ten that were 
used for testing the classifiers. Six out of the ten testing 
images were taken from a block that was not represented 
in the training set at all. This simulated the real‑world 
scenario in which software can be used on images from 
a lab that did not contribute data to the training of the 
software.

A pathologist selected a core that seemed neither 
over‑stained nor under‑stained to serve as a target for 
color normalization by the two methods. Thus, we 

Figure 2: Preparation of the training and testing sets using original and color‑normalized images
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prepared two new sets of thirty images each, such that 
the original target image was also included in the two 
new sets while the 29 other images in the original set 
had color‑normalized versions in the two new sets. Color 
normalization was performed using software provided 
by the authors of the respective techniques. Further, 
the ground truth regions that were marked on the thirty 
original images were also applied as an overlay to the 
corresponding images in the two normalized image sets. 
As shown in Figure 2, each set of thirty images included 
twenty images for training that included the target image, 
and ten images for testing that excluded the target image.

Classification Methods
We compared the efficacy of the two color normalization 
methods to the original images using three different 
procedures for epithelial‑stromal classification. The main 
analyses were based on a method that segmented TMA 
core images into super‑pixels – irregular clusters of pixels 
sharing common color and texture characteristics – and 
used logistic regression to classify them into epithelium 
or stroma. To determine whether results could be 
generalized to other classification methods, we also 
performed comparative analyses using convolutional 
neural networks (CNNs) and Wndchrm. These 
methods classify each pixel based on an image patch 
of predetermined dimensions. Since a pixel contains 
too little information by itself (only R, G, B values) 
some surrounding spatial context is needed for accurate 
epithelial‑stromal classification. For example, both 
epithelial and stromal nuclei are dark in H and E stained 
images, but stromal nuclei are surrounded by pink‑colored 
stroma while the epithelial nuclei are not. To classify a 
given pixel in the context of its spatial neighborhood, 
one can use either a super‑pixel containing that pixel or 
a patch centered at that pixel. The difference between 
these two approaches is as follows. While the super‑pixels 
of an image are nonoverlapping, contiguous, and 
irregularly‑shaped subsets of its pixels, the set of patches 
centered at each pixel comprises fixed‑sized squares that 
overlap with other patches centered at neighboring pixels.

In the first classification method, a technique called 
multiresolution segmentation (MRS) was used to obtain 
super‑pixels.[7] This was followed by the extraction 
of a fixed set of features for each super‑pixel. An 
L1‑regularized logistic regression classifier was trained on 
labels (epithelium or stroma) of annotated super‑pixels 
with known classes from training images. All the pixels of 
an annotated super‑pixel were deemed to belong to the 
same class as the super‑pixel. The results were analyzed 
at both super‑pixel and pixel levels.

The second technique was Wndchrm, which is easy‑to‑use 
trainable image classification software created by Shamir 
et al. under funding from the National Institutes of 
Health/National Institute of Aging for biologists with 

no programming background.[8] It automatically extracts 
between 1,000 and 3,000 predefined image features 
from an image and trains a variation of nearest neighbor 
classifier on image class labels. In a limited but diverse 
set of image recognition tasks, it has shown performance 
close to or better than other state‑of‑the‑art methods. 
It has an open‑source software implementation. We 
adapted its use for classification of annotated pixels in 
training and testing images by using the patches centered 
at these pixels as input, and their annotated class as 
desired output.

The third technique was a deep learning technique based 
on CNNs, which take an image patch as input. CNNs 
are multi‑layered neural networks in which certain layers 
have connectivity and weight‑sharing constraints that can 
be implemented as a convolution operation that mimics 
location‑invariant feature extraction of the mammalian 
visual cortex.[9] In addition to producing state‑of‑the‑art 
results for recognition of small images, CNNs have 
also been used with much success in mapping regions 
of certain classes in large images using a patch‑based 
approach such as detection of mitotic nuclei in whole 
slides.[10] The defining feature of CNNs is co‑learning 
of a data‑driven and task‑specific hierarchical set of 
features along with a classifier using the spatial structure 
of the input images or patches instead of learning only a 
classifier on a fixed and hand‑picked set of features.

Data Preparation, Training, and Testing for the 
Super‑pixel‑based Classifier
Using Definiens Developer XD® (Definiens, Munich, 
Germany), we segmented each image into super‑pixels 
without any constraints on their shape. We excluded 
all pixels with brightness above a certain threshold as 
whitespace. A key feature of this software is an ability 
to create hierarchical layers of object maps such that 
sub‑objects in a lower layer are mutually exclusive and 
collectively exhaustive subsets of the objects in the upper 
layer. In histopathology, this can capture relations such as 
various tissue compartments in an upper layer, and their 
nuclei and cytoplasm in a lower layer. We segmented 
the remaining super‑pixels further into sub‑objects 
based on their brightness relative to their neighboring 
pixels and area, calling the darker ones that were more 
than 15 pixels in area DarkSmall. DarkSmall sub‑objects 
usually corresponded to nuclei in H and E stained 
images.

We labeled super‑pixels that had more than 95% of the 
constituent pixels belonging to the hand‑annotated 
epithelial regions as epithelium. We labeled stroma 
super‑pixels similarly, based on >95% overlap with 
annotated stromal regions. In other words, if we denote 
the set of pixels annotated as epithelium as AnnotatedEpi, 
the set of pixels annotated stroma as AnnotatedStroma, 
the set of pixels in ith super‑pixel as SuperPixeli, then the 
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decision criteria for labeling each super‑pixel for training 
and testing can be described as follows:
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Thus, the selection of training super‑pixels was automated 
using the same selection rule for each image type. This 
avoided a bias that could be introduced by human 
selection of the training images or super‑pixels. We 
then exported a total of 93 features for every super‑pixel 
labeled epithelium or stroma in the training images. Six 
types of features were exported: (1) Color, (2) texture, 
(3) shape, and (4) size metrics of super‑pixels, (5) their 
relative appearance compared to neighboring super‑pixels, 
and (6) relative features of the dark sub‑objects within 
a super‑pixel. A complete list of exported features is 
given in the supplementary material Table S1. Each of 
the training subsets contained between 5,000 and 6,000 
super‑pixels of which around 40% were epithelium, 
and the rest were stroma. Values of each feature were 
normalized to have zero mean and unit variance.

Using R Development Core Team,[11] we trained separate 
logistic regression models on the three image sets. 
The models were regularized using an optimization 
penalty on the L1‑norm of their coefficients. If the 
weight λ of the L1‑norm penalty is increased, it not 
only reduces the magnitude of the coefficients of all 
features, but it can also drive some coefficients to be 
exactly zero.[12] However, the latter was not our intent 
as we empirically observed that trying to get a sparse 
model in this manner reduced the model accuracy as 
it also shrank coefficients of useful features. Hence, we 
only used a light penalty (log λ = −1) for regularizing 
the model to boost its validation performance while 
reducing features in a step‑wise manner similar to 
backward elimination. Usually, an L2‑norm penalty is 
used for model regularization when variable elimination 
is not desired, but we observed slightly higher validation 
accuracies when L1‑norm penalty was used instead. 
For each of the three training sets, we started with all 
variables and eliminated that variable with each step 
which least reduced the area under receiver operating 
characteristic (ROC) curve area under the curve (AUC) 
on super‑pixels using cross‑validation.

We examined the classification of both super‑pixels as 
well as individual pixels for the ten test images from 
each of the three image sets. For testing super‑pixel 

classification, we analyzed the performance of a model 
learned using super‑pixels labeled epithelium or stroma 
from the twenty training images in a particular image set 
on labeled super‑pixels in the ten test images from the 
same set. Models with widely varying numbers of features 
were compared.

For testing pixel‑level classification, we plotted the 
test‑AUC of super‑pixel classification versus number of 
variables for all three image sets and selected the number 
of variables that represented an “elbow”, that is the 
minimum number of variables that could avoid a sharp 
decrease in discrimination capacity. These three models 
were built into separate Definiens Developer® rulesets 
and applied to the ten test images for their corresponding 
image sets based on the same segmentation and feature 
calculation process as the one used for generating the 
training data. The value of the logistic regression formula 
for a nonwhite space super‑pixel was compared against a 
threshold for assigning an epithelium or stroma label. All 
constituent pixels of a super‑pixel were assigned its label.

We computed sensitivity and specificity for different 
thresholds to plot ROC curves for the three respective 
test image sets. The sensitivity referred to the proportion 
of hand‑annotated epithelial pixels across all test images 
that were correctly identified by the formula and the 
threshold. Similarly, specificity referred to the proportion 
of correctly identified hand‑annotated stromal pixels.

In other words, the true positive rate (TPR) and true 
negative rate (TNR) can be expressed in terms of the 
set of pixels that belong to ith epithelial super‑pixel 
EpiSuperPixeli, jth stromal super‑pixel StromaSuperPixelj, 
the set of annotated epithelial pixels AnnotatedEpi, and 
the set of annotated stromal pixels AnnotatedStroma as 
follows:

TRP=
(∪ ∩i iEpiSuperPixel AnnotatedEpi

AnnotatedEpi

)

TNR
(

=
∪ ∩j jStromaSuperPixel AnnotatedStroma

AnnotatedStroma

)

Data Preparation, Training, and Testing for the 
Patch‑based Classifiers
Due to the relative abundance of stromal pixels 
compared to epithelial pixels in the prostate cancer 
images, there is a chance to bias classifiers. Therefore, 
we trained and tested on an equal number of samples 
from the two classes by undersampling stromal pixels. 
Training and testing data set preparation for CNN‑ and 
Wndchrm‑based classification was straightforward. To 
prepare the training data, we uniformly sampled patches 
of size 31 × 31 each from annotated epithelium and 
stroma regions from the twenty training images and 
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assigned the annotation as the target class. Similarly, we 
prepared a test set with equal number of samples from 
both classes.

Using patches centered at sampled annotated pixels 
as input, we trained a CNN to make a binary decision 
between epithelium and stroma. We coded CNN 
architecture, its training, and its testing algorithms in 
Theano based on python.[13] The architecture that we 
used had two convolution and pooling layers, and two 
fully connected layers. The first and second convolution 
layers had twenty and forty kernels (filters), respectively, 
with rectified linear unit nonlinearity. Max pooling of size 
2 × 2 was used in both pooling layers. The two fully 
connected layers had 400 neurons with tanh nonlinearity. 
It was followed by the two softmax output nodes, one for 
epithelial, and other for stroma. A dropout of 0.1, 0.2, 
and 0.5 was used in the convolution 1, convolution 2, 
and fully connected layers, respectively. This architecture 
is similar to the one used to detect mitotic nuclei, and 
CNN performance is known to be robust to minor 
changes in architecture.[10] We tested the trained CNN 
on 100,000 annotated pixels and their surrounding 
patches of size 31 × 31 extracted from ten test images.

To train and test Wndchrm, we used the default settings 
given in the software. Wndchrm does not require as much 
training data as CNN. Therefore, we used 10,000 patches 
for training and 2,000 for testing with equal representation 
from each class and each image.

RESULTS

Impact of Color Normalization on Color Metrics
The R, G, and B color channels are highly correlated in 
H and E stained images. Therefore, it is more insightful 
to examine the distribution of pixels in the HSI space, 
where H refers to hue, S refers to saturation, and I refer 
to intensity (brightness). This is closer to how humans 
perceive color. We expected color normalization to 
reduce inter‑image variance of color measures. Across 
30 images, as seen in Figure 3, variances of mean pixel 
intensity and saturation for each image were reduced 
significantly in images color‑normalized using Khan. 
Moreover, the saturation was much lower for Khan, 
especially in epithelium. On the other hand, Vahadane 
reduced the variance of hue significantly while leaving 
the variance of intensity and saturation almost same as 
the original. This implies that while the brightness and 
saturation were normalized by Khan method, Vahadane 
mainly normalized hue. Further, mean saturation was 
significantly reduced by Khan method, especially for 
epithelium, giving an overall grayish appearance to each 
image.

We observed that intra‑image variance of hue was also 
significantly reduced using Vahadane method, as shown 

in Figure 4. This is in line with Vahadane’s interpretation 
of color‑normalization, which leaves intensity variations 
intact within each image by preserving their stain density 
maps while standardizing their RGB proportions, which 
determines hue. On the other hand, improvement in 
epithelial‑stromal classification after applying Khan’s 
color normalization can be attributed to the increase 
in the difference between mean epithelial and stromal 
intensities. These effects can also be seen in sample 
images in Figure 5.

Figure 6 shows an example of a part of an image on the 
left. In the middle, its segmentation into super‑pixels 
using MRS on R, G, and B channels with no constraint 
on shapes, and a scale parameter of 75 is shown. The 
panel on the right shows its segmentation of DarkSmall 
sub‑objects.

Impact of Color Normalization on Epithelial‑stromal 
Classification
Test set AUCs for super‑pixel classification using logistic 
regression classifiers with varying number of features for 
the three image sets are shown in Figure 7. Vahadane and 
Khan showed similar performance with no appreciable 
decrease until around twenty features. On the other 
hand, the classifiers trained on original variables showed 
decreased performance when the features were reduced 
below eighty.

Although the performance of models trained on the 
three sets of images was similar beyond eighty variables, 
computation of class labels for super‑pixels becomes 
slower and thus less efficient with a large number of 
variables. Therefore, for pixel‑level classification, models 
with twenty variables, each was selected for the three 
image sets. Classifier performance on the two sets of 
normalized images was nearly constant for twenty or more 

Figure 3: Color normalization illustrated using inter‑image standard 
deviation (error bars) of mean (bars) hue, saturation, and intensity 
for epithelium and stroma. Continuous color bars between 
epithelium and stroma illustrate the hue, saturation, and intensity 
range holding the other two at their means
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variables while no such “elbow” was evident for original 
images. Pixel classification sensitivity and specificity on 
the ten test images for different thresholds are shown 
in Figure 8 for the three sets, which form partial ROC 
curves. Relative performance at pixel‑level was similar to 
super‑pixel‑level performance in that Vahadane and Khan 
were very close and performed marginally better than the 
original set of images.

Twenty variables that survived backward elimination for 
the three image sets are listed in Table 1. The variables 
are first sorted by prevalence such that those that appear 
in all three sets appear toward the top, and then by sum 
rank across the three sets. Average red value (mean 
layer 1) was the most important feature among all three 
models, as expected due to the characteristic redness of 
stroma. Interestingly, red color difference to neighboring 
super‑pixels also played an important role in all three 
models indicating more variance of red channel (mainly 
brightness) in epithelium than in stroma. Both these 
variables had the same rank in all three models. There 
were nine other variables that appeared in more than one 
model with similar ranks, indicating a reassuring degree 
of model concordance. The model for original images did 

not depend on features from dark sub‑objects (nuclei) 
while the model for Khan images did not depend on 
texture features based on gray‑level co‑occurrence matrix.

To confirm the advantage of color normalization, we 
conducted another experiment. We used the twenty 
features that survived backward elimination for 
original images and tested their utility in classifying 
super‑pixels extracted from the two sets of normalized 
images. As expected, the accuracy decreased slightly 
compared to what it would have been had we used the 
variables listed in Table 1 for the respective columns 
of normalized sets (test‑AUC was 0.973 instead of 
0.984, and 0.976 instead 0.985 for Vahadane and Khan 
methods, respectively). However, the trend still held 
that color‑normalized training sets yielded slightly more 
accurate epithelial‑stromal classifiers (comparable 
test‑AUC using original images was 0.965). This suggests 

Figure 4: Contribution of color to epithelial‑stromal classification 
illustrated using mean intra‑image standard deviation (error bars) 
around mean (bars) hue, saturation, and intensity. Color bars 
between epithelium and stroma illustrate the full range of hue, 
saturation, and intensity while holding the other two constant

Figure 5: Selected sub‑images and their normalized versions

Figure 6: An example H and E stained tissue image (left), its 
super‑pixel boundaries (center, green), and detected dark 
sub‑objects (right, black)

Figure 7: Test ‑ area under the curve for the three sets of images 
for logistic regression models using different number of variables
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that even when the variables are not specifically selected 
for the color‑normalized datasets, they yield slightly 
better classification than original images.

Pixel‑level classification AUC for CNN and Wndchrm 
are shown in Table 2, and these results are also 
generally consistent with the MRS results. Both color 
normalization methods improve classification accuracy, 
and Vahadane method seems to give relatively higher 
results compared to Khan method. The accuracy boost 
from color normalization is greater for both patch‑based 
methods than we observed for the super‑pixel method.

Some examples of resultant epithelial‑stromal maps 
obtained using MRS and a logistic regression threshold of 
0.5 on the twenty‑variable models for the three sets of 
images are shown in Figure 9. We observed that more 
of the light‑colored epithelium was confused as stroma 

in the original images [see lower example in Figure 9]. 
On the other hand, due to color normalization, both 
Vahadane and Khan had less trouble with such images, 
thus explaining their improved performance over the 
original set. Relative to Vahadane, Khan struggled with 
correctly identifying epithelium with nuclei whose 
chromatin had marginated. This is likely because 
Vahadane estimates the stain density maps in an 
unsupervised fashion. Therefore, it adapts to the images 
including those with light colored epithelium whereas 
Khan uses a pretrained stain classification model. On 
the other hand, Vahadane struggled relatively more with 
identifying inflamed stroma as stroma because of the 
concentration of hematoxylin in clustered lymphocytes. 
In this case, Khan’s pretrained model seems to help in 
identifying the matrix surrounding lymphocytes correctly.

Testing Run‑time for Color Normalization 
Methods
Color normalization of images does take computation 
time, which varies by technique. In our experiments 
on a computer running Windows 7 with Intel Core i7 
CPU that has four cores and 16GB RAM and runs at a 
clock speed of 3.4GHz, Vahadane method took 1136s 
and Khan method took 633s to color‑normalized thirty 
images each of size 2000 × 2000 pixels. The larger 
time taken by Vahadane is likely due computation of a 
color model afresh for each image while Khan relies on a 
precomputed model.

DISCUSSION

This empirical analysis confirmed using multiple 
classification approaches that color normalization using 
both Vahadane and Khan methods helped in increasing 
the accuracy of epithelial‑stromal classification; however, 

Figure 8: Receiver operating characteristic curves for pixel‑level 
accuracy for twenty‑feature models for ten test images for the 
three models for thresholds 0.75, 0.5, 0.25, 0.15, and 0.1 on the 
logistic regression output

Figure 9: Two examples of cores whose pixels have been classified into epithelium (green) and stroma (red) based on original images as 
well as normalized images using Vahadane and Khan methods
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the extent of improvement was smaller than expected 
for the super‑pixel‑based approach. This was perhaps 
because the classification of original images itself was 
fairly accurate to begin with. We conjecture that this is 

due to the rich set of features extracted from the images, 
particularly features that encode texture and relative 
appearance between a super‑pixel and its neighbors. 
Staining differences between images are likely to affect 

Table 1: Features ranks based on coefficient magnitude in the 20‑variable models for the three image sets 
(sorted by prevalence and sum rank across the three sets)

Feature Original Vahadane Khan

Mean layer 1 1 1 1
Mean difference to neighbors layer 1 (0) 3 3 3
Mean difference to neighbors layer 3 (0) 4 4
Brightness 2 7
Relative area of sub‑objects DarkSmall (2) 11 8
Roundness 9 11
SD layer 2 8 12
Shape index 14 10
Compactness (polygon) 12 18
Radius of smallest enclosing ellipse 16 14
Maximum branch length (Pxl) 18 17
GLCM mean (quick 8/11) (all direction) 2
Mean layer 3 2
SD to neighbor pixels stain 1 (3) 4
Border length (Pxl) 5
SD to neighbor pixels layer 1 (3) 5
SD to neighbor pixels layer 2 (3) 5
Mean difference to neighbors stain 2 (0) 6
Number of segments 6
SD to neighbor pixels layer 3 (3) 6
GLCM SD (quick 8/11) (all direction) 7
Perimeter (polygon) (Pxl) 7
Number of edges (polygon) 8
Contrast to neighbor pixels layer 2 (3) 9
Contrast to neighbor pixels layer 3 (3) 9
GLCM entropy (quick 8/11) (all direction) 10
SD layer 1 10
SD stain 1 11
Density 12
Asymmetry 13
Border index 13
SD Layer 3 13
Skewness stain 1 14
Border contrast layer 2 15
Skewness layer 1 15
Width (only main line) (Pxl) 15
Degree of skeleton branching 16
GLCM Angular 2nd moment (quick 8/11) (all direction) 16
Edge contrast of neighbor pixels (prototype) stain 2 (3) 17
SD of area represented by segments (Pxl) 17
Asymmetry of sub‑objects SD (2) 18
Average area represented by segments (Pxl) 19
Border contrast layer 1 19
Skewness stain 2 19
Area (including inner polygons) (Pxl) 20
Border contrast stain 2 20
Radius of largest enclosed ellipse 20

GLCM: Gray‑level co‑occurrence matrix, SD: Standard deviation
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super‑pixels and their neighbors in the same images in a 
similar manner. Therefore, texture and relative features 
that encode spatial variance in color ensure implicit 
color normalization to some extent before explicit color 
normalization is even applied. In addition, starting with a 
large set of features, eliminating the least useful features 
using backward elimination, and regularizing the models 
is likely to yield high performing classification models.

We believe that the two techniques compared in this 
paper represent the state‑of‑the‑art in histological stain 
normalization.[4,5] Color normalization using either a 
standardizing stain or a color chart as a calibration slide 
requires an extra scan, which does not even guarantee 
intra‑batch invariance.[14] Simpler histogram‑based 
adjustments do not take differences in stain proportion 
and concentration across slides into account.[15] A more 
sophisticated histogram matching‑based approach that 
first separated a given tissue into classes such as nuclei, 
lumen, and cytoplasm, and then matched their respective 
histograms across images has also been proposed, but it 
is not clear if such intra‑class histogram matching leads 
to loss of differential information between the same class 
of objects across disease states.[16] One of the earliest 
stain separation techniques was proposed by Ruifrok and 
Johnston in which the stain color basis was extracted 
using control slides with single stains.[17] Khan can be seen 
as its extension and improvement that uses a pretrained 
stain model based on several samples.[5] On the other 
hand, Vahadane et al.[4] can be seen as an extension and 
improvement of Macenko et al.[18] that used singular 
value decomposition for separation of stain density maps, 
or Díaz and Romero[19] that used nonnegative matrix 
factorization (NMF) while Vahadane uses sparse NMF 
for computing the color basis from the given image itself. 
Recently, a similar technique independently developed by 
Xu et al. has also been published.[20]

One of the relative advantages of Vahadane over Khan 
was derivation of data‑driven stain models instead of 
relying on a pretrained one. Consequently, it requires 
more computational time than Khan method. Such an 
approach can easily adapt to other stains without the 
need to estimate the stain models. However, given a 
diverse training set, a pretrained model can cover most 
of the variation in stain appearance that one is likely 
to encounter. This, in addition to the feature set and 
modeling procedure advantages cited above, might 

explain why there was very little difference between the 
performances of the two color normalization methods in 
spite of the differences in their approach. The difference 
between the normalization methods was evident in the 
appearance of normalized images as well as their color 
statistics, with the Vahadane method providing colors 
more typically encountered by pathologists.

While our simple nucleus segmentation method had 
false positives and fractured or clumped nuclei, it served 
to generate features for epithelial‑stromal classification. 
A more sophisticated nuclear resegmentation can be used 
downstream that relies on the contextual knowledge thus 
obtained for better segmentation. For example, different 
shape priors for stromal nuclei (more spindle‑shaped) 
can be implemented compared to epithelial nuclei 
(more round), after epithelial‑stromal classification 
based on crude segmentation of small dark objects. This 
approach was used in Beck et al.’s image processing 
pipeline for breast cancer images.[2]

We varied the target image for color normalization 
to a more reddish one and a more bluish one, and the 
results were similar in that color normalization using 
Vahadane or Khan led to slightly better epithelial‑stromal 
classification than the original images. Varying the test 
fold (set of held out images) also yielded similar results 
with the exception of one image with an unusually large 
amount of inflammation. If this image was part of the 
test fold, all three classifiers confused a large proportion 
of inflamed stroma as epithelium, with the classifier 
trained on Vahadane set being more notably affected 
than others.

To our knowledge, this is the first analysis that compares 
different color normalization methods for meeting 
a goal in computational pathology instead of their 
improvement in subjective appearances, although the 
impact of a single technique on nuclear segmentation, 
which is another common intermediate goal, has been 
studied.[21] Our framework for comparison incorporated 
several measures for an unbiased comparison of original 
and color‑normalized images. For example, since 
application of MRS on color‑normalized images leads 
to different super‑pixel boundaries than those on the 
original images, we automated selection of training 
super‑pixels based on a uniform criterion for their overlap 
with the same underlying hand‑annotated regions. We 
also utilized the same hand‑annotated regions to assess 
pixel‑level accuracy. We compared the models for the 
three sets of images at pixel‑level using the same number 
of variables. In addition to giving a level playing field 
to the three sets of images, we also tried to simulate a 
real‑world scenario wherein software is useful only if it 
is applied to data from hospitals that did not contribute 
data for building (training) the software. To do so, 
we held out all super‑pixels from a subset of images 

Table 2: Classification test area under receiver 
operating characteristic curve for epithelial and 
stromal pixels based on their surrounding patches

Technique Original Vahadane Khan

WNDCHRM 0.922 0.977 0.962
Convolutional neural networks 0.921 0.965 0.948
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for testing, including a whole block that came from a 
particular hospital, instead of letting super‑pixels from 
same images to be a part of training and testing sets.

Although primary analyses were conducted using the 
MRS super‑pixel approach, our data indicate that the 
same trend across original and normalized images could 
be observed when additional, patch‑based, classification 
methods are employed. Color normalization induced 
a somewhat smaller increase in accuracy for the MRS 
method, presumably due to the inherent control of 
some color variation already built into the super‑pixel 
approach, as described above. We attribute this to 
use of relative features of a super‑pixel with respect 
to its neighbors in MRS, which can be interpreted 
as implicit color normalization. Absolute levels of 
accuracy across these classification methods – CNN and 
Wndchrm – should be interpreted cautiously since our 
main focus was on MRS and determining the relative 
effects of color normalization. It is possible that further 
optimization of parameters, especially for CNN, could 
further increase the absolute level of accuracy. For 
example, increasing patch size, altering architecture, 
and postprocessing to remove spatially isolated 
misclassification could conceivably further reduce 
classification error.

Epithelial‑stromal classification for testing images 
taken by a different scanner than the one used for 
training images was not tested in our study, although 
both Khan and Vahadane demonstrated the ability to 
subjectively color‑normalize H and E stained images 
across scanners.[4,5] There was also a large variation in 
epithelial‑stromal classification performance across 
images. As mentioned previously, some of these variations 
were dependent on the amount of inflammation in 
different images.

Recently, Zarella et al. proposed a technique to classify 
pixels of H and E stained slides into different histologic 
structures (such as nuclei, cytoplasm, and stroma) 
based on agglomerative clustering and user‑defined 
class assignment to the clusters.[22] It is hard to compare 
our results with theirs because they used a different 
set of images that are not publicly available, and 
reported different metrics, that is, concordance rates for 
different certainty levels. It seems that their definition 
of concordance level is the same as our definition of 
pixel‑level accuracy, and the two are comparable in 
magnitude (their concordance was 0.92–0.95 while 
equal‑error rate pixel‑level accuracy for Vahadane and 
Khan reported in Figure 8 is 0.92). However, certainty 
level was not defined in their paper. Importantly, their 
goal was a more direct classification of pixels rather 
than the use of color normalization across images while 
ours was to compare the effect of state‑of‑the‑art color 
normalization techniques.

While our results should have some general applicability for 
the common goal of epithelial‑stromal segmentation, it is 
not clear how color normalization will impact downstream 
goals such as clinical end‑point prediction. To the extent 
that useful information about these end‑points is captured 
by color, for instance, variation of basophilia of different 
tissue compartments with the pathological condition, 
it is possible that color normalization would negatively 
affect the accurate assessment of the underlying pathology 
or prognosis. However, a straightforward way around 
this is to use color normalization for epithelial‑stromal 
classification, but then use the classification maps 
thus obtained on the original images themselves. This 
can render moot the question as to whether the color 
alterations by one technique or another are acceptable, as 
we will only be concerned with the contribution of that 
technique to epithelial‑stromal classification. On the other 
hand, it is also possible that the color variations muted 
by color normalization may improve estimation of the 
pathology itself. To address these possibilities, thorough 
computational pathology investigations that are specific to 
the desired end goals after epithelial‑stromal classification 
need to be conducted.

CONCLUSIONS

The three epithelial stromal classifiers that were 
trained and tested performed slightly better on images 
normalized by either technique as compared to training 
and testing on original images. This advantage ranged 
from slight in case of the super‑pixel‑based classification 
method, to substantial in case of CNN and wndchrm.  
We conjecture that some of the features used in 
super‑pixel‑based classification method perform implicit 
color normalization, thus diminishing the advantage of 
preprocessing based on explicit color normalization.
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Table S1: Features exported for each super‑pixel for training epistromal classifiers

Feature type List of features

Color Brightness, mean layer 1, mean layer 2, mean layer 3, mean stain 1, mean stain 2
Texture SD layer 1, SD layer 2, SD layer 3, SD stain 1, SD stain 2, skewness layer 1, skewness layer 2, skewness 

Layer 3, skewness stain 1, skewness stain 2, GLCM homogeneity (quick 8/11) (all direction), 
GLCM contrast (quick 8/11) (all direction), GLCM dissimilarity (quick 8/11) (all direction), GLCM 
entropy (quick 8/11) (all direction), GLCM Angular 2nd moment (quick 8/11) (all direction), GLCM 
mean (quick 8/11) (all direction), GLCM SD (quick 8/11) (all direction)

Shape Length/width, asymmetry, border index, compactness, density, elliptic fit, rectangular fit, roundness, 
shape index, compactness (polygon), number of edges (polygon), number of inner objects (polygon), 
SD of length of edges (polygon) (Pxl), curvature/length (only main line), degree of skeleton branching, 
length/width (only main line), number of segments, SD of area represented by segments (Pxl)

Size Border length (Pxl), length (Pxl), number of pixels, width (Pxl), radius of largest enclosed ellipse, radius 
of smallest enclosing ellipse, Area (excluding inner polygons) (Pxl), area (including inner polygons) (Pxl), 
average length of edges (polygon) (Pxl), length of longest edge (polygon) (Pxl), perimeter (polygon) (Pxl), 
average area represented by segments (Pxl), length of main line (no cycles) (Pxl), length of main 
line (regarding cycles) (Pxl), maximum branch length (Pxl), width (only main line) (Pxl)

Relation to neighbors Border contrast layer 1, border contrast layer 2, border contrast Layer 3, border contrast stain 1, 
border contrast stain 2, contrast to neighbor pixels layer 1 (3), contrast to neighbor pixels layer 2 (3), 
contrast to neighbor pixels layer 3 (3), contrast to neighbor pixels stain 1 (3), contrast to neighbor 
pixels stain 2 (3), edge contrast of neighbor pixels (prototype) layer 1 (3), edge contrast of neighbor 
pixels (prototype) layer 2 (3), edge contrast of neighbor pixels (prototype) layer 3 (3), edge contrast of 
neighbor pixels (prototype) stain 1 (3), edge contrast of neighbor pixels (prototype) stain 2 (3), SD to 
neighbor pixels layer 1 (3), SD to neighbor pixels layer 2 (3), SD to neighbor pixels layer 3 (3), SD to 
neighbor pixels stain 1 (3), SD to neighbor pixels stain 2 (3), mean difference to neighbors layer 1 (0), 
mean difference to neighbors layer 2 (0), mean difference to neighbors layer 3 (0), mean difference to 
neighbors stain 1 (0), mean difference to neighbors stain 2 (0)

Relation to sub‑objects Area of sub‑objects mean (2) (Pxl), area of sub‑objects SD (2) (Pxl), density of sub‑objects mean (2), 
density of sub‑objects SD (2), asymmetry of sub‑objects mean (2), asymmetry of sub‑objects 
SD (2), direction of sub‑objects mean (2), direction of sub‑objects SD (2), area of sub‑objects 
DarkSmall (2) (Pxl), Number of sub‑objects DarkSmall (2), Rel. area of sub‑objects DarkSmall (2)

SD: Standard deviation, GLCM: Gray‑level co‑occurrence matrix


